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Statistical description of acoustic turbulence
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We develop expressions for the nonlinear wave damping and frequency correction of a field of random,
spatially homogeneous, acoustic waves. The implications for the nature of the equilibrium spectral energy
distribution are discussed.@S1063-651X~97!02606-8#
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I. INTRODUCTION AND GENERAL DISCUSSION

Weak or wave turbulence, which describes the beha
of a spatially homogeneous field of weakly interacting, ra
dom dispersive waves, has led to spectacular success in
understanding of spectral energy transfer processes in
mas, oceans, and planetary atmospheres@1#. Furthermore,
the subject provides a useful paradigm for helping one th
about some of the challenges of fully developed turbulen
First and foremost, the equation for the long time behavio
the spectral cumulants~which are in one to one correspon
dence with the spectral moments! areclosedwithout making
a priori and unjustifiable assumptions on the statistics of
processes~such as the quasi-Gaussian approximation!. Sec-
ond, the kinetic equation, which describes the spectral
ergy transfer vian-wave resonant processes, admits clas
of exactequilibrium solutions that can be identified as pu
Kolmogorov spectra, namely, equilibria for which there is
constant spectral flux of one of the conserved densities~e.g.,
energy, number density! of the physical process under co
sideration. By contrast, the thermodynamic equilibria, wh
have very little relevance in any turbulence theory that m
account for a sink at small scales, have zero flux. Third,
theory allows one to glimpse the origin of the intermiten
and the breakdown of the conditions under which one
expect relaxation to one of the finite flux Kolmogorov equ
libria.

The basic ideas for writing down the kinetic equation
describe how weakly interacting waves share their ener
go back to Peierls, but the modern theories have their or
in the works of Hasselman@2#, Benney and Saffmann@3#,
Kadomtsev@4#, Zakharov@1#, and Benney and Newell@5,6#.
A particularly important event in this history was the disco
ery of the pure Kolmogorov solution by Zakharov@7#. Usu-
ally, the thermodynamic equilibrium solutions can be se
from the kinetic equation by inspection. On the other ha
the solutions, corresponding to pure Kolmogorov spectra
much more subtle and only emerge after one has explo
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scaling symmetries of the dispersion relation and the c
pling coefficient via what is now called the Zakharov tran
formation @1,7#.

Success to this point, namely, the natural closure,
pended crucially on the fact the waves were dispersive. T
means that the group velocity is neither constant in am
tude nor direction, or that, alternatively stated, the dispers
tensor

Dab5S ]2v

]ka]kb
D , 0,a,b<a ~1.1!

has full rank. Hered is the system dimension, Greek lette
~herea andb) denote tensor indices varying from 1 to spa
dimensiond, and

v5v~k! ~1.2!

is the linear dispersion relation. The reason for closure
slaving. In a field of weakly interacting random dispersi
waves, the first step to slaving is achieved by the linear ch
acteristics of the wave trains. Systems, which initially a
strongly correlated, are decorrelated because different wa
carry statistically independent information from long di
tances at different speeds and directions. Cumulants of o
N.2 tend to zero on the fast time scalev I

21 (v I is a typical
frequency at which the energy is injected!. The system ap-
proaches a state of exact joint Gaussian statistics. The en
at each wave vector remains constant, and there is no tr
fer. But the systems of interest to us are nonlinear and, th
fore, although the cumulants undergo an initial decay, th
are regenerated by the nonlinear terms. In particular, the
mulant of the orderN is regenerated both by cumulants
higher order and by products of lower order cumulants. T
second important reason for closure is the following. T
important terms in the regeneration of theNth order cumu-
lant are not the terms containing cumulants of order hig
thenN, but rather those terms which are products of low
order cumulants. Important means that, even though the n
linear coupling is weak, the effects of these terms per
over long times because of resonant interaction. Furth
more, the regeneration process takes place on a much lo
time scale than does the initial decorrelation process du
wave dispersion. On this long time scale, namely, the ti
390 © 1997 The American Physical Society
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56 391STATISTICAL DESCRIPTION OF ACOUSTIC TURBULENCE
taken for triad or quartet~or, as in some rare cases, quinti!
resonances to produce order 1 effects, the system of e
tions for the cumulant hierarchy becomes closed. Ife is a
typical dimensionless wave amplitude~for acoustic waves it
is dr/r0, the ratio of average fluctuation density amplitu
to the ambient value!, then this time~measured in units o
the timescalev I

21) is e22 for triad resonances ande24 for
quartet resonances, although there is an additional frequ
correction in the latter case that comes in on thee22 time
scale.

