
Abstract. The Hamiltonian description of hydrodynamic type
systems in application to plasmas, hydrodynamics, and magne-
tohydrodynamics is reviewed with emphasis on the problem of
introducing canonical variables. The relation to other Hamilto-
nian approaches, in particular natural-variable Poisson brack-
ets, is pointed out. It is shown that the degeneracy of non-
canonical Poisson brackets relates to a special type of symme-
try, the relabeling transformations of fluid-particle Lagrangian
markers, fromwhich all known vorticity conservation theorems,
such as Ertel's, Cauchy's, Kelvin's, as well as vorticity frozen-
ness and the topological Hopf invariant, are derived. The appli-
cation of canonical variables to collisionless plasma kinetics is
described. The Hamiltonian structure of Benney's equations
and of the Rossby wave equation is discussed. Davey ± Stewart-
son's equation is given the Hamiltonian form. A general method
for treating weakly nonlinear waves is presented based on
classical perturbation theory and the Hamiltonian reduction
technique.

1. Introduction

The equations of hydrodynamics and their generalizations
are among the most basic tools for the description of
nonlinear waves in macroscopic physics. In studying them,
an important question is whether these equations, in the
absence of dissipation, have a Hamiltonian structure. This
problem is primarily important in connection with the

problem of quantization. However, in the classical case too,
establishing that a given system is Hamiltonian allows one to
hope (although this is not always a simple matter) to
introduce explicitly canonical variables, after which all the
variants of perturbation theory are considerably simplified
and standardized (cf., for example, Refs [1 ± 4]). In particular,
this approach gives an opportunity to consider all nonlinear
processes from the general point of view without fixing their
proper peculiarities connected with a given medium. The
Hamiltonian approach also gives certain advantages when
approximations must be made. A classical example of this is a
description of well-separated space or time scales, in parti-
cular, of high-frequency and low-frequency waves (for
review, see the remarkable book of Whitham [5]). For
continuous Hamiltonian systems the stability problem for
stationary solutions as cnoidal waves, solitons, vortices, etc. is
formulatedmore or less in the samemanner and can be solved
by studying the quadratic Hamiltonian for small perturba-
tions or by taking the Hamiltonian in combination with other
integrals (numbers of particles, momentum, etc.) as the
Lyapunov functional if considering nonlinear stability (cf.,
for instance, Refs [6 ± 8]).

Besides hydrodynamics, equations of the hydrodynamic
type are widely used for the description of various processes in
plasma physics as well as in magnetohydrodynamics (MHD).
They combine the equation of medium motion and the
Maxwell equations for electromagnetic fields. These models
also play an essential role in solid state physics and nonlinear
optics.

The problem of the Hamiltonian structure of the hydro-
dynamic equations has a long history. There are two
traditional approaches to it. Firstly, one can try, for some
system or other, to directly guess a complete set of canonical
variables. Then the problem of calculating the Poisson
brackets between any physical quantities is automatically
solved, and one also succeeds in writing down a variational
principle. Usually the Hamiltonian variables are expressed in
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terms of the natural variables (velocity, pressure) in a highly
non-trivial fashion.

An alternative path is directly to find expressions for the
Poisson brackets in `natural' variables. This does not enable
one to introduce a variational principle, but for many
physical problems, including the problem of quantization, it
appears to be sufficient. The hydrodynamic type equations
have the same degree of nonlinearity (quadratic in the
velocities) as the energy integral. It then follows that the
expression for the Poisson brackets must be linear with
respect to the variables (velocity, density, etc.) that enter
these equations. It is easy to show that all such brackets are
brackets of the Berezin ±Kirillov ±Kostant type on certain
Lie groups. This quite important fact was understood
relatively recently, apparently first by V I Arnold [9, 10] (see
also, Ref. [11]) although Poisson brackets between velocity
components had already been calculated in connection with
the problem of quantization in a paper by L D Landau [12].
Also devoted to these notions were some papers by
I E Dzyaloshinskii and G E Volovik [13], and S P Novikov.
For the equations of magnetohydrodynamics the non-
canonical Poisson brackets were first calculated by Greene
andMorrison [15] and for the Vlasov ±Maxwell equations for
a plasma they were obtained by Morrison [16].

As for canonical variables, for the ideal hydrodynamics of
a homogeneous incompressible fluid they had already been
found in the previous century by Clebsch (cf., for example,
Ref. [17]). The topological meaning of these variables was
clarified in the paper by Kuznetsov and Mikhailov [18]. In
1932, H Bateman [19], and later independently B I Davydov
[20], extended the result of Clebsch to a compressible
barotropic liquid. In 1952 for nonbarotropic flows of an
ideal liquid, the variables were found by I M Khalatnikov
[21]. Later this result was rediscovered in another set of
articles (see, for example, Ref. [22]).

From these results one can obtain the canonical variables
for an incompressible fluid of variable density, including
fluids with a free boundary, as was done by Kontorovich,
Kravchik and Time [23]. However, the extremely important
problem, from the point of view of surface waves, of the
Hamiltonian description of a fluid with free surface was
solved earlier by one of the authors of the present work
(V E Zakharov). The canonical variables were introduced
without proof in 1966 [24], and the complete proof was
published in 1968 in Ref. [25]. In these papers only potential
fluid flows were considered. A partial transfer of the results to
the case of non-potential flow was accomplished by Vorono-
vich [26] and Goncharov [27], who also solved the problem of
the Hamiltonian description of internal waves in the ocean. A
presentation of these results can be found in the monograph
by Yu Z Miropolskii [28] as well as in a recent book by
Goncharov and Pavlov [29], both written entirely from the
point of view of Hamiltonian formalism.

Of especial interest is the Hamiltonian formalism for the
Benney equations, describing non-potential long waves on
shallow water. The system of Benney equations is completely
integrable [30, 31], and the Hamiltonian formalism for them
was formulated (in the language of Poisson brackets between
moments of the longitudinal velocity) in a paper by Manin
and Kupershmidt [32].

Canonical variables enabling one to calculate Poisson
brackets between any quantities were found for the Benney
equations in Ref. [30]. This question unexpectedly turned out
to be related to the question of theHamiltonian description of

plasma, which had earlier attracted attention. AHamiltonian
description of magnetohydrodynamics was achieved by the
authors of the present work in 1970 [33]. Canonical variables
in a two-fluid hydrodynamic model were introduced in Ref.
[34], and were used later in various papers describing non-
linear processes in plasma (cf., for example, Ref. [35]). This
did not solve the question of introducing canonical variables
in the collisionless kinetics of a plasma, although, after paper
[31], it became clear that such variables must exist. In the
present survey we introduce such variables, using the
equivalence of the Vlasov equations to an infinite system of
hydrodynamic equations. This equivalence, which was noted
by one of the authors (E A Kuznetsov), is established by a
Radon transform, and was essentially used in Ref. [30], where
it was shown that the Benney equations are equivalent to one
variant of the Vlasov equations.

In the present survey we also give a systematic description
of the result recalled above. In addition we discuss the
interesting question of the Hamiltonian structure for two-
dimensional incompressible hydrodynamics, and for the
Charny ±Obukhov ±Hasegawa ±Mima equation describing
Rossby waves. In these systems, there has not yet been success
in introducing suitable canonical variables, although the
existence of a Hamiltonian structure is a proven fact.
Recently Piterbarg [39], generalizing the results of papers
[38], proved that the non-canonical Poisson brackets for such
systems for arbitrary flows with closed stream lines can be
reduced to the Gardner ±Zakharov ±Faddeev brackets
appearing at first for the integrable equations [40] and
suggested a constructive scheme for finding a canonical
basis. Finally we consider some general properties of
Hamiltonian systems with a continuous number of degrees
of freedom.

The basis of this survey was a paper by the authors [1],
published in 1986 in English in a sufficiently rare journal and
therefore unknown to a wide audience, both Russian and
abroad. The text of this survey has been revised and
broadened significantly from [1]. First of all, the problems
of the non-canonical Poisson brackets and their degeneracy
were revised and supplemented. For systems of the hydro-
dynamic type this degeneracy is connected with a hidden
symmetry of the equations, in fact, the gauge symmetry. This
symmetry has a Lagrangian origin; it relates to the group of
transformations relabeling the Lagrangian variables marking
each fluid particle. Evidently no changes in markers may
influence the system dynamics. This fact was first understood
completely by R Salmon [41] in 1982 although Eckart in 1938
and then in 1960 [44] and later Newcomb [46] understood the
role of this symmetry. In particular, all known theorems on
vorticity conservation, i.e., the Ertel theorem about the
existence of the Lagrangian (material) invariants [42] (see
also Ref. [54], p. 31), the Cauchy theorem of frozenness of
vorticity into a fluid [17] and the Kelvin theorem about the
conservation of the velocity circulation (see, for instance,
[54]), as well as the conservation of the topological Hopf
invariant [56, 57] characterizing the flow knottiness, are a
consequence of this symmetry. This symmetry is also
connected with introducing the canonical Clebsch variables
and their gauge symmetry.

One should note that introducing canonical variables of
the Clebsch kind into systems of the hydrodynamic type
allows one to find expressions for all the non-canonical
Poisson brackets known up to now, starting from the
canonical one. This fact was first demonstrated [47, 1] by the
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authors of the given survey for the equations of ideal
hydrodynamics and for the kinetic Vlasov ±Maxwell equa-
tions for plasma. However, passing to the opposite direction,
i.e., finding canonical brackets from non-canonical brackets,
entails some difficulties in the general situation, connected
with the degeneracy of non-canonical brackets.

In this survey we consider all these questions for the
hydrodynamic equations in more detail. Here we don't
discuss the role of this symmetry for other models, except
the MHD equations (about this subject see the recent paper
[48]). Now this question for systems of the hydrodynamic type
is far fromwell studied and requires additional investigations.
In our opinion, it has a principle meaning for understanding
many nonlinear phenomena which take place in fluids and
plasma. First of all these are the processes of reconnection of
vortex lines for fluids or magnetic field lines in plasma,
namely, the processes which change the system topology.

2. General remarks

We recall some elementary facts. The most naive definition of
a finite-dimensional Hamiltonian system reads as follows.
One considers a system of an even number of differential
equations for the time-dependent functions qk�t�, pk�t�
�k � 1; . . . ;N�, having the form

_qk � qH
qpk

; _pk � ÿ qH
qqk

: �2:1�

Here H�p1; . . . ; pN; q1; . . . ; qN�, which is a given function of
the variables, is the Hamiltonian.

The definition presented here is far from being always
satisfactory, since it assumes implicitly that the domain of
variation of the pi and qi (the phase space) is a domain in the
real vector space R 2N. However, for the case of the
mathematical pendulum, where the generalized coordinate is
an angle, one must identify its values that differ by 2p. Thus
the phase space of the pendulum is a cylinder, which is
extremely significant, since functions defined uniquely on
the cylinder must be periodic functions of the angular
coordinate. The situation becomes even more complicated
when we consider a spherical pendulum or the motion of a
rigid body with one point fixed. All of these examples deal
with the next class of Hamiltonian systems in degree of non-
triviality, where one can, with a sufficient degree of definition,
distinguish two groups of variables: generalized coordinates
q1; . . . ; qN and generalized momenta p1; . . . ; pN. The separa-
tion is based on the fact that the generalized coordinates give a
point on an arbitraryN-dimensional manifold (configuration
space)M, while the momenta can have arbitrary values in the
vector space of momenta RN. In this case the phase space of
the system,G � T ��M�; is the tangent bundle of the manifold
M. Hamiltonian systems of this type preserve the basic
properties of `naive' Hamiltonian systems. In particular, the
variational principle in the Hamiltonian form is valid and one
can go over to a Lagrangian description.

Only systems of this type are usually described in the
standard textbooks of theoretical physics.

It is important, however, to considerHamiltonian systems
of a more general form, in which it is impossible to make a
unique separation of variables into coordinates and
momenta. Such systems are conveniently described in terms
of generalized coordinates, that are generally speaking not
canonical. LetG, the phase space of the system, be a manifold

covered by some system of maps. We assume that on the
manifold G there is a given symplectic structure Ð a
nondegenerate closed two-form O. This means that at each
point a twice covariant anti-symmetric tensor Oij � ÿOji is
defined. Suppose that xi are the local coordinates at some
point. The closure condition implies that Oij obeys the system
of equations

qOij

qxk
� qOjk

qxi
� qOki

qxj
� 0 �2:2�

with detOij 6� 0.
A system of differential equations defined on G is said to

be Hamiltonian if there exists a functionH on G such, that in
the neighborhood of each point identified by xi one has

Oij _xj � qH
qxi

: �2:3�

It is easy to see that under the changes of coordinates
xi � xi�~x1; . . . ; ~xN�, for which the Jacobian q�x1; . . . ; xN��
�q�~x1; . . . ; ~xN��ÿ1 6� 0, equation (2.3) remains invariant. In
this case the matrix O transforms as follows:

~Olm � qxi
q~xl

Oij
qxj
q~xm

:

Amanifold with an assigned symplectic structure is said to
be symplectic. It necessarily has even dimension (otherwise
detOij � 0).

Within each simply connected region Eqn (2.2) can be
integrated to read

Oij � qAi

qxj
ÿ qAj

qxi
; �2:4�

whereAi�x� are the `potentials' of the formOij. If the solutions
of the system (2.3) do not extend beyond the limits of this
region, the variational principle dS � 0 is valid, where

S �
�
�Ai _xi �H� dt : �2:5�

It has been noted that the variational principle (2.5) exists
globally only if the formOij is exact, i.e., if relation (2.4) can be
continued to the whole manifold G. Generally speaking, the
Ai are multivalued functions on G, that acquire a non-zero
addition in going around any cycle not homologous to zero.
Locally, in each simply-connected region one can, by a
suitable change of variables, bring the system to canonical
coordinates, i.e., to form (2.1) (Darboux's theorem). How-
ever, globally (over allG) this is generally not possible, even if
differential form (2.4) is exact. Due to the assumption of the
nondegeneracy of the formOij, Eqn (2.3) can be written in the
form

_xi � Rij
qH
qxj

: �2:6�

Here Rij � ÿRji is the matrix reciprocal to Oij; such as
Rÿ1 � O: It is then easily verified that the relations (2.2) are
equivalent to the relations

Rim
q

qxm
Rjk � Rkm

q
qxm

Rij � Rjm
q

qxm
Rik � 0 : �2:7�
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Next, by means of the matrix R one defines the Poisson
brackets between any functions A and B given on G:

fA;Bg �
X

Rij
qA
qxi

qB
qxj

: �2:8�

From the antisymmetry of Rij it follows that

fA;Bg � ÿfB;Ag ;

while the relations (2.7) guarantee that the Jacobi identity�fA;Bg;C	� �fB;Cg;A	� �fC;Ag;B	 � 0 �2:9�

is satisfied. Because of the non-degeneracy of the matrix Oij,
in each coordinate system the matrix Rij is also non-
degenerate. The matrix R is called the symplectic operator,
and it plays the same role as the metric tensor gij in Euclidean
geometry. The condition (2.7) is analogous to the vanishing of
the curvature tensor for Euclidean space, and, respectively,
the canonical form

O � 0 I
ÿI 0

� �

has the same meaning as

g � I

in Euclidean space.
The next step for generalizing a Hamiltonian system is to

drop the requirement of nonsingularity of R. This variant of
Hamiltonian mechanics is called Poisson mechanics.

If detRik � 0, then a return to form (2.3) is impossible.
Suppose that vectors xa

i �a � 1; . . . ; k� form a basis of the co-
kernel of the operator Rij (i.e., xiRij � 0). Then, from Eqn
(2.6), it follows that the relations

xa
i _xi � 0 ; a � 1; . . . ; k �2:10�

hold. In a simply-connected domain in which the rank of the
matrix R is constant, due to the Frobenious theorem, Eqns
(2.10) can be integrated:

f a�x1; . . . ; xn� � const ; a � 1; . . . ; k :

In turn, these relations are connected with the vectors xai by
the evident formulae:

xa
i �

qf a

qxi
:

The constants f a are called Casimirs. Moreover, the Frobe-
nious theorem and relations (2.7) guarantee that all these k
invariants are functionally independent. They are evidently
integrals of motion for our Hamiltonian system. These
integrals split G into manifolds invariant under system (2.6)
(symplectic leaves). On each of them one can introduce the
usual Hamiltonian mechanics. From our remarks it is clear
that the possibility of introducing Poisson brackets implies
the system under consideration to be Hamiltonian in the
weakest sense.

Of special interest is the case where the metric elementsRij

are linearly dependent on the coordinates as follows:

Rij � eij;mxm : �2:11�

From condition (2.7) it now follows that the eij;m are
subject to the relations

eik;m ejm; l � eji;m ekm; l � ekj;m eim; l � 0 ;

i.e., they are the structure constants of some Lie algebra L.
Calculating the brackets between quantities xi, xj, it can be
checked that

fxi; xjg � Rij � eij;m xm : �2:12�
Thus, the space G itself is now a Lie algebra L.

The matrix Rij is in general degenerate. However,
relations (2.10) are always integrable. Consider the algebra
L�, dual to L, and the corresponding Lie group l �. Here the
algebra L forms the co-adjoint representation of the group l �.
Relations (2.10) are invariant under the action of the group l �,
and so conditions (2.12) hold, and define the orbits of the
action of the group l � on L. On these orbits (cf. Kirillov [36],
Kostant [37]) a fully valid Hamiltonian mechanics exists.

If the Hamiltonian is polynomial in its variables, then the
equations are also polynomials in the canonical coordinates,
and they have a nonlinearity that is one degree lower. If the
degree of nonlinearity of the investigated system coincides
with the degree of nonlinearity of the Hamiltonian, then the
matrix is linear in the coordinates, and the symplectic
manifold G is the orbit of some Lie group in its co-adjoint
representation. This currently happens for equations of the
hydrodynamic type.

Another interesting case is the situation when the Poisson
structure R depends on the coordinates xi quadratically. In
this case it can be regarded as the classical R-matrix which
plays an important role in the theory of Hamiltonian systems
integrable by the inverse scattering transform. This theory,
however, is far from a scope of this survey and we shall not
further touch this question.

3. Hamiltonian formalism in continuous media

The introduction of a Hamiltonian structure for conservative
nonlinear media is essentially a generalization of the
Hamiltonian formalism for systems with a finite number of
degrees of freedom to systems with a continuous number of
degrees of freedom.We shall basically understand this to give
a description of the dynamics of waves evolving in a
continuous medium by means of canonical variables. There
are no general recipes for the introduction of canonical
variables in continuous media. To solve this problem it is
sometimes useful to make use of a Lagrangian with con-
straints, which one takes in the form of some equations of
motion. This method, which apparently arose in the work of
B I Davydov [20], is justified when the expression for the
Lagrangian without the constraints comes directly from
mechanics or field theory. Such a procedure, in particular,
applies to the hydrodynamic type systems that will be
considered in this survey, and is widely used for describing
nonlinear waves in plasma, in hydrodynamics and magneto-
hydrodynamics. For this purpose, we shall find the canonical
variables for all of these systems.

Suppose that the medium is described by a pair of
canonical variables Ð the generalized coordinate q�r; t� and
the generalizedmomentum p�r; t�, whose evolution is given by
the Hamiltonian equations:

qp
qt
� ÿ dH

dq
;

qq
qt
� dH

dp
: �3:1�
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Here theHamiltonian is some functional of p and q. Formally
it can be written as a series in powers of the canonical
variables:

H �
X1
n�0

Xn
k�0

�
Gk

n �r1; . . . ; rk; rk�1; . . . ; rn�

� p�r1� . . . p�rk�q�rk�1� . . . q�rn� dr1 . . . drn : �3:2�

This expansion, in the absence of external forces, begins
with quadratic terms in p and q. For spatially homogeneous
media the structure functions Gk

n are functions of the
differences (ri ÿ rj). In particular, for such media the quad-
ratic termH0 in the expansion has the form

H0 � 1

2

��
A�rÿ r 0� p�r� p�r 0� � 2B�rÿ r 0� p�r�q�r 0�

� C�rÿ r 0�q�r�q�r 0�� dr dr 0 ; �3:3�

whose diagonalization solves the problem of stability of a
homogeneous medium against small perturbations.

To solve it we first carry out a Fourier transformation in
the coordinates:

p�r� � 1

�2p�3=2
�
pk exp�ikr� dk ; pk � p�ÿk ;

q�r� � 1

�2p�3=2
�
qk exp�ikr� dk ; qk � q�ÿk :

As a result, equation (3.3) is rewritten in the form

H0 � 1

2

��
Ak pk p

�
k � 2Bk pkq

�
k � Ckqkq

�
k

�
dk :

The Fourier transforms of the structural functions that enter
here have the following properties:

Ak � A�k � Aÿk ; Ck � C �k � Cÿk ;

Bk � B1k � iB2k � B1ÿk ÿ iB2ÿk :

In the k-representation Eqns (3.1) then take the form

qpk
qt
� ÿ dH

dq�k
;

qqk
qt
� dH

dp�k
:

The equations for small perturbations are obtained from this
by varying the Hamiltonian H0. Analysis of these equations
shows that waves with frequencies

o1;2 � ÿB2k �
������������������������
AkCk ÿ B2

1k

q
can propagate in the medium. The medium will be stable with
respect to small perturbations if

AkCk ÿ B 2
1k > 0 ; �3:4�

and unstable in the opposite case. The latter case, for instance,
can be realized in a cold plasma with a monochromatic
electron beam when the plasma electrons and beam electrons
can be considered as two independent fluids.

In the following we shall assume that the stability
condition (3.4) is satisfied. For media that are invariant

under reflection [i.e., B�r� � B�ÿr�], one obtains
B2k � 0 ; o2

k � AkCk ÿ B2
1k :

We further carry out a canonical transformation

pk � Ukak �U �k a
�
ÿk �Uk � Uÿk� ;

qk � Vkak � V �k a
�
ÿk �Vk � Vÿk� �3:5�

from the variables pk and qk to normal variables ak and a�k, in
which the quadratic Hamiltonian is

H0 �
�
oka

�
k ak dk ; �3:6�

and the equations of motion have the form

qak
qt
� ÿi dH

da �k
: �3:7�

Here ok denotes one of the functions o1;2.
Substituting the transforms (3.5) into Eqn (3.3), and from

a comparison with Eqn (3.6) we get a system of equations for
determiningUk andVk. By requiring that this transformation
is canonical, we get

UkV
�
k ÿU �kVk � ÿi ;

and find from this system

Uk � i
B1k ÿ io0k���

2
p

Ako0k

exp�ijk� ;

Vk � ÿi
����������
Ak

2o0k

r
exp�ijk� :

In the above expressions o0k is the quantity
sign�Ak��AkCkÿ B 2

1k�1=2, and jk is an arbitrary phase
factor, which we shall set equal to zero from now on [this
corresponds to a simple redefinition of ak: ak ! ak exp�ijk�].

Let us now explicitly consider the complete frequency

ok � ÿB2k � sign�Ak��AkCk ÿD2
1k�1=2

that is the dispersion law for the waves. It is essential that the
sign of the frequency coincides with the sign of the wave
energy in the nonlinear medium{. Accordingly all waves can
be divided into two big classes: waves with positive energy and
waves with negative energy. All well-known waves (gravity
and capillary waves on a fluid surface, acoustic and electro-
magnetic waves, and so on) belong to the first class. Waves
with a negative energy typically appear in media with some
current (it may be electron or ion beams in plasma, or flow of
one fluid with respect to another, etc.) and in this case the
origin of a negative frequency is connected with the Doppler
effect. One should say that there is no principle difference in
the nonlinear interaction between waves within their respec-
tive classes. This arises for the interaction between waves with
positive and negative energies.

{Here we assume that the nonlinear interaction is weak so that the energy

sign of the nonlinear medium coincides with the sign of its quadratic

Hamiltonian.
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In order to classify the nonlinear interaction between
waves, let us consider the next terms in the expansion in
powers of a and a �, which can be obtained after substitution
of Eqn (3.5) into (3.2). In particular, the cubic termH1 has the
form

H1 �
�
�Vkk1k2a

�
k ak1ak2 � c:c:�dkÿk1ÿk2 dkdk1dk2

� 1

3

�
�Ukk1k2a

�
k a
�
k2
a �k2 � c:c:�dk�k1�k2 dk dk1dk2 ; �3:8�

where the matrix elements U and V have the following
symmetry properties:

Ukk1k2 � Ukk2k1 � Uk2k1k ; Vkk1k2 � Vkk2k1 :

Among the fourth-order terms, we shall be interested in
the term of the form

H2 � 1

2

�
Tk1k2k3k4a

�
k1
a �k2ak3ak4dk1�k2ÿk3ÿk3

Y
i

dki :

Each term in the expansion ofH in powers of a and a � has
a simple physical meaning. The equation of motion in the
form (3.7) is the limit of the corresponding quantum
equations for the Bose operators in the case of a classical
wave field, where the variables a � and a appear as analogs of
the creation and annihilation operators. Thus the cubic term
in the expansion of the Hamiltonian describes three-wave
processes (the first term inH1 is responsible for the processes
of decay of onewave into three waves, the second corresponds
to the simultaneous creation of three waves), the next term
describes four-wave processes, etc.

It is necessary to say that a calculation of matrix elements
in this scheme assumes a pure algebraic procedure that
consists in a substitution of the transformation (3.5) into the
corresponding Hamiltonian, a forthcoming simplification
and a symmetrization of the final result.

For a medium described by several pairs of canonical
variables and whenH0 is diagonalized, several wave branches
can appear, with dispersion laws oi�k� and amplitudes ai�k�.
In this case a summation over all types of waves in each term
of the expansion is needed.

In the next sections we show how both canonical variables
are introduced andmatrix elements are calculated on concrete
examples.

4. Canonical variables in hydrodynamics

As a first example we consider the equations of potential flow
of an ideal compressible barotropic fluid, in which the
pressure p is a single-valued function of the density r. These
equations can be written in the following form:

qr
qt
� div �rHHj� � 0 ; �4:1�

qj
qt
� �HHj�

2

2
� w�r� � 0 : �4:2�

Here j is the velocity potential,o�r� � qe=qr is the enthalpy,
where e�r� denotes the internal energy density. These
equations conserve the energy

H �
��

r�HHj�2
2

� e�r�
�
dr : �4:3�

It can be checked that the equation set (4.1) and (4.2) can be
represented in the form of the Hamiltonian equations:

qj
qt
� dH

dr
;

qr
qt
� ÿ dH

dj
:

Thus the density r is a generalized coordinate, and j is the
generalized momentum.

This result can also be obtained from a Lagrangian
approach. In this case one makes use of the well-known
expression for the Lagrangian of a mechanical system,
generalized to the continuous case, supplementing it by the
constraint

qr
qt
� div �rv� � 0 :

Then the action is

S �
�
L dt �

�(
rv2

2
ÿ e�r� � j

�
qr
qt
� div �rv�

�)
dr dt :

Its variation with respect to the variable v leads to the
potential condition for the flow, v � HHj, and variations with
respect to the variables r and j lead to Eqns (4.1) and (4.2).
Here the transition to the Hamiltonian form is accomplished
by the standard formula

H �
�
j

qr
qt

drÿ L

and leads us to Eqn (4.3).
We give the expression for the coefficients of the

Hamiltonian expansion. The diagonalization of

H0 �
��

1

2
r0�HHj�2 � c2s

dr2

2r0

�
dr

can be made by the transformation

jk � ÿ
i

k

�
ok

2r0

�1=2

�ak ÿ a �ÿk� ;

drk � k

�
r0
2ok

�1=2

ak � a �ÿk
ÿ �

: �4:4�

Hereok � kcs refers to the eigenfrequency, dr � rÿ r0 is the
deviation of the density from the equilibrium r0,
cs � �qp=qr0�1=2 is the velocity of sound. Substitution of this
transformation into the next termH1 of the expansion,

H1 �
��

1

2
dr�HHj�2 � c2sg

dr3

2r20

�
dr ;

gives the following expression for Ukk1k2 and Vkk1k2 :

Ukk1k2 � Vkk1k2 �
1

16�p3r0�1=2
�
3gc2s

kk1k2

�okok1ok2�1=2

�
�
okok1

ok2

�1=2

k1
�kk1�
kk1

�
�
okok24

ok1

�1=2

k1
�kk2�
kk2

�
�
ok2ok1

ok

�1=2

k
�k2k1�
k2k1

�
: �4:5�
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The equations describing nonlinear sound waves in media
with dispersion belong to the same type of system as (4.1) and
(4.2). These equations can be derived when considering the
internal energy of the system Ein as a functional of the density.
This functional can be represented as a power series in HHr:

Ein�
��

e�r� � n
2
�HHr�2 � . . .

�
dr : �4:6�

Classical hydrodynamics corresponds to keeping only the
first term in the above series. If we now include the second
term, we get the Boussinesq system:

qr
qt
� div �rHHj� � 0 ;

qj
qt
� 1

2
�HHj�2 � ÿ dEin

dr
� ÿw�r� ÿ nDr :

The Hamiltonian in this case coincides with the total energy
of the system, i.e., with a sum of kinetic energy and internal
energy given by Eqn (4.6), while r andj remain the canonical
conjugated variables.

Introduction of canonical variables is possible also when
we include vortex motion in an ideal fluid [17, 19, 20]. To this
aim we must start from the full Euler equations of hydro-
dynamics:

qr
qt
� div �rv� � 0 ; �4:7�

qv
qt
� �vHH�v �ÿ HHp�r�

r
� ÿHHw�r� : �4:8�

We know that, for the Euler equations in accordance with
the Kelvin theorem, the circulation of the fluid velocity
around any closed contour moving together with the fluid is
conserved. In other words, in such a system there is a certain
scalar function m�r; t� which is convected by the fluid and
described by the following equation:

dm
dt
�
�
q
qt
� vHH

�
m � 0 : �4:9�

Therefore, in formulating the variational principle we should
include this equation as a constraint which implies setting

L �
��

rv2

2
ÿ e�r� � j

�
qr
qt
� div �rv�

�
ÿ l
�
qm
qt
� vHHm

��
dr :

�4:10�

The variation of L with respect to the variables v, r and m
leads to the following equations:

v � l
r
HHm� HHj ; �4:11�

qj
qt
� �vHHj� ÿ v2

2
� w�r� � 0 ; �4:12�

ql
qt
� div �lv� � 0 : �4:13�

Here the first equation is the well-known change to the
Clebsch variables l and m; the second represents the general-
ization of the Bernoulli equation to the non-potential flows
and the last governs the dynamics of a new variable l. The
choice of l and m for a given value of v is not unique.

Let us consider two sets of potentials l, m,j and l 0, m 0, j 0,
giving the same value for the velocity v with the help of Eqn

(4.11). Multiplying Eqn (4.11) by the differential dr (for a
fixed time t), we get a relation

dj� l
r

dm � dj 0 � l 0

r
dm 0

between the new and old variables, or

df � d�jÿ j 0� � ÿ l
r

dmÿ l 0

r
dm 0 : �4:14�

The last relation shows that j 0 ÿ j is the generating function
f of a gauge transformation, depending on m and m 0. The old
and new canonical coordinates are then expressed in terms of
the generating function by means of the formulae [21]

l � ÿr qf
qm

; l 0 � r
qf
qm 0

; �4:15�

determining the non-uniqueness in the choice of Clebsch
variables.

Substituting the velocity v expressed in terms of the
variables l, m and j directly into the Euler equation (4.8),
we verify that

l
r
HH
�
qm
qt
� �vHH�m

�
� HHm

�
q
qt

l
r
� �vHH� l

r

�
� HH

�
qj
qt
� �vHH�jÿ v2

2
� w�r�

�
� 0 :

Thus this equation is satisfied if Eqns (4.12), (4.13) are
also imposed. If it is so the system of equations of hydro-
dynamics can be said to be equivalent to the system (4.7),
(4.9), (4.12), and (4.13). This is based on the uniqueness of the
solution of the Cauchy problem for the original system and
that obtained (that is, rigorously speaking, an assumption). In
doing this we must in addition, by means of the velocity v
given at the initial time, construct some set of functions l0, m0
and j0, appearing as initial conditions for the system (4.9),
(4.12), and (4.13).

Now changing to a Hamiltonian description, we get

qr
qt
� dH

dj
;

qj
qt
� ÿ dH

dr
;

ql
qt
� dH

dm
;

qm
qt
� ÿ dH

dl
; �4:16�

where the Hamiltonian

H �
��

rv2

2
� e�r�

�
dr

coincides with the total energy of the system. For potential
flows �l � m � 0� we again arrive at a pair of canonical
variables �r;j�.