Mathematically, these results are obtained by perturba
theory, in which the terms leading to long time cumulati
effects can be identified, tabulated, and summed. The me
closely parallels that of the Dyson-Wyld diagrammatic a
proach which will be discussed in Sec. IV. A key part of t
analysis is the asymptotic (limt→`) evaluation of certain in-
tegrals such as

E f ~kr !DF (
r51

N

srv~kr !GdS (
r51

N

kr DPdkr , ~1.3!

where

D~h!5E
0

t

dt exp~ iht !5
exp~ iht !21

ih
, ~1.4!

andd(x) is the Dirac delta function. The functionD(h) con-
tains the fast~oscillations of the order ofv I

21) time t,
whereas the other functions in the integrand, here denote
f (kr), only change over much longer times. The exponen
D(h) is (1

Nsrv(kr) wherev(kr) is the linear dispersion re
lation andsr ~often sr561) denotes its multiplicity. For
example, in acoustic waves, a wave vectork has two fre-
quencies corresponding to waves running parallel and a
parallel tok. The maximum contribution to integrals such
Eq. ~1.3! in the limit of large timet occurs on the so called
resonant manifoldM , where

(
r51

N

kr50, h5(
r51

N

srv~kr !50 ~1.5!

for some choices of the sequencesr . However, the precise
form of the asymptotic limit also depends on whether
zeros ofh onM are simple or of higher order. For the ca
of ~fully ! dispersive waves, such as gravity waves on d
water, Rossby waves, waves of diffraction on optical bea
the zero ofh is simple, and~for sufficiently smoothf ) one
has

lim
t→`

E
2`

`

f ~h!
exp~ iht !21

ih
dh

5p sgn~ t ! f ~0!1 iPE
2`

` f ~h!

h
dh,

~1.6!

or, schematically,

D~h!}p sgn~ t !d~h!1 iPS 1hD , ~1.7!
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whereP denotes Cauchy principal value. In these cases,
integrand in the kinetic equation, the equation describing
resonant transfer of spectral density, contains produ
of energy densities and the Dirac delta functio
d„(1

Nsrv(kr)… andd((1
Nkr), clearly indicating that spectra

energy transfer takes place on the resonant manifoldM . The
asymptotic equations for the change of the higher order
mulants can be interpreted as a complex frequency mo
cation whose real part describes the expected nonlinear
in frequency, and whose imaginary part describes a broad
ing of the resonant manifold along its normal directions.

But acoustic waves are not fully dispersive. The line
dispersion relation

v~k!5cuku5cAki
21k'

2 , k5~ki ,k'! ~1.8!

where c is the sound speed, leads to a dispersion ten
which has rank (d21). As we will see, this changes th
asymptotic. Furthermore, three wave resonances occur
tween wave vectors which are purely collinear. Therefo
since the kinetic equation~KE! only considers wave interac
tion on the resonant manifold, there is no way of redistrib
ing energy out of a given direction. At best, the KE will on
describe spectral energy transfer along rays in wave-ve
space. Moreover, depending on dimensiond, the long time
behavior of integrals~1.3! differ greatly. For a given vector
k, the locus of the resonant partnersk1 andk2k1 in a reso-
nant triad is given by the surface ink1 space defined by

h~k1!5s1k11s2uk2k1u2suku50. ~1.9!