The canonical variables for the equations of relativistic
hydrodynamics,

qr
qt
� div �rv� �0 ;�

q
qt
� �vHH�

�
p�mHHw�r� � 0 ;

p � mv

�
1ÿ v

2

c2

�ÿ1=2
;
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are introduced in analogy to Eqn (4.11). In this case

p

m
� l

r
HHm� HHj :

Just as in the preceding example, the variables �l; m� and
�r;j� form pairs of canonically conjugate quantities, sub-
jected to Eqns (4.16), with the Hamiltonian

H �
��

r
m
�m2c� p2c2�1=2 � e�r�

�
dr :

A natural generalization of the Clebsch formulation (4.8)
is the introduction of canonical variables for nonbarotropic
flows [22], when e depends on the density r as well as on the
entropy S. For this the equations of motion (4.9) and (4.11)
are supplemented by the equation for the entropy advected by
the fluid,�

q
qt
� �vHH�

�
S � 0 ;

and the thermodynamic relation

de � rTdS� wdr

with T as the temperature. In this case the transition to the
new variables is accomplished by the formula

v � HHj� l
r
HHm� b

r
HHS : �4:17�

For such flows �j; r�, �l; m� and �S; b� are pairs of canonically
conjugate quantities:

qr
qt
� dH

dj
� ÿdiv �rv� ;

qj
qt
� ÿ dH

dr
� v2

2
ÿ vHHjÿ w ;

ql
qt
� dH

dm
� ÿdiv �lv� ;

qm
qt
� ÿ dH

dl
� ÿvHHm ;

qb
qt
� dH

dS
� ÿdiv �bv� � rT ;

qS
qt
� ÿ dH

db
;

where H � � �r�v2=2� � e�r;S�� dr. The equivalence of these
equations to the equations of hydrodynamics is verified by
direct substitution of the velocity into the Euler equation
(4.8). Thus, in comparison with the barotropic case the
number of canonical variables increases by two.

Now let us ask the natural question: what is the minimal
number of canonical conjugated pairs for describing any
flow? As we saw above, introducing new canonical variables
in the framework of the Lagrangian approach was connected
with the addition of new constraints into the Lagrangian. For
example, for the Lagrangian (4.11) they were the continuity
equation for the density and the equation for the Lagrangian
(material) invariant m advected by the fluid. In the nonbaro-
tropic case a newLagrangian invariant, i.e, the entropyS, was
added.

To describe the fluid in terms of the Lagrangian (material)
variables it is enough to give three values �a1; a2; a3� � a
which, in the simplest case, coincide with the initial positions

of each fluid particle, so that the coordinate of the particle at
time t will be

r � r�a; t� : �4:18�

More simply, and most frequently, the vector a is related to
the origin of the particle coordinates:

a � r�a; 0� :

Hence it becomes clear that originally there are three
independent Lagrangian invariants,

a � a�r; t� ;

that are the inverse map to (4.18). All other Lagrangian
invariants are functions of a. If we now assign the equations

da

dt
� qa

qt
� �vHH�a � 0

for a as constraints{ in the Lagrangian for the fluid we
immediately come to three new pairs of the canonical
variables �ll; al�, l � 1; 2; 3 with the velocity in the form

v � ulHHal : �4:19�

Here ul � ll=r and the density r is expressed through a by
means of

r � r0�a�
J

;

where r0�a� is the original density, J � det Ĵij is the Jacobian
of the mapping (4.18), and Ĵij � qxi=qaj is the Jacobi matrix
(for more details, see Sections 5, 6). The vector u in this
formula is expressed in terms of the velocity components vi by

u � ĴTv ;

where the superscript T means transpose.
Representation (4.19) is themost general. In particular, all

the changes of variables presented above follow from this
formula. It can be simplified although remaining general.

Let us consider reversible smooth changes of variables:

a � a�~a� :
Under these changes representation (4.19) remains invariant,

v � ~ulHH~al ;

but the vector u transforms as

~ul � uk
qak
q~al

:

If we now require that one of the components, say u3, is equal
to 1, representation (4.19) becomes (compare with Ref. [49])

v � HHf� l1
r

HHm1 �
l2
r

HHm2 : �4:20�

If now in this equation we put the entropy S for m2, then we
come back to the transformation (4.17). Note that such a
reduction is possible if the family of surfaces of constant
entropy, S�r; t� � const; are homotopic, say, to the family of
surfaces a1�r; t� � const. Hence, in particular, it follows that

{These constraints are often called Lin's constraints [51].
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in the barotropic case it is enough to take two pairs of the
Clebsch variables in order to describe any fluid flow. One pair
of Clebsch variables, as we will see later, describes a partial
type of flows. Nevertheless, locally any flow can be para-
meterized by one pair of Clebsch variables [17].

5. Non-canonical Poisson brackets

Now let us consider how one introduces a Hamiltonian
structure into hydrodynamics in terms of the natural
physical variables. To do so, it is sufficient to construct
Poisson brackets that satisfy all the necessary requirements.
The simplest way of constructing such brackets is to convert
the Poisson brackets expressed in terms of canonical variables
to an expression in terms of the natural variables. Note that in
this case the arising symplectic operator appears to be local in
those variables. As an example we carry out a conversion of
the formula for barotropic flows of an ideal fluid. The
calculations for other models can be done in exactly the
same way.

According to (4.16), the Poisson brackets are given by the
expression:

fF;Gg �
���

dF
dr

dG
dj
ÿ dF
dj

dG
dr

�
�
�
dF
dl

dG
dm
ÿ dF

dm
dG
dl

��
dr :

�5:1�

Here the velocity is expressed in terms of l, m and r, j by the
formula

v � l
r
HHm� HHj ;

by means of which one can calculate the variational
derivatives of F with respect to r, j, l and m:

dF
dr

����
l
� dF

dr

����
v

ÿ lHHm
r

dF
dv

;
dF
dj
� ÿdiv dF

dv
;

dF
dl
� HHm

r
dF
dv

;
dF
dm
� ÿdiv

�
l
r
dF
dv

�
: �5:2�

In these formulae the variational derivatives on the left-hand
sides are taken with fixed l, m, r, j, and those on the right-
hand sides for constant r and v. Substitution of these relations
into Eqn (5.1) leads us to the brackets [15]

fF;Gg �
���

HH
dF
dr

;
dG
dv

�
ÿ
�
HH

dG
dr

;
dF
dv

��
dr

�
��

rot v

r
;

�
dF
dv
� dG

dv

��
dr ; �5:3�

the Jacobi identity (2.9) being satisfied automatically.
In terms of these brackets, the continuity and Euler

equations have the form

qr
qt
� ÿdiv �rv� � fr;Hg ;

qv
qt
� ÿ�v;HH�vÿ HHw�r� � fv;Hg ;

where H � � �rv2=2� e�r�� dr.
The brackets (5.3) have a more obvious meaning if we go

over to the new variable p � rv, the momentum density. In
these variables these brackets are changed to the BKK

brackets [14]:

fF;Gg �
�
r
��

HH
dF
dr

;
dG
dp

�
ÿ
�
HH

dG
dr

;
dF
dp

��
dr

�
� 

p;

��
dG
dp

HH
�
dF
dp
ÿ
�
dF
dp

HH
�
dG
dp

�!
dr : �5:4�

Using Eqn (5.4) to calculate brackets between components of
p and r, we find that�

pi�r�; pj�r 0�
	 � � pj�r 0�HH 0i ÿ pi�r�HHj

�
d�rÿ r 0� ;�

pi�r�; r�r 0�
	 � rHHi d�rÿ r 0� : �5:5�

In accordance with Eqn (2.12), these relations give a Lie
algebra, which coincides with the algebra of vector fields [58,
14] in this case.

The brackets (5.4) and (5.5) can also be obtained in other
ways. The simplest method is to regard the Poisson brackets
as the classical limit of the corresponding quantum commu-
tators, which were first calculated for hydrodynamics by
L D Landau [12]. Another method for calculating the
Poisson brackets for hydrodynamic models, proposed by
G E Volovik and I E Dzyaloshinskii [13], is based on the
fact that p and r are the densities of the generators of
translations and gauge transformations.

For the sake of completeness we give the expressions for
the Poisson brackets for the hydrodynamic equations of ideal
fluids for an arbitrary dependence of the pressure on both the
density and the entropy [15]:

fF;Gg �
���

HH
dF
dr

;
dG
dv

�
ÿ
�
HH

dG
dr

;
dF
dv

��
dr

�
��

rot v

r
;

�
dF
dv
� dG

dv

��
dr

�
��

HHS
r
;

�
dF
dv

dG
dS
ÿ dG

dv
dF
dS

��
dr : �5:6�

We want to repeat once more that the introduction of the
Poisson brackets to a system means that such systems possess
a Hamiltonian structure in the weakest sense. For example,
for the above equations of ideal hydrodynamics it is reflected
in the fact that the brackets expressed in terms of natural
variables are degenerate, i.e, there exist annulators (Casimirs)
of these Poisson brackets which, as we will see in the next
sections, are connected with a specific gauge symmetry of the
hydrodynamic equations, providing, in particular, the con-
servation of fluid velocity circulation. Besides, it means that a
direct conversion, i.e., passing from Eqn (5.3) or (5.6) to the
canonical basis is impossible in general. For this case at first
we need to resolve all our constraints (Casimirs). A typical
example just consists in introducing Clebsch variables. This is
all the more interesting as, so far, we have not explicitly
known what these Casimirs look like.

Of particular interest is the introduction of a Hamiltonian
structure for an incompressible fluid. In this case r is no
longer an independent variable, and can be eliminated by
using the relation div v � 0. Thus in the limit of the
incompressible fluid there is only one pair of canonical
variables l and m, and the Poisson brackets in this case take
the form

fF;Gg �
��

dF
dl

dG
dm
ÿ dF

dm
dG
dl

�
dr :
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By means of relations analogous to (5.2), one can derive

dF
dl
�
�
HHm
r
;
dF
dv
ÿ HH

1

D
div

dF
dv

�
;

dF
dm
� ÿdiv l

r

�
dF
dv
ÿ HH

1

D
div

dF
dv

�
:

As a result, we arrive at the equation

fF;Gg �
� 

rot v;

��
dF
dv
ÿ HH

1

D
div

dF
dv

�

�
�
dG
dv
ÿ HH

1

D
div

dG
dv

��!
dr : �5:7�

(Here we put r � 1.) This expression shows that the manifold
G coincides with the algebra of vector fields A�r� for which
divA � 0. These brackets are expressed in a more compact
form usingX � rot v [18], to read

fF;Gg �
��

X ;

�
rot

dF
dX
� rot

dG
dX

��
: �5:8�

As a result, the Euler equation for X,

qX
qt
� rot �v�X� ; �5:9�

becomes the Hamiltonian equation [9, 18]

qX
qt
� fX;Hg ;

where

H �
�
v2

2
dr :

The brackets (5.8) also give a Hamiltonian structure for
two-dimensional hydrodynamics. In this case X has a single
component, which is conveniently expressed in terms of the
stream function c:

O � ÿDc ;
�
vx � qc

qy
; vy � ÿ qc

qx

�
:

In the two-dimensional case the equation of motion (5.9) and
the Poisson brackets (5.8) have the following form:

qO
qt
� fO;Hg � ÿ qO

qx
qc
qy
� qO

qy
qc
qx
� ÿ q�O;c�

q�x; y� ; �5:10�

fF;Gg �
�
O

q�dF=dO; dG=dO�
q�x; y� dx dy ; �5:11�

H � 1

2

�
�HHc�2 dx dy :

A Hamiltonian structure is introduced analogously into
the Rossby equation, which differs from (5.11) in having the
additional term b�qc=qx� entering [1]:

q
qt

Dc� b
qc
qx
� ÿ q�Dc;c�

q�x; y� : �5:12�

It is then easy to see that the change O! Oÿ by reduces this
equation to (5.11). Thus, the Poisson brackets for Eqn (5.12)

are given analogously by [1]

fF;Gg �
�
�O� by� q�dF=dO; dG=dO�

q�x; y� dx dy ; �5:13�

while the Hamiltonian H is still defined by the earlier
expression

H � 1

2

�
�HHc�2 dx dy :

One should add that the Poisson brackets (5.11) and (5.13)
for flows with closed stream lines can be reduced to the
Gardner ±Zakharov ±Faddeev brackets used in the theory of
integrable equations [40]. Details of such a consideration can
be found in the original papers [38, 39].

Thus, introducing non-canonical Poisson brackets on the
basis of canonical ones represents the most simple way to find
them.Moreover the Hamiltonian structure given by means of
these brackets is the weakest Hamiltonian formulation of the
equations. In this formulation, in particular, it is impossible
to write the variational principle explicitly. On the other
hand, as will be shown later, the representation of the
hydrodynamic type equations by means of the non-canonical
Poisson brackets can be written for arbitrary flows. However,
the arbitrariness is paid for by the brackets degeneracy, i.e.,
by existence of Casimirs annulling non-canonical brackets.

6. Ertel's theorem

In this section and those after we show, mainly by following
results expounded in Refs [41, 43], that for perfect fluids with
arbitrary dependence of pressure on the fluid density and
entropy, Ertel's theorem as well as Kelvin's theorem on the
conservation of velocity circulation are a consequence of the
specific gauge symmetry connectedwith the relabeling of fluid
particles. We also discuss the role played in the Hamiltonian
structures by this symmetry.

Ertel's theorem [42] for a perfect fluid says that the
quantity

IL � �XHHS�
r

�6:1�

is a Lagrangian invariant. Here X � rot v is the vorticity, v is
the fluid velocity which satisfies the Euler equation,

qv
qt
ÿ �vHH�v � ÿHHp

r
; �6:2�

and S the specific entropy advected by the fluid:

qS
qt
� �vHH�S � 0 : �6:3�

The density r is defined from the continuity equation

qr
qt
� div �rv� � 0 : �6:4�

We omit a proof of this theorem, the validity of which can
be checked by direct calculations (see, for instance, Ref. [54]).

The invariance of IL means that it depends only on the
Lagrangian coordinates a, and does not change in time
moving together with a fluid particle.

As was mentioned before, the choice of the Lagrangian
variables is arbitrary: they label each fluid particle. Therefore
these coordinates are often called the Lagrangian markers.
Usually the Lagrangian coordinates are chosen to coincide
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with the initial positions of the fluid particles, rjt�0 � a. Thus,
a transition from one (Euler) description to another
(Lagrangian) one is accomplished by means of a change of
variables,

r � r�a; t� ; �6:5�
with a being the label of each fluid particle. The velocity of a
particle at point r is given by the usual formula

v�r; t� � _r
���
a
; �6:6�

where the dot means a derivative with respect to time t. In
terms of the Lagrangian variables, the solution to the
equations (6.4) and (6.3) can be written as

r�r; t� � r�a�
J

; S�r; t� � S0�a� ; �6:7�

where J � det Ĵij is a Jacobian and

Ĵia � qxi
qaa

is a Jacobimatrix of themapping (6.5), which is assumed to be
one-to-one. Further we will suppose J 6� 0 everywhere, that
guarantees the existence of the mapping inverse to (6.5).

The Jacobi matrix plays the basic role. Knowing this
allows the determination of not only the main flow para-
meters but also its geometrical characteristics, in particular
the metric tensor. The equation of motion for the Jacobi
matrix follows directly from the definition of the velocity
(6.6). Consider the vector dr connecting two adjacent fluid
particles:

dr � r�a� da; t� ÿ r�a; t� :

Using definition (6.6) it is easy to get the equation for this
quantity:

ddr
dt
� �dr;HH�v : �6:8�

Expanding then dr relative to the small vector da,

dxi � Ĵikdak ; �6:9�
we arrive at the equation of motion for the Jacobi matrix,

d

dt
Ĵ � UĴ ; �6:10�

containing the matrix elements

Uij � qvi
qxj

:

The symmetric part of U,

B � 1

2
�U�UT� ;

is a stress tensor, and its antisymmetric part corresponds to
the vorticity,

O � 1

2
�UÿUT� :

Hence the equation for the matrix inverse to Ĵ is

d

dt
Ĵÿ1 � ÿĴÿ1U ; �6:11�

that in the component notation has the form

d

dt

qaa
qxi
� ÿ qaa

qxj

qvj
qxi

: �6:12�

The metric tensor is defined by means of the distances
between two adjacent Lagrangian particles,

�dxi�2 � gikdaidak ;

and equal to

gik � Ĵli Ĵlk :

The invariant IL is local in Lagrangian variables. There-
fore if one takes its convolution with an arbitrary function
f�a�, then one can get the infinite family of conservation laws
in the integral form:

Ii �
�
IL�a� f �a� da : �6:13�

To begin with, we show that for barotropic fluids (when
pressure p depends only on the density r) Kelvin's theorem
follows from this relation. Notice that in this case there is one
additional freedom: the entropy S has no link with the
pressure and therefore instead of S in Eqns (6.1) and (6.7)
we can take an arbitrary function of Lagrangian markers a.
Also one should note that in the first equation of (6.7),
without any loss of generality, one can set r0�a� � 1 {, so that

r�r; t� � 1

J
: �6:14�

Substitute Eqn (6.1) into (6.13) and integrate once by parts.
Accounting for Eqn (6.7) and J da � dr, we get

Ii �
�ÿ
v; �HHf� HHS�� dr : �6:15�

Here the gradient is taken with respect to r, but the functions f
and S are functions of a � a�x; t�. Therefore we come back
again to the integration with respect to a. As a result of simple
algebra we arrive at the expression

Ii �
�

_xi JEijk
qaa
qxj

qab
qxk

qf�a�
qaa

qS0�a�
qab

da :

Taking then into account the identity

JEijk
qaa
qxj

qab
qxk
� Eabg

qxi
qag

; �6:16�

the integral is transformed into

Ii �
�
Aj�a� _xi qxiqaj

da : �6:17�

Here the vector function A�a� reads:
A�a� � �HHf� HHS0� : �6:18�

It has zero divergence:

diva A�a� � 0 : �6:19�

{Corresponding to a change of variables b � b�a� which eliminates r0:
Jab � r0.
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Note that till now we have never used the fact that the
fluid is barotropic, i.e., equation (6.17) is applicable for any
equation of state including the general dependence of the
pressure on both the density and the entropy. For the
barotropic case the entropy S0 can be considered as an
arbitrary function of a. Therefore A�a� can also be consid-
ered as arbitrary with Eqn (6.19) the only constraint.

Let this vector function A�a� be concentrated on some
closed curve: it is equal to zero everywhere outside this curve.
We will parameterize the curve by the arc length s,

a � a�s�; a�s� l� � a�s� ; �6:20�

where l is the curve length.
It is then easy to check that the function

A �
� l
0

da�s�
ds

d
�
aÿ a�s�� ds

satisfies all the necessary conditions: it concentrates on the
curve a � a�s� and has zero divergence. Substituting this
formula into integral (6.17), after simple integration, we
come to Kelvin's theorem for a barotropic fluid:

IK �
�
C

ÿ
v�r; t�; dl� : �6:21�

Here the contour C, moving together with the fluid, is the
image of the closed curve (6.20). Thus, we have shown that
Kelvin's theorem is a direct consequence of Ertel's theorem
applied to the case of barotropic fluids.

Kelvin's theorem is also valid for an arbitrary dependence
p�r;S�. This property is not widely known in the literature,
for instance, it is absent in the Landau ±Lifshits course.
Curiously, the answer in this case will have the same form as
(6.21). The only difference will be connected with the choice
of contour. For the barotropic case, as we sawbefore, the only
restriction was connected with condition (6.19) which
provides the closure of the contour. For the general
dependence p � p�r;S�, in addition to Eqn (6.19), one needs
to satisfy the condition (6.18). According to the latter the lines
of the vector field A�a� must lie on the surfaces of constant
entropyS0�a�. Therefore if we choose the closed contour lying
on this (fluid!) surface we immediately arrive at Kelvin's
theorem (6.21). Thus, Kelvin's theorem in the general case
says that the velocity circulation is conserved in time if the
fluid contour lies on the surface S

ÿ
a�r; t�� � const advected

by the fluid.
At the end of this section we examine an interesting

interpretation of Kelvin's theorem. According to Ref. [11]
conservation of the velocity circulation can be considered as a
consequence of the conservation of the relative Poincare
invariant�

p dq : �6:22�

For the barotropic flows one can relate to each fluid particle
the Hamiltonian

h � p2

2
� w�r� ;

where p � _r, and the enthalpy w plays the role of its potential
energy.

If, instead of the contour in Eqn (6.22), one now takes the
fluid contour, then it can be seen that the Poincare invariant
will coincide with the velocity circulation�

v dr ;

and, thus, Kelvin's theorem becomes a direct consequence of
the conservation of the relative Poincare invariant.

This concept has been very useful for other hydrodynamic
systems, in particular, for some problems in plasma physics
[52, 51], when the motion of a fluid particle can be reduced to
theHamiltonian equation for a charged particle in amagnetic
field in the presence of a self-consistent potential. In such
cases the analog of Kelvin's theorem is simply a consequence
of the conservation of the relative Poincare invariant.

7. Gauge symmetry Ð relabeling group

In this section we consider how the conservation of the Ertel
invariants follows from the variational principle.

To begin, we make two remarks.
Firstly, let Il � �I1; . . . ; In� be a set of Lagrangian invar-

iants, each moving with the fluid:

dIk
dt
� qIk

qt
� vHHIk � 0 :

Then any function of Il will also be a Lagrangian invariant.
To construct an Eulerian conservative density from the given
Lagrangian one it is enough to be convinced that the quantity
Ieu � rIk obeys the continuity equation

qIeu
qt
� div �Ieuv� � 0 :

The equations of ideal hydrodynamics, as we saw above, have
twoLagrangian invariants, i.e., the Ertel invariant IL given by
Eqn (6.1) and s{. Both these integrals generate the conserva-
tion law

Ii �
�
r f�IL; s� dr ; �7:1�

with f�IL; s� being an arbitrary function of its arguments.
Secondly, the Euler equation (6.2) in terms of the

Lagrangian variables is nothing other than the Newton
equation for a fluid particle,

�xi � ÿHHi p

r
: �7:2�

Multiplying this equation by the Jacobi matrix Ĵ we get

qxi
qak

�xi � ÿ 1

r
qp�r; s�
qak

: �7:3�

This equation in the form (7.2) or (7.3) is closed by means of
Eqns (6.7) and (6.14).

The action in terms of the Lagrangian (material) variables
is written in the same form as in classical mechanics [17],

S �
�
dt L �

�
dtdr

�
r

_x2i
2
ÿ e�r; s�

�
; �7:4�

{To avoid confusion in this section only we denote the entropy as s,

elsewhere the entropy retains the previous notation S.
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where e is the internal energy density connected with the
enthalpy w by means of the thermodynamic relation

de � rTds� w dr ; �7:5�

with T denoting temperature.
Let us now check that varying the action, dS � 0, is

equivalent to the equation of motion (7.3).
At first let us pass from integration over r to a in Eqn (7.4).

As a result, the action can then be transformed as follows:

S �
�
dt da

�
_x2i
2
ÿ ~e�r; s�

�
: �7:6�

Here the time derivative of x is taken for fixed a,~e � e=r is the
function of r and swhich are defined with the help of relations
(6.7) and (6.14). Because only r in the internal energy ~e
contains the dependence on x through the Jacobian (6.14),
the main difficulty with a variation will be connected with the
second term in Eqn (7.6).

Using both the identity (6.16) and the formula

J � 1

6
EijkEabg

qxi
qaa

qxj
qab

qxk
qag

;

one can get

dS �
�
dt da

�
ÿ�xidxi � r2

q~e
qr

dJ
�

�
�
dt da

�
ÿ�xi ÿ 1

2

q
qaa

�
r2

q~e
qr

�
EabgEijk

qxj
qab

qxk
qag

�
dxi

�
�
dt da

�
ÿ�xi ÿ 1

r
q
qaa

�
r2

q~e
qr

�
qaa
qxi

�
dxi � 0 ; �7:7�

or

�xi � ÿ 1

r
q
qaa

�
r2

q~e
qr

�
qaa
qxi

:

Hence it is seen that the resulting equation coincides with the
equation of motion (7.3) if one puts

p�r; s� � r2
q~e
qr

:

[The last equality is a direct consequence of the thermo-
dynamic relation (7.5).]

Thus, we have proved that the equations of motion of an
ideal fluid in the Lagrangian form follow directly from the
variational principle.

The simplest conservation laws, i.e., the conservation of
momentum

P �
�

_x da �
�
rv�r; t� dr ;

and the conservation of energy,

E �
��

_x2

2
� ~e�r; s�

�
da �

��
rv2

2
� e�r; s�

�
dr ;

follow as a result of the invariance of the action relative to two
independent symmetries, translations in space and time.

The equations of hydrodynamics, as was first shown in
Ref. [41], have an additional non-trivial symmetry connected
with the arbitrariness in the possible choice of the Lagrangian
markers. Nothing should depend on this choice: the fluid
dynamics as well as the equations of motion remain the same.
From all possible relabeling transformations, the action
invariance requirement restrains some certain class. In the
case of barotropic fluids the action appears to be invariant if
the transformations b � b�a� are incompressible, i.e., for
which the Jacobian is equal to 1:

J � det
qbi
qaj
� 1 : �7:8�

All these transformations form the group of diffeomorphisms
preserving the volume. (It is interesting to note that the same
group governs the motion of an incompressible fluid.) This
symmetry, in accordance with the Noether theorem, gener-
ates new conservation laws. To find them it is enough to
consider infinitesimal transformations. In the given case those
are defined by

b � a� da ;

where the function da � a satisfies the condition

qai�a�
qai

� 0 ; �7:9�

which is a direct consequence of Eqn (7.8).
For the general equation of state p � p�r; s� the invar-

iance of the action implies that the transformations should
preserve the surfaces s0�a� � const, being simultaneously
incompressible. As a result, we have one additional con-
straint on the function a�a�:
�HHs� a � � 0 : �7:10�

If in the first case Eqn (7.9) can be resolved by introducing
the vector potential

a� rot f ;

for example, with the Coulomb gauge div f � 0, then in the
general case both equations (7.9) and (7.10) are satisfied if one
puts

a� �HHs� HHc� :

Here c is a scalar function and the gradient is taken with
respect to a.

Omitting all the intermediate derivation of the conserva-
tion law (it is a standard procedure, for reference see, for
instance, Ref. [80]) we present only the final answers:

(i) For a barotropic fluid the conservation law has the form

d

dt
�HHa _xi � HHaxi� � 0 ;

or it gives the whole conserved vector

IL � �HHa _xi � HHaxi� : �7:11�

This integral has been known since the last century: it was
found by Cauchy [17] (see also Refs [44, 45]).
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The matrix notation of equation (7.11) has the form

Ĵ T
t Ĵÿ Ĵ TĴt � O�0� ; �7:12�

where the index T means transposition, and the matrix O�0� is
expressed through the vector invariant IL with the help of the
formula

O�0�ij � Eijk IL k
:

Recently this matrix representation of equation (7.12) was
used by the authors of paper [62] to construct a set of exact
three-dimensional solutions to the Euler equation for
incompressible fluids.

Returning to the Euler description and using identity
(6.16) this vector integral can be transformed into the form

IL � J�X;HH�a � r0�a�
r
�X;HH�a : �7:13�

Here a is considered as a function of r and t. If a are the initial
coordinates of fluid particles, then the vector (7.13) can be
expressed through the initial distributionsX0�a� and r0�a� as
follows:

IL � X0�a� :

From (7.13) it follows immediately for the vector B � X=r
that

B�r; t� � ĴB0�a� :

Thus, the Jacobi matrix becomes the evolution operator for
the vector X=r.

The invariants (7.13), indeed, are well-known in hydro-
dynamics but in a slightly different form. Let us write down
the equation of motion for the fraction X=r which directly
follows from Eqns (6.2) and (6.4):

d

dt
B � �B;HH�v : �7:14�

Here d=dt � q=qt� vHH. Comparing this equation with
equation (6.8) for dr one can see that both the quantities B
and dr obey the same equation. This means that the vorticity
is frozen into a fluid, a well-known statement in hydrody-
namics. Sometimes this property is called as the frozenness of
the vorticity into a fluid. Then, multiplying Eqn (7.14) from
the right by Ĵÿ1 and Eqn (6.11) from the left by X=r, after
summation of the obtained results we arrive at the conserva-
tion of the vector invariant (7.13). These integrals are the
mathematical formulation of the frozenness of the vorticity
into a fluid. The corresponding equation for the vector field B
is called the frozenness equation.

(ii) In the general case (for an arbitrary dependence of
pressure on both density and entropy) the only scalar that
survives from this vector invariant is a projection of IL onto
the vector HHs:

IL �
ÿ
HHas0; �HHa _xi � HHaxi�

�
:

Here all derivatives are taken with respect to a. Passing to the
Eulerian variables and using the identity

Eabg
qxi
qaa

qxj
qab

qxk
qag
� EijkJ ;

one can get

IL � �XHHs�
r

:

This integral is the Ertel invariant (6.1). Thus, the conserva-
tion of the Ertel invariant as well as Kelvin's theorem about
the conservation of the velocity circulation are a consequence
of a specific gauge symmetry Ð the relabeling group.

It is interesting to follow how all the above formulae
transform in two dimensions. In this case the Ertel invariant is
identically equal to zero, due to the orthogonality of the
vectors X and HHs. Therefore non-trivial answers appear only
for a barotropic fluid.

Applying the identity

Eab
qxi
qaa

qxj
qab
� EijJ

to Eqn (7.11), it is easy to get that the Cauchy invariant
transforms into the well-known Lagrangian invariant:

O
r
� const�a� :

It is important to note that, unlike the three-dimensional case,
this relation does not contain the Jacobi matrix.

Let us turn to incompressible fluids. In this case the
obtained formulae are simplified. For example, relation
(7.13) in three dimensions is written in the form

IL � �X;HH�a : �7:15�

In formula (7.15) IL coincides with

X0�a� � rota u ;

where the vector u is defined by means of Eqn (4.19). This, in
particular, means that the transverse part of the vector u is
conserved (being the Lagrangian invariant), and its temporal
variation is due to its longitudinal part. Moreover, as pointed
out in the fourth section, the choice of this vector is arbitrary
due to the arbitrariness in the choice of Lagrangian markers.
The same applies to the vector X0�a�. If one performs the
contact transformations b � b�a� under the condition
q�b1b2b3�=q�a1a2a3� � 1, then the vector X0�a� will be
transformed as

~O0i�b� � qbi
qaj

O0j�a� : �7:16�

This is a transformation of the gauge type, being the
generalization [45] of the gauge transformations for the
Clebsch variables (4.15){.

Let, as a result of these transformations, the vector
~X0�b� have one nonzero component, say, a z-component,
equal to 1:

~O01 � �X0HHa�b1 � 0 ; �7:17�
~O02 � �X0HHa�b2 � 0 ; �7:18�
~O03 � �X0HHa�b3 � 1 : �7:19�

{Another approach to gauge transformations in hydrodynamics was

developed in Ref. [81].
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These relations within the given `vorticity'X0�a� represent the
equations to determine the dependence b�a�. These are the
linear differential equations of the first order, which allow the
application of the method of characteristics. The equations
for characteristics are the same here for all three equations of
the system (7.17) ± (7.19),

da

ds
� X0�a� ;

that define the `vortex' line for X0�a�. (Here s may be
understood as the arc length of the `vortex' line.) Equations
on the characteristics (for the components of b) are then given
by

db1
ds
� 0 ; �7:20�

db2
ds
� 0 ; �7:21�

db3
ds
� 1 : �7:22�

The first two components b1 and b2 are constant along the
characteristics. Therefore b1 and b2 can be chosen as two
independent integrals c1 and c2 of the system for the
characteristics, and the third component is a linear function
of the arc length s. It is important to notice that a solution to
the system (7.20) ± (7.22) can always be found, at least locally,
in the vicinity of some nonsingular surface supplied with a
coordinate system given, say, by the invariants c1 and c2.
Rigorously speaking this is not a global solution as it is usual
when one uses the method of characteristics.