Heres,s1 ,s2561. Ford51 and the appropriate choices o
the wave directionss1 , s2, and s, this manifold isall k1.
Therefore the fast oscillations in the integral are of no co
sequence, and do not cause any decorrelation to occur
waves moving in the same directions travel with the sa
speed. Initial correlations are completely preserved. Mo
over, we know that for one-dimensional compressible flo
nonlinear terms, no matter how weak initially, eventua
lead to finite time multivalued solutions. Assuming the usu
viscous regularization, multivalued solutions are replaced
shocks, namely, almost discontinuous solutions where
continuities are resolved across very thin viscous layers. O
would naturally expect an energy spectrumE1(k) which re-
flects this fact, namely,

E1~k!}1/k2. ~1.10!

In two dimensions, one has dispersion~diffraction! in one
direction. Indeed, ford.1, while

¹k1
h50 ~1.11!

on the manifoldM , the Hessian ofh(k1) is not identically
zero. In two dimensions, integral~1.3! behaves as

E f ~x!
exp~ ix2t !21

ix2
dx}2tE f ~x!exp~ ix2t !dx,

~1.12!
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392 56V. S. L’VOV, YU. L’VOV, A. C. NEWELL, AND V. ZAKHAROV
which grows ast1/2 ast→`. In three dimensions, the growt
is much weaker. Since that is the case we will look at
detail, we give the exact result. Let

k5~K.0,0,0!, k15~Kx ,Ky ,Kz!,

k25~K2Kx ,2Ky ,2Kz!.

Then, fors15s25s,

h5c~s1uk1u1s2uk2k1u2sK!

5
sKc

2Kx~K2Kx!
~Ky

21Kz
2!1O~Ky

3 ,Ky
2Kz , . . . !

~1.13!

near the resonant value (K,0,0). The integral

E
2`

`

f ~Kx ,Ky ,Kz ;s1 ,s2!
eiht21

ih
dKxdKydKz

tends to

aE
2`

0

f ~Kx,0,0;2s,s!~2Kx!~K2Kx!dKx

1aE
0

K

f ~Kx,0,0;s,s!Kx~K2Kx!dKx

1aE
K

`

f ~Kx,0,0;s,2s!Kx~Kx2K !dKx

2
2ias

p
lntE

2`

0

f ~Kx,0,0;2s,s!Kx~K2Kx!dKx

2
2ias

p
lntE

0

K

f ~Kx,0,0;s,s!Kx~K2Kx!dKx

2
2ias

p
lntE

K

`

f ~Kx,0,0;s,2s!Kx~K2Kx!dKx

~1.14!

in the limit t→`. Herea5p2/Kc and we have kept only
the leading order real and imaginary contributions. The
sential difference from Eqs.~1.6! and ~1.7! is the additional
Dirac delta function multiplied by lnt in the imaginary term.
This will not change the kinetic equation for the spect
energy density. If we write the total energy per unit volum
E as

E52r0c
2e2E e~k!dk, ~1.15!

wherer0 is the ambient density ande a measure of ampli-
tude, then

de~k!

dt
5St~e,ė!

St~e,ė!5
p2c~m11!2e2K4

4 H 2E
0

`

dgg~g11!
s-

l

3@e~gk!e„~g11!k…1ge~k!e„~g11!k…

2~g11!e~k!e~gk!#

1E
0

1

dka~12a!@e~ak!e„~12a!k…

2ae„k…e„~12a!k…2~12a!e~k!e~ak!#J ,
~1.16!

where m is the adiabatic constant@p5p0(r/r0)
m# and

uku5K. In d dimensions a little calculation show, that th
right-hand side of Eq.~1.16! has thet dependencet (32d/2), so
that in general the nonlinear interaction timetNL for the
resonant exchange of spectral energy ise2t (52d)/25O(1) or
tNL}e24/(52d). ~Note that ford>5, there is no cumulative
effect of this resonance.!