Hence, by using the equation rotb ~u � ~X0�b�, one can
reconstruct the velocity ~u:

~u1 � qf
qb1

; �7:23�

~u2 � qf
qb2
� b1 ; �7:24�

~u3 � qf
qb3

: �7:25�

After substitution of these expressions into equation (4.19) we
come back to the Clebsch representation with one pair of
canonical variables (for more details, see Ref. [44]) which
yields

v � b1HHb2 � HHf :

So, the vorticityX�r; t� takes the form

X�r; t� � �HHb1 � HHb2� � qr
qb3
�b; t� : �7:26�

The last equality is a direct consequence of the fact that
transformation b � b�r;t� is a diffeomorphism preserving the
volume. It is easy to check that expression (7.26) with r
replaced by b also satisfies the system (7.17) ± (7.19). In this
case the first equation of the system becomes the equation
q�b1b2b3�=q�a1a2a3� � 1.

Thus, locally any flow of incompressible fluid can be
parameterized by one pair of the Clebsch variables. In the
general situation one needs two pairs of such variables.

8. The Hopf invariant and the degeneracy
of the Poisson brackets

So far we have not discussed the question of which classes of
flows are described by the canonical variables introduced in
the preceding sections.

To begin with, we consider this question for the example
of an ideal incompressible fluid.

Let a flow be parameterized in terms of Clebsch variables
in a simply-connected domain:

v �lHHm� HHj :

Take some point inside this domain and draw through this
point some closed curve. Starting from this point and
constructing continuously Clebsch variables on each piece
of this curve we come back to the original point. Generally
speaking, the Clebsch variables will take different values.
Thus, the Clebsch variables will be multi-valued functions of
space coordinates. One partial case of fluid flows with multi-
valued Clebsch variables allows the following geometrical
interpretation.

Consider a compact oriented two-dimensional manifold
M 2 and suppose that l and m are local coordinates on this
manifold.

The gauge transformations associated with the non-
uniqueness of the choice of Clebsch variables lead to the
appearance of a whole family of gauge-equivalent manifolds
obtainable from one another by continuous deformations
preserving the surface element:

dl dm � dl 0 dm 0 :

It is therefore sufficient to select one representative from each
such family. For example, among the surfaces of genus zero
having the same area, it is natural to select the sphere S 2.

It is easy to understand that the inverse image of any point
of M 2 in R3 is a closed curve coinciding with a vortex line.
This follows directly from the expression for the curl of the
velocity:

X � rot v � �HHl� HHm
�
: �8:1�

The vortex line is the intersection of the two surfaces
l�r� � const, m�r� � const. If the variables l and m are
single-valued functions, then the manifold M 2 cannot be a
closed surface of genus g. Then the flows given by such
variables have no knots. This fact can also be proved
differently.

It is known [56, 57] that the degree of knottiness of a flow
is characterized in ideal hydrodynamics by the conserved
quantity

I �
�
�v; rot v� dr : �8:2�

The conservation of this integral follows immediately from
Kelvin's theorem. In order to illustrate this statement,
following [57] we consider two closed vortex lines

X �
�
k1n1d

�
rÿ l1�s1�

�
ds1 �

�
k2n2d

�
rÿ l2�s2�

�
ds2 ;

where n1;2 are the tangents and ds1;2 the arc elements of these
curves.
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Calculating the velocity circulation around the contours
r � l1�s1� and r � l2�s2�, we find�

�v; dl1� � mk2 ;
�
�v; dl2� � mk1 ;

where m is the linking number of these two curves. Multi-
plying the first equation by k2 and the second by k1, and
adding the results, we get the integral I:�

�v; k1 dl1 � k2 dl2� �
�
�v; rot v� dr � 2mk1k2 :

This formula is generalized without difficulty to a vortex,
and then to a continuous distribution. The conservation law
(8.2) is valid not only for an infinite region but for a finite one
when the vorticity lines are tangent to the boundary.

This integral is thus identically equal to zero for a flow
with trivial topology, in particular, for flows parameterized in
terms of single-valued Clebsch variables.

We shall show that the Clebsch variables in the formula-
tion (8.1) describe knotted flows, and illustrate their topolo-
gical meaning.

Suppose that the variables l and m are local coordinates
on S 2. In this case l and m are expressed in terms of the polar
and azimuthal angles, y and j, so that

X � 2A
�
HH cos y� HHj

�
;

whereA is a dimensional constant. Now theClebsch variables
are no longer single-valued functions, and on a contour
enclosing the z axis the angle j acquires an addition 2p. It is
also convenient to go over, in the expression for the vector
field O, from the angles y and j to the n-field �n2 � 1� [58]:

Oa � eabg
ÿ
n; �qbn� qgn�

�
: �8:3�

We shall limit our considerations to the flows for which n
tends sufficiently rapidly at infinity to a constant vector n0.
For this class of flows R3 is isomorphic to the three-
dimensional sphere S 3. Thus the classification of the flows is
a problem of classification of smooth mappings S 3 ! S 2.
Such mappings are characterized by the homotopy group
p3�S 2� � Z, i.e., any class of flows is characterized by the
linking number that coincides with the winding number of
any two lines n�r� � n1 and n�r� � n2 �n1;2 � const�. The
index N for smooth mappings is called the Hopf invariant
[59]. One can show that the Hopf invariant coincides with the
integral I up to a constant factor [60]:

I �
�
�v;X� dr � 64p2NA2 :

The derivation of this relation is based on the well-known
formula of Gauss for the linking number of two curves.

It should be mentioned that in the quantum case,
according to Ref. [60], A � �h=2m. The remaining manifolds
are of secondary interest from the point of view of topology.
Say, a manifold M 2, which is a surface with boundary, is
homotopic to a bouquet of circles. Therefore its homotopic
group p3 is trivial. The groups p3 are also trivial for closed
surfaces of genus g5 1. Topologically non-trivial situations
occur only for surfaces with zero genus.

We now give an example of a non-trivial mapping with
N � 1 (the Hopf mapping):

�n; s� � q�s3q ; �8:4�
q � �1ÿ irs��1� irs�ÿ1 ;

where s are the Pauli matrices.
In toroidal coordinates, one has

x� iy � sinhU

coshU� cos b
exp�ia� ; z � sin a

coshU� cos b

�04U <1 ; 0 < a ; b < 2p� ;
and Eqn (8.4) reads

arctan
ny

nx
� aÿ b ; nz � 1ÿ 2 tanh2 U :

These formulae show that the flow looks as follows: the
whole space is sliced up by the tori U � const, while any
vortex line coils up on a torus, making one loop. Thus any
vortex line links once. The expressions forX and v, calculated
from Eqn (8.4) are not a solution of the stationary Euler
equations, and can therefore be used as initial conditions for
(5.9). It is obvious that the evolution of such a distribution
does not take the solution out of the given class with Hopf
invariant N � 1. The evolution of the vector field n is
determined from the equation

nt � �vHH�n � 0 ; �8:5�
which is equivalent to the evolution equation for the variables
l and m. Equations (8.5) are also Hamiltonian,

nt � 2A

�
n� dH

dn

�
;

and differ from the familiar Landau ±Lifshits equations only
by the choice of the Hamiltonian H.

The Poisson brackets in this case coincide with the BKK
brackets (2.8), (2.11):

fF;Gg � 2A

��
n;

�
dF
dn
� dH

dn

��
dr :

When we go over in these brackets from the n-field to X

according to formula (8.3) we get the Poisson brackets (5.8). It
is important to note that brackets (5.8) are degenerate with
respect to the invariant I: fI; . . .g � 0, which again shows its
origin. On one side, it is connected with its topology, on the
other, with Kelvin's theorem. One should recall that the latter
is a sequence of the gauge symmetry of the Lagrangian
markers.

As we shall see below, the question about the degeneracy
of the Poisson brackets for an arbitrary equation of state is
directly connected with the gauge symmetry.

Let us discuss in more details this question for the
hydrodynamic Poisson brackets. For this aim, we consider
the most general form of the brackets for ideal hydrody-
namics, namely, for non-barotropic fluids. The brackets in
this case have the form of Eqn (5.6):

fF;Gg �
���

HH
dF
dr
;
dG
dv

�
ÿ
�
HH

dG
dr

;
dF
dv

��
dr

�
��

rot v

r
;

�
dF
dv
� dG

dv

��
dr

�
��

HHS
r
;

�
dF
dv

dG
dS
ÿ dG

dv
dF
dS

��
dr: �8:6�
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By substituting integral (7.1), Ii �
�
r f�IL;S� dr, into this

expression one can verify that this integral commutes with
any functional:

fIi; :g � 0 :

In accordance with the definition of Section 2, this integral
represents a Casimir of the brackets (8.6).

One should recall that the conservation of the integral
(7.1) is a consequence of the special gauge symmetry of the
ideal hydrodynamics equations, which, as we see, is respon-
sible also for the degeneracy of the Poisson brackets.

In order to transform from these brackets to the canonical
brackets it is necessary to resolve integral (7.1) by introducing
new coordinates. We have already found one answer to the
question of how to do it. If we take expression (4.17) for the
velocity and put the Ertel invariant IL instead of m then
integral (7.1) transforms into the dynamical conservation law
with respect to the canonical brackets

fF;Gg �
���

dF
dr

dG
dj
ÿ dF
dj

dG
dr

�
�
�
dF
dl

dG
dIL
ÿ dF
dIL

dG
dl

�
�
�
dF
db

dG
ds
ÿ dF

ds
dG
db

��
dr

so that

fIi;Hg � 0 :

We can also remark that, as was shown by van Saarlos
[53], the transition from the Lagrangian description in terms
of the action (7.6) to the canonical variables is determined
through the change (9.11) or (4.20).

9. Inhomogeneous fluid and surface waves

In this section we introduce canonical coordinates for the
description of nonlinear waves in an ideal fluid of variable
density. Here one distinguishes two types of waves. The first
type refers to the so-called internal waves, propagating in a
continuous medium with a smooth inhomogeneity. The
second type refers to the situation where the density gradient
changes sharply over the size of the wave length, and in the
limit represents simply a jump. In this limit we talk about
surface waves. Canonical variables can be introduced in both
cases within the framework of the scheme developed in the
preceding sections.

Consider an ideal fluid of varying density in the presence
of a constant gravitational field g anti-parallel to the z axis.
The fluid is assumed to be locally incompressible. This means
that the density is convected along the fluid and is therefore a
Lagrange variable:

qr
qt
� �vHH�r � 0 for div v � 0 :

These two equations therefore appear in the Lagrangian as
constraints:

L �
��

r
v2

2
ÿU�r; r� ÿ a

�
qr
qt
� �vHH�r

�
� j div v

�
dr : �9:1�

Here U�r; r� is the density of potential energy in the presence
of the field g, given by the expression

U�r; r� � g

�
r�r?; z��zÿ z 0� ÿ

�z
z 0
r0�z 00� dz 00

�
: �9:2�

The first term in this expression corresponds to the work in
lifting a fluid element to the point z from the equilibriumpoint
z 0, determined from the condition for equality of the
equilibrium density r0�z 0� and the density of fluid at the
given point:

r0�z 0� � r�r?; z� :

This relation gives z 0 as a function z 0 � z 0�r� of density. The
second term in Eqn (9.2) corresponds to the potential of the
Archimedean force.

Variations of the Lagrangian with respect to v and j lead
us to the equations [26]

rv � HHj� aHHr �9:3�

and

div
�
rÿ1�HHj� aHHr�� � 0 ;

giving the connection between the new and old variables.
Varying with respect to variable r, we get an equation

qa
qt
� �vHH�a� v2

2
ÿ qU

qr
� 0

for the potential a with qU=qr � g�zÿ z 0�.
Next, substituting Eqn (9.3) into the Euler equation (4.8)

and using the equations of motion for a and r, we obtain an
expression for the pressure p up to a constant, analogous to
the Bernoulli integral:

p � ÿr v2

2
ÿ rg�zÿ z 0� �

�
q
qt
� �vHH�

�
j� const :

The Hamiltonian is formed in the standard way and
coincides with the total energy

H �
��

r
v2

2
�U�r; r�

�
dr ;

while the variables a and r happen to be canonically
conjugate:

qa
qt
� dH

dr
;

qr
qt
� ÿ dH

da
:

The parameterization, presented here, for the velocity in
terms of the density r and a imposes strong restrictions on
the form of the initial distribution. As we see from Eqn (9.3),
the curl of the mass current at all times, including the initial
time, is orthogonal to the density gradient. Such motions are
the analog of potential motions in a homogeneous fluid. This
scheme can be considerably improved if one includes `non-
potential' motions. As far as the non-canonical Poisson
brackets are concerned, they were introduced in paper [63].

If one needs to consider weakly nonlinear oscillations in a
stratified fluid one should expand the Hamiltonian in powers
of a and dr. In particular, the well-known Boussinesq
approximation is obtained if the density in the kinetic energy
is replaced by some averaged constant quantity:

HB �
��

r0v
2

2
�U�r; z�

�
dr :
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Now let us consider one important limiting case of a
stratified fluid, when the stratification is only due to a free
boundary.

First we look at potential motions. Here the Lagrangian
has the same form as before, in which the density r should be
regarded as constant throughout the volume of the fluid, i.e.,

r � r0y
ÿ
zÿ Z�r?; t�

�
:

Here y�z� is the Heaviside function, and Z�r?; t� is the
deviation of the free surface from the horizontal plane z � 0.
The element dsn � dr?

�
1� �HHZ�2�1=2 of free surface and the

vector normal to it, n � �ÿHHZ��1� �HHZ�2�ÿ1=2, are expressed
in terms of the function Z�r?� explicitly, as is the potential
energy

U �
��

r0gZ
2

2
� s
h ��������������������

1� �HHZ�2
q

ÿ 1
i�

dr? ;

in which we have taken into account the surface tension with
coefficient s.

It is easy to see that the continuity equation in the present
case becomes the kinematic condition

dZ
dt
�
�
q
qt
� vHH

�
Z � vz : �9:4�

In accordance with this, the Lagrangian expresses

L �
�
dr?

�Z
ÿh

dz

�
r0v

2

2
� j div v

�

�
�
c
�
qZ
qt
ÿ vn

��������������������
1� �HHZ�2

q �
dr? ÿU : �9:5�

Here

vn �
�vz ÿ vHHZ�z�Z��������������������

1� �HHZ�2
q

is the normal component of the velocity and c � ÿar0 the
Lagrange multiplier given on the free surface.

The variation of L with respect to v within the bulk leads
to the potential equation r0v � HHj, where j is determined
from the solution of the Laplace equation Dj � 0. The
variation of L with respect to v on the boundary (for fixed Z)
gives the boundary conditions for the Laplace equation:

j
���
z�Z
� c : �9:6�

The variation of the Lagrangian with respect to Z is non-
trivial. For this it is convenient to rewrite all the terms in (9.5)
containing v in the form of a volume integral which we
designate as Lv. Then, taking Eqn (9.6) into account, we have

Lv �
�
dr?

�Z
ÿh

dz

�
r0v

2

2
ÿ vHHj

�
:

The variation dLv for a change in Z is composed of two terms.
The first is caused by the volume change:�

dr?

�
r0v

2

2
ÿ vHHj

�
dZ :

The second arises when we consider variations of v and j not
caused by the change in shape of these functions, for example,

dj � j�zÿ dZ� ÿ j�z� � ÿ qj
qz

dZ :

Therefore the contribution to dLv of this variation has the
form�

dr? vn
��������������������
1� �HHZ�2

q
qj
qz

dZ :

Collecting all the terms together we finally get

qc
qt
� ÿr0gZ� s div

HHZ��������������������
1� �HHZ�2

q
�
�
r0v

2

2
ÿ vHHj� qj

qz
vn

��������������������
1� �HHZ�2

q �
z�Z

: �9:7�

TheHamiltonianH, as before, coincides with the total energy
of the system,

H �
�
dr?

�Z
ÿn

dz
r0�HHj�2

2
�U ;

while the Hamiltonian equations have the form [25]

qZ
qt
� dH

dc
;

qc
qt
� ÿ dH

dZ
:

Let us now consider the expansion of the Hamiltonian H
in powers of the canonical variables. In the coordinate
representation each term in this series is a non-local func-
tional of Z and c; the reason for this is that at each step of the
iteration we must solve the Laplace equation. After applying
Fourier transformation with respect to the coordinates in the
horizontal plane and successive approximations, one can get

H � 1

2

�
�g� sk2�jZkj2 dk�

1

2

�
kcjckj2 tanh�kh� dk

� 1

2 � 2p
�
Lkk1k2ckck1

Zk2dk�k1�k2 dkdk1 dk2 � . . . ; �9:8�

where

Lkk1k2 �
1

2
�k2 � k21 ÿ k22� ÿ kk1 tanh�kh� tanh�k1h�

�r0 � 1� :

The expansion in Eqn (9.8) is performed with respect to
the parameter kZ, having themeaning of a characteristic angle
of inclination of the fluid surface.