While the extra term in Eq.~1.14! proportional toi lnt
plays no role in the spectral energy transfer, it will, howev
appear in the frequency modification. Calculating the lo
time behavior of the higher order cumulants leads to a na
ral renormalization of the frequency,

v~k!5cukuF122p~m11!2e2ln
1

e2E0
`

b2e~b k̂!db1O~e2!G
1 ip2~m11!2e2F E

uku

`

b2e~b k̂!db

1
1

uku E0
uku

b3e~b k̂!db1uku E
0

uku
be~b k̂!dbG , ~1.17!

where k̂5k/K. The calculation of the frequency renorma
ization is the main result of this paper. We present two de
vations of this result, in the framework of the above analy
and making use of a diagrammatic perturbation approac

Equation~1.16! is nothing but a ‘‘regular’’ kinetic equa-
tion for the three-wave interactions, written in a dispersio
less limit v5cuku. In this case three-wave resonant con
tions

6v~k!56v~k1!6v~k2!, k5k11k2 ~1.18!

can be satisfied if and only if all three vectorsk, k1, and
k2 are parallel; as a result, the integration overk1 , andk2 is
along the line parallel tok. It is uncleara priori that the
three-wave kinetic equation can be used in the dispersion
case; is certainly less plausible in the two-dimensional ca
where the formal implementation of the kinetic equati
leads to stronger divergences.

The derivation presented above is taken from the art
of Newell and Aucoin@9#, who made the first serious attem
at an analytical description of the dispersionless acoustic
bulence. Newell and Aucoin@9# also argued that a natura
asymptotic closure is also obtained in two dimensions
cause of the relative higher asymptotic growth rates of te
in the kinetic equation involving only the spectral energ
However this is still a point of dispute, it is not yet resolve
and will not be addressed further here.
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56 393STATISTICAL DESCRIPTION OF ACOUSTIC TURBULENCE
Independently the kinetic equation~1.16! was applied to
acoustic turbulence by Zakharov and Sagdeev@8#, who used
it just as a plausible hypothesis. However, Zakharov a
Sagdeev also suggested an explicit expression for the s
trum of acoustic turbulence

e~k!}k23/2, ~1.19!

which is just a Kolmogorov-type spectrum, first obtained
Kolmogorov from dimensional considerations in the cont
of hydrodynamic turbulence. Here, however, Eq.~1.19! is an
exact solution of the equation

St~e,ė!50. ~1.20!

The proof of this fact can be found in Ref.@1#. One should
also mention that the quantum kinetic equation was app
to a description of a system of weakly interacting dispersi
less phonons as long ago as 1937 by Landau and Ru
@10#.

Kadomtsev and Petviashvili@11# criticized this result on
the grounds that the kinetic equation in the dispersion
case can hardly be justified because of the special natu
the linear dispersion relation. They suggested that acou
turbulence in two and three dimensions was much m
likely to have parallels with its analog in one dimension. W
have already mentioned in that case that the usual statis
description is inadequate both because there is no decor
tion dynamics and because shocks form no matter how w
the nonlinearity initially is. The equilibrium statistics re
evant in that case is much more likely to be a random dis
bution of discontinuities in the density and velocity fiel
which lead to an energy distribution of Eq.~1.10!. Further,
Kadomtsev and Petviashvili argued that even in two a
three dimensions one would expect the same result, nam

kd21e~k!}k22, ~1.21!

a random distribution of statistically independent shoc
propagating in all directions.

However, wave packets traveling in almost parallel dire
tions are not independent. Consider a solid angle contain
N5(ki /k')

d21 wave packets with wave vectors (ki ,k'),
whereki5 l21 is a typical length scale of the fluctuating fie
in the direction of the propagation, andk'!ki . The shock
time t sh for a single wave packet would belArN/E
}( l /ce)N(1/2), whereE is the total energy in the field. Th
dispersion~diffraction! time tdisp, namely, the time over
which several different packets have time to interact linea
is of the order ofki /(ck'

2 )} lN2/(d21)/c. As we have already
observed, the nonlinear resonance interaction timetNL for
spectral energy transfer is (l /c)e2„4/(52d)…. The ration is
tdisp:tsh:tNL5N2/(d21):N1/2e21:e24/(52d). In the limits
N→` ande→0, the shock time is sandwiched between t
linear dispersion time and nonlinear interaction time, and
we chooseN(e) by equating the first two, all three are th
same. Moreover, the phase mixing, which occurs due to
crossing of acoustic wave beams, occurs on a shorter
scale, a fact that suggests that the resonant exchange o
ergy is the more important process. But even then, sev
very important questions remain.
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~1! To what distribution does the energy along a giv
wave-vector ray relax?