In the limit kh! 0 of shallow water the above expression
reduces to

Lkk1k2 ! ÿ�kk1� ;

i.e., the cubic term of the expansion H1 becomes local in the
variables c and Z:

H1 � 1

2

�
Z�HHc�2 dr1 : �9:9�
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In particular, the transition to the known Boussinesq model
(cf., for example, Ref. [66]) is accomplished if we take
Eqn (9.9) for the interaction Hamiltonian, and include the
terms proportional to h3 in H0:

qZ
qt
� ÿhDcÿ div �ZHHc� � h3

3
D2c � dH

dc
;

qc
qt
� ÿgZ� sDZÿ �HHc�

2

2
� ÿ dH

dZ
:

Here

H � 1

2

��
gZ2 � s�HHZ�2 � h�HHc�2 ÿ h3�Dc�2 � Z�HHc�2� dr? :

In the limit of deep water, Lkk1k2 behaves like

Lkk1k2 ! ÿ�kk1� ÿ kk1 :

The transition to normal variables is given by the formulae

Zk �
�

ok

2�g� sk2�
�1=2
�ak � a �ÿk� ;

ck � ÿi
�
g� sk2

2ok

�1=2

�ak ÿ a �ÿk� ;

where ok �
�
k�g� sk2� tanh�kh��1=2 is the dispersion law for

surface waves.
In the same spirit as this was done in Section 4, one can

include the contribution from non-potential flows [1]. For
this it is necessary to involve an additional constraint in the
Lagrangian,

qm
qt
� vHHm � 0 ;

so that the Lagrangian takes the form

L �
�
dr?

�Z
ÿh

dz

�
r0v

2

2
� j div vÿ l�mt � vHHm�

�

�
�
c
�
qZ
qt
ÿ vn

��������������������
1� �HHZ�2

q �
dr? ÿU : �9:10�

With such a choice for the Lagrangian v is given, as in Section
4, in terms of the Clebsch variables l and m:

r0v � lHHm� HHj : �9:11�

Evolution of l and m is given by Eqns (4.9) and (4.13). The
function c, as for a potential flow, has the same meaning:

j
���
z�Z
� c : �9:12�

The equation for this value takes the form of (9.7) where the
velocity v is replaced by the expression (9.11).

Another way to introduce `surface' canonical variables is
given in Ref. [15]. In a similar way we can introduce canonical
variables into a stratified fluid, taking into account the `non-
potential' variables l and m.

Non-canonical Poisson brackets for the case of arbitrary
flows bounded by a free surface were introduced in paper [64].

The bracket represents a combination of the Zakharov's
bracket [24, 25] for potential flow and the bracket (5.7):

fF;Gg �
��

rot v;

�
dF
dv
� dG

dv

��
dr

�
�
S

�
dF
dS

dG
dc
ÿ dG

dS
dF
dc

�
ds : �9:13�

Here F and G are functionals of the velocity v �div v � 0� and
the free surface S; ds is a surface element. The variational
derivatives dF=dv and dG=dv are divergence free. The
potential part of the velocity is introduced by the unique
velocity decomposition (for more details, see Ref. [65])

v � w� HHF ;

wherew is divergence free and tangential toS. The potentialF
is determined by the equations

DF � 0 ;
qF
qn
� vn :

In Eqn (9.13) c is the limit of F on the free surface S.
The equations of motion

qv
qt
� �v;HH�v � ÿHHp ; qS

qt
� vn

with two additional conditions

div v � 0 ; p
���
S
� sk ;

where k is the mean curvature of the free surface, by means of
the brackets (9.13) can be written in the form

qv
qt
� fv;Hg ; qS

qt
� fS;Hg :

Note that it is also possible to arrive at the brackets (9.13) by
recounting the brackets, expressed through the canonical
variables l and m, c and Z, using transformation (9.11).

Several other means of introducing `surface' canonical
variables were shown in Ref. [23].

Exactly as in Eqn (9.11), the canonical variables are
introduced in a stratified liquid, considering the `non-
potential' variables l and m. There is also no difficulty in
introducing canonical variables for the description of inter-
acting internal and surface waves. For this case the Lagran-
gian is a combination of the Lagrangians (9.1) and (9.5).

We would like to mention the interesting paper [69] where
the canonical Hamiltonian approach was developed for the
description of the interaction of surface waves and vortex
filaments. The canonical variables introduced in this paper
can be extracted from the general non-canonical Poisson
brackets (9.13) by the corresponding limit to the vortex
filament.

The introduction of canonical variables for internal and
surface waves is also possible for more complicated systems,
for example, for a dielectric fluid in an external electric field or
a ferro-fluid in a magneto-static field [68]. For these systems
the Hamiltonian coincides with the free energy in the external
electric (magnetic) field, and the canonical variables remain
the same as in the absence of the field.
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10. Hamiltonian formalism for plasma
and magnetohydrodynamics

The simplest hydrodynamic models of a plasma are of the
type of (4.1) and (4.2). Let us consider the hydrodynamics of
electrons interacting with a potential electric field in a plasma
without magnetic field:

qr
qt
� div �rv� � 0 ;

qv
qt
� �vHH�v � ÿHH

�
e

m
j� 3T

mr0
dr
�
; �10:1�

Dj � ÿ4pe dr
m
; dr � rÿ r0 :

Here e and m are the electron charge and mass, and T is the
temperature.

The internal energy of such a system is composed of the
electrostatic energy

Ees � 1

8p

�
�HHj�2 dr � e2

2m2

�
dr�r�dr�r 0�
jrÿ r 0j dr dr 0

and the gas-kinetic energy

ET � 3

2

T

mr0

�
dr2 dr :

It is obvious that

e

m
j � e2

m2

�
dr�r 0�
jrÿ r 0j dr �

dEes
dr

;

3T

mr0
dr � dET

dr
: �10:2�

Formula (10.2) shows that system (10.1) belongs to the
type of (4.1) and (4.2) with Ein in the general form (4.6). The
diagonalizing transformation forH0 in this case has the form
(4.4), in which one should set o2

k � o2
p � 3k2T=m

(o2
p � 4p0e2=m2) while the coefficients U and V are deter-

mined from formulae (4.5), in which we should take g � 0.
Now let us consider the hydrodynamics of slow motion of

a non-isothermal plasma, whose electron temperature Te

significantly exceeds the ion temperature. By slow motion
we shall understand wave motion with phase velocities o=k
much smaller than the electron thermal velocity vTe, but large
compared to the ion thermal velocity. In this case we can
assume that the electrons are distributed according to
Boltzmann's law, re � r exp�ef=Te�, while the thermal ion
motion can be neglected. Then

qr
qt
� div �rv� � 0 ;

qv
qt
� �vHH�v � ÿ e

M
HHj ;

Dj � 4pe
M

�
rÿ r0 exp

ej
Te

�
; �10:3�

whereM is the ion mass.
This system also conserves the energy

H �
�
rv2

2
dr� Ein : �10:4�

Here Ein is the internal energy, equal to the sum of the
electrostatic energy Ees � �1=8p�

� �HHj�2 dr and the thermal
energy of the electron gas

ET � Te

M

�
r0

��
ej
Te
ÿ 1

�
exp

ej
Te
� 1

�
dr :

Calculating the variational derivative of Ein with respect to
the ion density r, we get

dEin
dr
�
�
j�r 0�

�
ÿ 1

4p
D
dj�r 0�
dr�r� �

e2r0
M

exp
ej
Te

dj�r 0�
dr�r�

�
dr 0 :

On the other hand, by varying the Poisson equation we have

ÿ 1

4p
D
dj�r 0�
dr�r� �

e2r0
M

exp
ej
Te

dj�r 0�
dr�r� �

e

M
d�rÿ r 0� :

Comparing the two expressions, we arrive at

dEin
dr
� e

M
j :

From this it follows that the system (10.3) also belongs to the
type of (4.1) and (4.2).

We note that for long-wave (such, that krd 5 1, where
rd � �Te=4pn0e2�1=2 is the Debye radius) oscillations of small
amplitude, the system of Boussinesq equations follows from
Eqn (10.3). It is easy to see that in this limit the potential is
determined from the Poisson equation:

ej
Te
� dr

r0
ÿ 1

2

�
dr
r0

�2

� rd 2D
dr
r0

:

Substitution of this expression into Eqn (10.4) leads to the
following form for the internal energy [cf. Eqn (4.6)]:

Ein �
�
r0c

2
s

2

"�
dr
r0

�2

ÿ 1

3

�
dr
r0

�3

ÿ rd 2

�
HH

dr
r0

�2
#
dr ;

c2s �
Te

M
:

We now go over to a consideration of the relativistic gas
dynamics of electrons, interacting with an arbitrary nonpo-
tential electromagnetic field:

qr
qt
� div �rv� � 0 ;�

q
qt
� vHH

�
p � eE� e

c
�v�H� ÿ 3THH

dr
r0

;

rotE � ÿ 1

c

qH
qt

;

rotH � 4p
c

er
m

v� 1

c

qE
qt

;

divE � 4pe
dr
m
:

For the electromagnetic field we introduce the scalar and
vector potentials j and A, where we choose for A the
Coulomb gauge, divA � 0.

We know that in the Coulomb gauge the vector potential
is a canonical variable, if we change from ordinary momen-
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tum to generalized momentum

p � p1 ÿ
e

c
A

determined from the equation

qp1
qt
� HH�m2c4 � p2c2�1=2 ÿ �v� rot p1� � eHHj � ÿ3THH dr

r0
:

The canonical conjugate of A is the vector

B � 1

4pc

�
HHj� 1

c

qA
qt

�
� ÿ E

4pc
:

The other variables are introduced by analogy with the
Clebsch variables:

p1
m
� l

r
HHm� HHj :

Here �l; m�, �r;j�, and �B;A� are canonically conjugate
quantities,

ql
qt
� dH

dm
;

qm
qt
� ÿ dH

dl
;

qr
qt
� dH

dj
;

qj
qt
� ÿ dH

dr
;

qA
qt
� dH

dB
;

qB
qt
� ÿ dH

dA
;

with the Hamiltonian

H �
��

r
m
�p2c2 �m2c4�1=2 � 3

2
T

dr2

mr0
� 1

8p
�rotA�2

�
dr

�
��

2pc2B2 ÿ c�BHHj� � 1

4p
jDj

�
dr ; �10:5�

coinciding with the total energy of the system if the Poisson
equation is satisfied identically.

We note that canonical variables are introduced analo-
gously for the two-fluid model of the plasma. Amore detailed
presentation of these results can be found in papers [34, 35].

Another widely used model in plasma physics is the set of
magnetohydrodynamic (MHD) equations, describing low-
frequency (hydrodynamic) motions of the plasma as a whole.
These equations, in particular, can be obtained from the
equations of the two-fluid model.

For barotropic flows, the equations of MHD have the
form

qr
qt
� div �rv� � 0 ;

qv
qt
� �vHH�v � ÿHH de

dr
� 1

4pr
�rotH�H� ; �10:6�

qH
qt
� rot �v�H� :

For this system, just as for the equations of hydrody-
namics, the transition to canonical variables is accomplished
using the Lagrange approach. For this we shall start from the
well-known expression for the Lagrangian of a fluid interact-
ing with the electromagnetic field in the MHD approxima-
tion. This means that in the Lagrangian we drop small terms

of order v=c. Thus, for example, in the MHD approximation
we should neglect the contribution from the electric field
[E � �v=c�H] compared to the corresponding contribution
from the magnetic field.

We also pay attention to one important consequence of
Eqns (10.6) following which the magnetic field is frozen in a
plasma [70]. It is that the vectorH=rmoves together with the
fluid particles. In other words, each magnetic field line is
displaced together with the particles that are on it. This fact
allows one to regard the magnetic fieldH and the density r as
generalized coordinates.

Thus the Lagrangian in the MHD approximation includ-
ing the constraint has the following form:

L �
��

rv2

2
ÿ e�r� ÿH2

8p
� S

�
qH
qt
ÿ rot �v�H�

�

� j
�
qr
qt
� div rv

�
� cdivH

�
dr :

Varying L with respect to the variables v, r and H, we get

rv � �H� rotS � � rHHj ; �10:7�
qj
qt
� vHHjÿ v2

2
� o�r� � 0 ; �10:8�

qS
qt
� H

4p
ÿ � v� rotS � � HHc � 0 : �10:9�

From this we see that the undetermined Lagrange multipliers
enter as generalized momenta. The appropriate transition to
these variables is accomplished using formula (10.7), and
their evolution is determined fromEqns (10.8) and (10.9). The
gauge function c that enters these equations is chosen for
convenience. For the natural condition divS � 0 we have

c � Dÿ1div � v� rotS � � c0 ;

where c0 is an arbitrary solution of the Laplace equation
Dc0 � 0. In particular, for finite motions of the plasma in a
magnetic fieldH0, it is convenient to choose the quantity S so
that S! 0 for r!1. It is then obvious that

c0 �
�H0r�
4p

:

The equivalence of the system of equations obtained here and
the MHD equations is verified by a direct substitution of the
velocity in the equation of motion (10.6).

Now changing to the Hamiltonian description, we get [33]

qr
qt
� dH

dj
;

qj
qt
� ÿ dH

dr
;

qH
qt
� dH

dS
;

qS
qt
� ÿ dH

dH
;

where the Hamiltonian

H �
��

rv2

2
� e�r� �H2

8p
ÿ c divH

�
dr

has a value that also coincides in value with the total energy of
the system.

Another way to introduce canonical variables in MHD
was suggested in Ref. [71]. In this paper both the velocity and
the magnetic field are parameterized in terms of the Clebsch-
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type potentials:

v � HHf� rÿ1�mHHl�MHHL� ;
H � �HHl� HHL � :

So doing the quantities l and m, L andM, r and f form pairs
of canonically conjugated variables. It is possible to show that
the given parameterization for H and v can be reduced by
appropriate gauge choice to the change (10.7).

For an incompressible fluid the canonical variables areH
and S: the potential j can be eliminated using the continuity
equation,

Dj � ÿdiv 1

r0
�H� rotS � ;

while the Hamiltonian takes the form

H �
��

r0v
2

2
�H2

8p
� c divH

�
dr :

For barotropic flows the variables �r;f� and �H;S�
determine the canonical Poisson brackets:

fF;Gg �
���

dF
dr

dG
dj
ÿ dF
dj

dG
dr

�
�
�
dF
dH

dG
dS
ÿ dF
dS

dG
dH

��
dr :

�10:10�

These brackets, as in the hydrodynamic case, allow recalcula-
tion to the natural variables, i.e., to the velocity v, the density
r and the magnetic field H. As a result, the non-canonical
brackets become a combination of (5.6) and the additional
term containing the variational derivatives with respect to the
magnetic field [15]:

fF;Gg �
���

HH
dF
dr
;
dG
dv

�
ÿ
�
HH

dG
dr

;
dF
dv

��
dr

�
��

rot v

r
;

�
dF
dv
� dG

dv

��
dr

�
��

H

r
;

�
rot

dF
dH
� dG

dv

�
ÿ
�
rot

dG
dH
� dF

dv

��
dr:

�10:11�
Without the barotropic constraint these brackets acquire the
additional term (compare with Ref. [15])��

HHS
r
;

�
dF
dv

dG
dS
ÿ dG

dv
dF
dS

��
dr : �10:12�

The brackets (10.11), (10.12) are, as in the pure hydrodynamic
limit �H � 0�, degenerate.

The simplest annulators of these brackets were probably
found in the paper [73]:

C �
�
r f
�
S;

HHH
r

S;

�
HHH
r

�2

S; . . .

�
dr : �10:13�

It can be verified by the direct calculations that the
Lagrangian invariants which generate integral (10.13) are
written in the form

In �
�
HHH
r

�n

S : �10:14�

The integrals (10.13), however, are only one of the possible
sets of the Eulerian integrals of motion. There exist recurrent
formulae for the construction of such integrals which can be
obtained from the Lagrangian invariants I, the frozen field B,
the density r and the field of the Lamb momentum p [74, 29].
These quantities are defined by the corresponding equations
of motion:

qI
qt
� �vHH�I � 0 ; �10:15�

qB
qt
� �vHH�B � �BHH�v ; �10:16�

qp
qt
� �vHH�p� �pHH�v� � p� rot v� � 0 : �10:17�

The recurrent procedure for the construction of Lagrange
invariants consists of several steps.

At first, it is easy to verify that the definition of the fieldsB
and p by means of Eqns (10.16) and (10.17) remains without
changes if one first multiplies them by I:

B 0 � IB ; p 0 � Ip : �10:18�

In other words the new fields B 0 and p 0 obey the same
equations as those for B and p.

At the next step for the given I, p, Bwe construct a new set
of quantities I 0, p 0, B 0, which possess the same properties:

p 0 � HHI ; B 0 � 1

r
rot p 0; I 0 � 1

r
div �rB� : �10:19�

At the third step, by substituting Eqn (10.18) into (10.19),
we obtain

I 0 � �vB� ; B 0 � 1

r
� p� p 0 � ; B 0 � 1

r
�HHI� HHI 0� :

�10:20�

Further recursion gives the following relations:

p � r�B� B 0� ; I � 1

r

ÿ
p; �HHI 0 � HHI 00�� ;

I � 1

r

ÿ
HHI 0�HHI 00 � HHI 000�� : �10:21�

Because an arbitrary function of Lagrangian variables is
again a Lagrangian invariant, this in combination with Eqns
(10.18) ± (10.21) sets the prescription of the Lagrangian
invariant reproduction. For example, the Lagrangian invar-
iants of the first generation, consisting of the quantities r, p,B
and the three Lagrangian invariants given initially plus a lack
constructed by means of Eqns (10.18) ± (10.21), can be
represented in the following form [29]:

I 00 � p� B ; I 0ik �
1

r

ÿ
p�HHIi � HHIk�

�
;

I 0k � �BHH�Ik ; I 0 � 1

r

ÿ
HHI1�HHI2 � HHI3�

�
: �10:22�

Using this procedure sequentially one can get the
subsequent generations of Lagrangian invariants.
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Of particular interest is a question about Lagrangian
invariant construction in the two-dimensional case. Here to
construct an infinite hierarchy of invariants it is enough to
have two input invariants. As was shown inRef. [82] in the 2D
case the whole set of conserved quantities forms a highly
complicated Lie algebra, which contains very interesting
subalgebras, e.g., a loop algebra with a layer in the algebra
of area preserving diffeomorphisms of a plane.

Let us apply this approach to the MHD equations.
In the MHD case with an arbitrary equation of state

p � p�r;S� one should take entropy S for I, H=r instead of
the vector field B, and the field p should be changed by the
vector potential A of the magnetic field �H � rotA�, impos-
ing the gauge [72]

qA
qt
� �v� rotA� ÿ HH�vA� � ÿ�vHH�Aÿ �AHH�vÿ �rot v� A� :

It is easy to see that for MHD the transformation (10.19)
reads as follows:

A0 � HHS ; B 0 � H

r
; I 0 � 0 :

The first equation reflects the gauge freedom of the vector
potential, the second formula in this case is the definition of
the frozen field.

If now in the third formula of Eqn (10.19), instead of B,
one takes its transforming value from Eqn (10.18), then as a
result one can get the second (after S) Lagrangian invariant:

I2 � �HHH�S
r

:

Its structure is similar to the Ertel invariant for hydrodynamic
flows. Multiple use of this transformation leads to the
invariants (10.14):

In �
�
HHH
r

�n

S :

Transformation (10.20) generates another Lagrangian invar-
iant

I3 � �AH�r
:

Integration of I3 with the help of formula (6.1) results in the
integral

Ik �
�
�AH� dr

of motion, which characterizes the degree of knottiness of
lines of the magnetic field H [57].

The representation of the three invariants I1 � S, I2 and
I3, and also of the magnetic fieldH and its vector potential A
permits, by use of the formula (10.22), all the sets of
Lagrangian invariants to be found together with the Eulerian
integrals

C �
�
r f�I1; I2; . . .� dr �10:23�

of motion.

In the case of barotropic flows the given recursion
changes. At first, one should exclude the entropy S as a
quantity not entering into the equations of motion. Therefore
from the set Ii (i � 1; 2; 3) of Lagrangian invariants of the first
generation, explicitly expressed in terms of H and r, only the
invariant I2 � �AH�=r remains. With its help all the series of
the integrals of motion is written as follows [48]:

C �
�
r f
�
I2;

HHH
r

I2; . . .

�
dr : �10:24�

Furthermore, in the barotropic case a new integral should be
added. This is the topological invariant

Ct �
�
�v;H� dr ;

characterizing the degree of cross knottiness of the magnetic
field and velocity lines.

It is possible to show that all the integrals presented above
are the Casimirs relative to the brackets (10.11) and (10.12).

Thus, we demonstrated how canonical variables are
introduced for hydrodynamical models of plasma. These
variables to some extent generalize the Clebsch variables for
ideal hydrodynamics. They differ in that, firstly, the number
of canonical variables increases, so that the electromagnetic
field itself is an additional canonical variable, and, secondly,
due to this fact the Hamiltonian structure of the equations
changes (becomes more complicated), especially for MHD.

11. Hamiltonian formalism in kinetics

In this section we introduce a Hamiltonian structure into the
self-consistent type collisionless kinetic equation. We con-
sider the simplest example that has sufficient contents from
the point of view of generalization: the Vlasov kinetic
equation for the distribution function f describing potential
(electric field E � ÿHHj) oscillations of electrons relative to a
homogeneous background of ions with density n0:

qf
qt
� �vHH� fÿ HHj

qf
qv
� 0 ;

Dj � ÿ4p
��

fdvÿ n0

�
�e � m � 1� : �11:1�

Kinetic equations of this type should also be regarded as
hydrodynamic type systems. In the phase space �r; v�
Eqn (11.1) describes the motion of an incompressible `fluid',
whose density is convected together with the `fluid'. The
behavior of the system here is in many ways similar to the
situation which holds in a stratified fluid. In order to
transform to canonical coordinates, we introduce the
Lagrange coordinate x, which we determine from the
condition that the distribution function f be equal to the
equilibrium distribution function f0�x�, not necessarily
Maxwellian:

f�r; v; t� � f0�x� or v � V�r; x; t� :

Such a representation can be expressed in integral form:

f�r; v; t� �
�
F�r; x; t�d�vÿ V�r; x; t��dx : �11:2�
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Substitution of Eqn (11.2) in (11.1) leads to the following
system of equations:

qF
qt
� div �FV� � 0 ; �11:3�

qV
qt
� �VHH�V � ÿHHj ; �11:4�

Dj � ÿ4p
��

F�x; r; t� dxÿ n0

�
: �11:5�

The internal energy

Ein � 1

8p

�
�HHj�2 dr

� 1

2

� ��
F�x; r� dxÿ n0

���
F�x 0; r 0� dx 0 ÿ n0

�
jrÿ r 0j dr dr 0

of this system is a functional of the `density' F, and therefore,
according to the classification of Section 4 belongs to the type
of Eqns (4.1) and (4.2).

Canonical variables for Eqns (11.3) ± (11.5) are intro-
duced in the standard way. For potential `flows' V � HHF
and the equations of motion are of the Hamiltonian form [1]

qF
qt
� ÿ dH

dF
;

qF
qt
� dH

dF
;

with

H �
�
Fv2

2
dx dr� Ein :

Thus, the Poisson brackets have the canonical form

fS;Tg �
�
dx dr

�
dS
dF

dT
dF
ÿ dT

dF
dS
dF

�
:

They can be expressed in terms of the distribution function f
[1]. By using Eqn (11.2), together with simple transforma-
tions, one can get brackets which were first obtained in Ref.
[16]:

fS;Tg �
�
f

��
q
qv

dS
df

��
q
qr

dT
df

�
ÿ
�
q
qr

dS
df

��
q
qv

dT
df

��
dr dv :

Canonical variables are introduced analogously in the
Vlasov ±Maxwell equations, where the canonical Poisson
brackets may be transformed into the brackets of Ref. [16],
which locally depend on the distribution function and the
electromagnetic field.

In concluding this section we mention another similar
important example, in which there is an analogous construc-
tion. This is the Benney equations, describing surface waves in
the approximation of `shallow' water, where the flow of the
fluid is not assumed to be potential:

ht � div

�h
0

U dz � 0 ; �11:6�

Ut � �UHH�U�W
qU
qz
� HHh � 0 ; �11:7�

qW
qz
� divU � 0 : �11:8�

Here h � h�r; t� [r � �x; y�, 0 < z < h] is the boundary of the
free surface of the fluid,U � U�r; z� is the horizontal velocity,

W �W�r; z� is the vertical component of the velocity, and
g � 1. We first show that the system (11.6) ± (11.8) can be
reduced to an infinite system of two-dimensional hydrody-
namic equations.

We introduce a coordinate x �0 < x < l� which enumer-
ates each layer of the fluid in equilibrium along the direction z.
Then the coordinate of each layer at time twill be given by the
functions

z � z�r; x; t�; h�r; t� � z�r; l; t� :

It is clear that the equations expressed in terms of this
function are similar to Eqn (9.4):

dz

dt
� qz

qt
� �UHH�z �W : �11:9�

Setting x � l we see that Eqn (11.6) follows from Eqn
(11.9). Derivatives taken for constant x and z are linked by the
following formulae:�

q
qt

�
z

�
�
q
qt

�
x
ÿ zt

Z
q
qx

; �HH�z � �HH�x ÿ
HHz
Z

q
qx

: �11:10�

In addition we have

q
qz
� 1

Z
q
qx

; �11:11�

where

Z�r; x; t� � qz
qx

:

Differentiating relation (11.9) with respect to x and using
formulae (11.10) and (11.11), we easily obtain the equation

qZ
qt
� div �ZU� � 0 : �11:12�

(Here and everywhere below the derivatives are taken at
constant x.)

Applying the same formulae to Eqn (11.7), we find, after
transformations,

qU
qt
� �UHH�U� HHh � 0 ; �11:13�

where h and Z are connected by the relation

h �
�l
0

Z�r; x; t� dx : �11:14�

The system (11.12) ± (11.14) is similar to that considered
above and differs from it only in the consistency condition
(11.14). Therefore, the canonical variables for potential
�U � HHj� flows (in the x; y plane) remain the same [30]:

qj
qt
� ÿ dH

dZ
;

qZ
qt
� dH

dj
: �11:15�

Here

H � 1

2

�
dx dr Z�HHj�2 � 1

2

�
dr h2 :

If the flow depends only on x, the Hamiltonian structure
can be given in terms of the variables Z and U:

qZ
qt
� ÿ q

qx
dH
dU

;
qU
qt
� ÿ q

qx
dH
dZ

:
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It should be added that for one-dimensional flows another
method for introducing a Hamiltonian structure was devel-
oped in paper [32]. One can show that the Hamiltonian
structure introduced in Ref. [32] is equivalent to the structure
(11.15).

At the end of this section we would like to pay attention to
one more paper [76] where, in fact, the same idea as for the
Vlasov and Benney equations was used. In Ref. [76] Virasoro
supposes to describe flows of stratified fluid by the use of a
mixed, Lagrangian ±Eulerian representation. For two-
dimensional flows the horizontal coordinate x and the
Lagrangian coordinate b, labeling the levels of density r,
serve as independent variables. In the case of two-dimen-
sional hydrodynamics, when the suggested scheme can also be
applied, one of the coordinates (of the Lagrange type) labels
the vorticity levels O and the other coordinate may, for
example, be the Cartesian x. Virasoro, from the very
beginning, comes from the variational principle in the
Lagrange form (7.6), and then performs a transformation to
new variables, by introducing the generating function of this
transformation. This function in the Lagrangian plays the
role of the generalized coordinate.

Approximately the same ideas occur in papers [38, 39]
where for equation (5.12), describing the Rossby waves, the
Gardner ±Zakharov ±Faddeev brackets are derived from
non-canonical Poisson brackets.

12. Classical perturbation theory
and the reduction of Hamiltonians

If in the previous sections we dealt with introducing the
Hamiltonian structure, then further we will suppose that we
were able in some way to introduce canonical variables
together with the normal variables diagonalizing a quad-
ratic part of Hamiltonian. In this section we turn to the
classical perturbation theory for the wave Hamiltonian
systems which is based on an assumption about the
smallness of wave amplitudes. The difference of the wave
systems from the finite-dimensional systems is that the
application of the perturbation theory to the wave systems
leads to the appearance of resonant denominators not at
separate points, as for finite-dimensional equations, but on
whole manifolds. By their classification, we arrive at the
whole set of standard Hamiltonians and corresponding
equations. In particular, many well-known equations such
as the nonlinear SchroÈ dinger equation, the KdV equation,
the KP equation, etc. are among them.

Suppose that in a medium there is one type of waves with
dispersion law o�k� and amplitudes a�k�, whose evolution is
determined by Eqn (3.7):

qak
qt
� ÿi dH

da�k
: �12:1�

Here

H � H0 �H1 � . . . ;

H0 �
�
okjakj2 dk ; �12:2�

H1 �
�
�Vkk1k2a

�
k ak1ak2 � c:c:�dkÿk1ÿk2 dkdk1 dk2

� 1

3

�
�Ukk1k2a

�
k a
�
k2
a �k2 � c:c:�dk�k1�k2 dk dk1 dk2 : �12:3�

Consider a transformation from the variables a�k� to new
variables c�k� in the form of an integral power series:

ak � ck �
�
Lkk1k2ck1ck2dkÿk1ÿk2 dk1 dk2

�
�
Mkk1k2ckc

�
k2
dk2ÿkÿk1 dk1 dk2

�
�
Nkk1k2c

�
k c
�
k1
dk�k1�k2 dk1 dk2 � . . . �12:4�

We require such a transformation to eliminate the third
order terms from the Hamiltonian and to be canonical. The
last item means that

fck; c�k 0 g � dkÿk 0 ; fck; ck 0 g � fc�k; c�k 0 g � 0 :

From these two requirements, after simple algebra, we can
find that

ak � ck ÿ
�

Vkk1k2ck1ck2
ok ÿ ok1 ÿ ok2

dkÿk1ÿk2 dk1 dk2

� 2

�
V �k2kk1ckc

�
k2

ok2 ÿ ok ÿ ok1

dk2ÿkÿk1 dk1 dk2

ÿ
�

Ukkk2c
�
k c
�
k1

ok � ok1 � ok2

dk�k1�k2 dk1 dk2 � . . . �12:5�

Here the first two integral terms guarantee the cancella-
tion in H1 of the second two terms, while the last term gives
the cancellation of the other two, proportional to a �a �a � and
aaa. These two transformations (eliminating both pairs from
H1) are independent and can be carried out separately. This
procedure for successive elimination of perturbation terms in
the Hamiltonian expansion by means of canonical transfor-
mations is called classical perturbation theory. In construct-
ing such a theory we quickly come up against the problem of
`small denominators', related in the present case to the
appearance of non-integrable singularities near the manifolds

ok � . . .� oki ÿ oki�1 ÿ . . .ÿ okn � 0 ;

k� . . .� ki ÿ ki�1 ÿ . . .ÿ kn � 0 ;

which give the condition for an nth order resonance. The
simplest manifolds already appear in the elimination of the
three-wave Hamiltonian (3.8), when [cf. Eqn (12.5)]

ok � ok1 � ok2 � 0 ;

k� k1 � k2 � 0 �12:6�

and

ok ÿ ok1 ÿ ok2 � 0 ;

kÿ k1 ÿ k2 � 0 : �12:7�

Satisfying the first condition is possible if waves with
negative energy exist in the medium, and then one of the
frequencies ok must be negative. Such a situation, as a rule,
occurs in unstable media, for example, in a plasma with a
current. If there are no waves with negative energy in the
medium, then the terms proportional to a �a �a � and aaa can
be eliminated fromH1 by a canonical transformation, and in
this sense they are unimportant (non-resonant).
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The possible existence of solutions of the system (12.7)
depends on the form of the functions o�k�. For isotropic
media, in whicho�k� depends only on jkj, there is no solution
if o�0� � 0 and o 00�k� < 0. Such a situation is realized, for
example, for surface gravitational waves. For capillary waves
the resonance conditions (12.7) are satisfied.

If the conditions (12.6) and (12.7) have no solutions then
the three-wave terms can be eliminated. Among the fourth
order terms the important contribution to the Hamiltonian is
of the form

H3 �
�
Tk1k2k3k4a

�
k1
a �k2ak3ak4dk1�k2ÿk3ÿk4

Y
dki ; �12:8�

for which the resonance condition

ok1 � ok2 ÿ ok3 ÿ ok4 � 0 ;

k1 � k2 ÿ k3 ÿ k4 � 0

may be satisfied for any form of o�k�. Here the three-wave
interaction leads to a renormalization of the vertex Tkk1k2k3 in
Eqn (12.8) (see Ref. [83]):

Tkk1k2k3 � T
�0�
kk1k2k3

ÿ 2
Uÿk2ÿk3;k2k3U

�
ÿkÿk1;kk1

ok�k1 � ok � ok1

� 2
Vk2�k3k2k3V

�
k�k1kk1

ok�k1 ÿ ok ÿ ok1

ÿ 2
Vkk2kÿk2V

�
k3k1k3ÿk1

ok3ÿk1 � ok1 ÿ ok3

ÿ 2
Vk1k3k1ÿk3V

�
k2kk2ÿk

ok2ÿk � ok ÿ ok2

ÿ 2
Vk1k2k1ÿk2V

�
k3ÿkk3ÿk

ok3ÿk � ok ÿ ok3

ÿ 2
Vkk3kÿk3V

�
k2k1k2ÿk1

ok2ÿk � ok1 ÿ ok2

: �12:9�

Thus, we arrive at a sequence of standard interaction
Hamiltonians: the Hamiltonian

Hd �
�
�Vkk1k2a

�
k ak1ak2 � c:c:�dkÿk1ÿk2 dkdk1 dk2 ; �12:10�

is responsible for the process of decay 1! 2 and the inverse
process of fusion 2! 1; the Hamiltonian

Hex � 1

3

�
�U �kk1k2a �k a �k1a �k2 � c:c:�dk�k1�k2 dk dk1 dk2 ; �12:11�

describes the so-called explosive instability, in which three
quanta of the wave field are created simultaneously from
vacuum �0! 3�, the Hamiltonian

Hsc �
�
Tkk1k2k3a

�
k a
�
k1
ak2ak3dk�k1ÿk2ÿk3

Y
dki ; �12:12�

is responsible for the process 2! 2, etc.
If several types of waves exist in the medium, the list of

standard Hamiltonians is greatly increased. We give one of
them, responsible for the interaction of high-frequency and
low-frequency waves:

Hint �
�
�Vkk1k2bka

�
k1
ak2 � c:c:�dkÿk1ÿk2 dk dk1 dk2 : �12:13�

AHamiltonian of type (12.13) describes the interaction of
light and sound in dielectrics, Langmuir and ion-acoustic
waves in plasma, etc.

In describing a system of nonlinear waves by means of
some standard interaction Hamiltonian, we are naturally
assuming that the level of nonlinearity, characterized by the
wave amplitude, is small. Despite these limitations, the
resulting phenomena are quite rich. Many of them can
already be understood starting from the simplest models
that arise from the reduction of the standard Hamiltonians.

As a first example let us consider the interaction of three
spectrally narrow wave packets with wave vectors lying near
k1, k2 and k3. Such an interaction is resonant if, for
instance,

o�k1� � o�k2� � o�k3� ;

k1 � k2 � k3 :

For this case a�k�may be represented in the form

a�k� � a1�k� � a2�k� � a3�k� ;

where a1, a2, a3 are the amplitudes of the waves in the packets.
The characteristic width ki of the each packet is assumed to be
small compared with jkij. For such an interaction, a canonical
transformation reduces the Hamiltonian Hd given by Eqn
(12.10) to

Hint � 2

��
Va �1 �k1�a2�k2�a3�k3� � c:c:�dk1ÿk2ÿk3

Y
dki :

Now using the narrowness of these packets, we set

o�k1 � j� � o�ki� � �jvi� ; vi � qo
qki

inH0 and make the change of variables:

ci�x� � ai�k� exp
�
io�ki�t

�
:

As a result,

H! Hÿ
X�

oijcij2 dj :

Taking the inverse Fourier transform of this Hamiltonian,
using the formula

ci�x� �
1

�2p�3=2
�
ci�j� exp�ijr� dj ;

we obtain the well-known equations for resonant interaction
[77]:

qc1

qt
� �v1HH�c1 � ÿ

iV

�2p�3=2
c2c3 ; �12:14�

qc2

qt
� �v2HH�c2 � ÿ

iV �

�2p�3=2
c1c

�
3 ; �12:15�

qc3

qt
� �v3HH�c3 � ÿ

iV �

�2p�3=2
c2c

�
3 : �12:16�

In a similar fashion one gets the system of equations for
describing the explosive instability of three wave packets. In
this case the interaction Hamiltonian for the packets arises as
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the result of reduction of the Hamiltonian (12.11):

qc1

qt
� �v1HH�c1 � ÿ

iU�

�2p�3=2
c�2c

�
3 ; �12:17�

qc2

qt
� �v2HH�c2 � ÿ

iU �

�2p�3=2
c�1c

�
3 ; �12:18�

qc3

qt
� �v3HH�c3 � ÿ

iU �

�2p�3=2
c�2c

�
3 : �12:19�

The following example refers to the reduction of the
Hamiltonian (12.12) for a single spectrally narrow wave
packet. Suppose that the center of the packet is at k0: Then
setting

a�k� � c�k� exp�ÿiok0 t� ; k � k0 � k ;

H! Hÿ o�k0�
���c�k���2 dk ;

o�k� � o�k0 � k� � o�k0� � kvg � 1

2

q2o
qkaqkb

kakb ;

we get the nonlinear SchroÈ dinger equation (NLSE)

i�ct � vgHHc� � oab

2

q2c
qxaqxb

� T

�2p�3 jcj
2c � 0 �12:20�

for the envelope c�r�, where

oab � q2o
qkaqkb

:

Equation (12.20) describes the self-interaction of a
spectrally narrow wave packet in a nonlinear medium. In an
isotropic medium, when the tensor oab is of the form

oab � vg
2k0
�dab ÿ nanb� � o00na nb

�
n � k

k

�
;

this equation simplifies to

i�ct � vgcx� �
vg
2k0

D?c� o 00

2
cxx �

T

�2p�3 jcj
2c � 0 ;

�12:21�

where the x axis coincides with the direction of the group
velocity. In this equation the second term is responsible for
the propagation of the wave packet as a whole with the group
velocity vg (this term can evidently be excluded by passing to
the system of reference moving with vg); the next term
describes the diffraction of the packet in the plane transverse
to vg, the fourth term corresponds to the dispersion of the
broadening along the x-direction, finally, the last term in Eqn
(12.21) accounts for the nonlinearity.

After performing rescaling transformations in this equa-
tion, the NLSE can be written in the canonical form:

ict � D?c� scxx � Zjcj2c � 0 : �12:22�

Here s � sign�o00vg� and Z � sign�Tvg�. This equation can be
considered as the SchroÈ dinger equation for quantum particle
motion in self-consistent potentialU � ÿZjcj2 with a positive
transverse mass and a longitudinal mass, the sign of which

coincides with s. This means that the character of the
interaction in the transverse and longitudinal directions are
different and depend on the signs of Z and s. If Z > 0, then in
the transverse direction the attraction takes place and the
packet has to be compressed due the nonlinear interaction. In
the opposite case, �Z < 0�, the nonlinearity helps the diffrac-
tion broadening. The same situation arises for longitudinal
motion. If sZ � 1, then the compression takes place along the
group velocity direction and respectively the repulsion in the
opposite case �sZ � ÿ1�. There exists the only variant
s � Z � 1, when simultaneously the nonlinearity leads to
packet compression in all directions. In this case wave
collapse is possible (for a review see Ref. [84]).

Thus, depending on s and Z, there exist four canonical
forms for the NLSE:

ict � Dc� jcj2c � 0 ; �12:23�
ict � D?cÿ cxx � jcj2c � 0 ; �12:24�
ict � Dcÿ jcj2c � 0 ; �12:25�
ict � D?cÿ cxx ÿ jcj2c � 0 : �12:26�

All these equations belong to the Hamiltonian type; they
can be written as

ict �
dH
dc �

; H �
��
jHH?cj2 � sjcxj2 ÿ

Z
2
jcj4

�
dr :

�12:27�

In deriving Eqn (12.20) we have assumed that the kernel
Tk1k2k3k4 is a continuous function of its arguments [the vertex
appearing in Eqn (12.9) is the value of this kernel at ki � k0].
However, this situation is not typical, in particular if
o�0� � 0. At the same time, according to Goldstone's
theorem (cf. Ref. [78]) the matrix element Vkk1k2 vanishes if
one of the wave vectors k, k1 or k2 is zero. Thus, in expression
(12.9) for the matrix element T, there are indeterminacies
when ki � k0. To remove themwemust calculate a limit of the
type

lim
k!0

jVk0 ; k0�k;ÿkj2
o�k� ÿ �kvg� :

For example, for surface waves of infinite depth

Vkk0k0 � k3=4 ; o�k� � k1=2 ;

and all the indeterminacies vanish. For finite depth one has
Vkk0k0 � k1=2, o�k� � k, so that this limit is finite in each
direction, while the quantity Tk0k0k0k0 remains undetermined.
Indeterminacy of this type is related to the excitation of forced
motion of the medium as a whole. Such a situation occurs for
all waves whose dispersion lawsok become linear as k! 0. In
addition to the surface waves considered above, such waves
include ion-acoustic waves in a plasma, sound waves in a
solid, etc.

In this situation one needs separate equations for
describing induced low-frequency motions. This problem is
a special case of a more general question: the interaction of a
spectrally narrow high-frequency wave packet with a low-
frequency acoustic type oscillation. TheHamiltonian for such
an interaction can be constructed from general principles,
based on the classical notion of an adiabatic invariant. [Of
course, there is also a direct method of calculation, based on
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the reduction of the Hamiltonian (12.13).] We recall that for
an oscillator with frequency o there is the following
remarkable relation between the energy E and the adiabatic
invariant I:

E

o
� I :

In the present case the adiabatic invariant is the quantity��c�k���2, so that

H0 � o�k0�
���c�k���2 dk � � o�k0�jcj2 dr :

A nonlinear interaction with low-frequency motions does not
destroy the adiabaticity, so

Hint �
�
dojcj2 dr ;

where do is the change in frequency due to variations of the
local characteristics of the medium, namely, the density dr
and velocity v:

do � qo
qr0

dr� �k0v� :

(The second term corresponds to the Doppler effect.)
Setting v � HHj and remembering that dr and j are

canonically conjugate functions for a compressible fluid, we
get the equations [66, 79]

i�ct � vgHHc� � oab

2

q2c
qxaqxb

�
�
qo
qri

dr� k0HHj
�
c� T

�2p�3 jcj
2c � 0 ; �12:28�

q
qt

dr� r0Dj� �k0HH�jcj2 � 0 ; �12:29�

r0
qj
qt
� c2sdr�

qo
qr0
jcj2 � 0 ; �12:30�

where T is the regular part of the matrix element ~Tk0k0k0k0

without singularities.
The Hamiltonian of this system is a combination of the

Hamiltonians for Eqns (12.20) and (4.3):

Hc �
��
ÿic �vgHHc� 1

2
oab

qc
qxa

qc �

qxb

�
�
qo
qr0

dr� k0HHj
�
jcj2

� 1

2

T

�2p�3 jcj
4 � c2s

dr2

2r0
� r0

�HHj�2
2

�
dr : �12:31�

Depending on the ratio between the group velocity vg and
the sound velocity cs, Eqns (12.29) and (12.30) permit various
simplifications. If vg < cs and vgDk4Tjcj2, where Dk is the
width around k of the high-frequency packet, we can replace
q=qt by vgHH in Eqns (12.29) and (12.30):

ÿ vgHHdr� r0Dj� �k0HH�jcj2 � 0 ;

ÿ r0�vgHH�j� c2sdr�
qo
qr0
jcj2 � 0 : �12:32�

For isotropic media the resulting system of equations
described in a coordinate system moving with the group
velocity goes over into the Davey ± Stewartson equations

ict �
vg
2k0

D?c� o00

2
cxx �

�
qo
qr0
� k0c

2
s

r0vg

�
drc

�
�

T

�2p�3 �
k0
r0vg

qo
qr0

�
jcj2c � 0 ; �12:33�

�
vg

q
qx

�2�
drÿ k0

vg
jcj2

�
� D

�
c2sdr�

qo
qr0
jcj2

�
; �12:34�

which were first obtained for gravitational waves on the
surface of a fluid of finite depth [80].

In this system Eqn (12.32) or (12.34) represents a
constraint for dr, j and jcj2, and the Hamiltonian for
(12.33) is constructed taking these constraints into account.
An explicit expression for it is easily obtained if we represent
the constraint equations in the form

ÿ�vgHH�dr � dH
dj

; ÿ�vgHH�j � dH
dr

with H � Hc given by Eqn (12.31). Then the Hamiltonian
HDS for theDavey ± Stewartson equation is obtained fromHc

by the rule

HDS � Hc ÿ
�
dr�vgHH�jdr� i

�
c ��vgHH�cdr ;

and the equations have the form

ict �
dHDS

dc �
:

If vg > cs, then in Eqns (12.29) and (12.30) we cannot
replace q=qt by the operator �ÿvgHH� no matter what the level
of nonlinearity is. This is easily understood if we rewrite Eqns
(12.29) and (12.30) in a Fourier representation. If we carry
this out, we are confronted by a resonance denominator of the
form

kcs � �kvg� ;
which corresponds to condition (12.7) for the decay of a high-
frequency wave into high-frequency and sound waves. Under
the condition vg 4 cs, corresponding, for example, to the
interaction of light and sound in dielectrics, the contribution
to do because of the Doppler effect is weak compared to the
scattering by long-wave fluctuations dr of the density (the
relative parameter is cs=vg). In this case Eqns (12.28) ± (12.30)
simplify to the following form:

ict �
o00

2
cxx �

vg
2k0

D?c�
�
qo
qr

dr� T

�2p�3 jcj
2

�
c � 0 ;

��
q
qt
ÿ vg q

qx

�2

ÿ c2sD?

�
dr � qo

qr0
Djcj2 :

Among the simplest reductions one should also include
the reduction of the Boussinesq equation to the KdV
equation. For the Boussinesq model the dispersion law is
close to linear. This means that in the Hamiltonian H1 with
coefficients of the form (4.5) one should keep the terms
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proportional to a �aa and aa �a �, and eliminate the other
terms by canonical transformations, while in the quadratic
Hamiltonian we can keep in o�k� the term linear in the
dispersion n: o�k� � kcs

�
1� �nr0k2=2c2s �

�
; then changing

from the variables ak to u�x� according to the formulae

ak � uk���
k
p ; u �

�1
0

�
uk exp�ikx� � u �k exp�ÿikx�

�
dk

we then arrive at the KdV equation

ut � csux � buux � csguxxx � 0 ; �12:35�

where

g � ÿ nr0
2c2s

; b � 1

2

�
cs
r0

�1=2

�1� g� :

The natural generalization of the KdV equation to many
dimensions is the Kadomtsev ± Petviashvili (KP) equation
[85] which follows if one considers the reduction of the
Hamiltonian (4.5) to the case of a narrow angular distribu-
tion of acoustic waves with a weak dispersion. Given that the
packet mainly propagates along the x-axis the equation
(12.35) will transform into the form

q
qx
�ut � csux � buux � csguxxx� � cs

2
HH2
?u ; �12:36�

where the term on the left-hand side of the equation describes
the diffraction of acoustic waves in the transverse direction to
x. It is necessary to emphasize that all terms in this equation
are small compared to the second one, csux, responsible for
the propagation along the x-axis of the packet with the
velocity of sound. And in this sense the procedure for
deriving the KP equation as well as the KdV equation
represents one of the variants of the averaging methods
when it is possible to distinguish two different temporal
types of motion, rapid and slow.

The examples do not obviously exhaust all the possible
reductions of Hamiltonians. We have only concentrated on
the clearest ones, demonstrating their universality. A sig-
nificant feature of this universality is that many of the models
considered in this survey permit the application of the inverse
scattering transform.
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