~2! How does energy become shared between neighbo
rays?

~3! Does energy tend to diffuse away from the ray w
maximum energy, or can it focus onto that ray? In the lat
case, one might argue that shock formation may again
come the relevant process, especially if the energy sho
condense on rays with very different directions.

The aim of this paper is to take a very modest first step
the direction of answering these questions. In particular,
present a curious result. The fact that there is a str
(e2ln1/e2) correction to the frequency leads us to ask if th
terms could provide the dispersion required to allow t
usual triad resonance process to carry energy between n
boring rays. At first sight, it would appear that that is inde
the case, that the modified nonlinear dispersion law is

v~k!5c~k!S 11e2ln
1

e2
V~k! D , ~1.22!

whereV is proportional touku. But a surprising and non
trivial cancellation occurs, which means that the first corr
tions to the wave speed still keeps the system nondisper
in the propagation direction.

While this fact is the principal result of this paper, o
approach lays the foundation for a systematic evaluation
the contribution to energy exchange that occurs at hig
order. Indeed, we expect that some of the terms found
Benney and Newell@5#, involving gradients across resona
manifolds which, in the fully dispersive case, are not relev
because the resonant three-wave interaction gives rise t
isotropic distribution, may be more important in this conte

The paper is written as follows. In Sec. II, we derive t
equation of motion for acoustic waves of small but fin
amplitude. A second approach discussed in Sec. II B st
from the Hamiltonian formulation of the Euler equation
and again makes use of the small amplitude parameter o
problem to simplify the interaction Hamiltonian. As we wi
see in Sec. II C, both approaches are equivalent and w
approach to use is the question of taste.

Next, in Sec. III we write down the hierarchy of equatio
for the spectral cumulants and solve them perturbative
Certain resonances manifest themselves as algebraic
logarithmic time growth in the formal perturbation expa
sions, and mean that these expansions are not unifor
asymptotic in time. The kinetic equation, describing the lo
time behavior of the zeroth order spectral energy, and
equations describing the long time behavior of the zer
order higher cumulants, are simply conditions that effe
tively sum the effect of the unbounded growth terms. Und
this renormalization, the perturbation series becomes asy
totically uniform. By asymptotically uniform, we mean tha
the asymptotic expansion for each of the cumulants rem
an asymptotic expansion over long times. All unbound
growths are removed. While this procedure in principle
quires one to identify and calculate unbounded terms to
orders, in practice one gains a very good approximation
demanding uniform asymptotic behavior only to that order
the coupling coefficient where the unboundedness first
pears.
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394 56V. S. L’VOV, YU. L’VOV, A. C. NEWELL, AND V. ZAKHAROV
In other words, this means that if one finds that if the fi
two terms of the asymptotic expansion are 11e2tc11•••,
then the effective removal ofc1 will remove all terms which
are powers of (e2t) in the full expansion. Likewise, it also
assumes that there appear no worse secular terms at a h
order, such as, for example,e4t3c2. To achieve uniformity,
one requires an intimate knowledge of how unbound
growth appears. This sort of perturbative analysis was
done in the 1930s by Dyson. A technical innovation was
use graph notations, calleddiagrams, for representing
lengthy analytical expressions for high order terms in
perturbation series. It often happens that one can find
principal subsequence of terms just by looking on the to
logical structure of corresponding diagrams. This method
treating perturbation approaches is calledthe diagrammatic
technique.

The first variant of diagrammatic technique for noneq
librium processes was suggested by Wyld@12# in the context
of the Navier-Stokes equation for an incompressible flu
This technique was later generalized by Martin, Siggia, a
Rose@13#, who demonstrated that it may be used to inve
gate the fluctuation effects in the low-frequency dynamics
any condensed matter system. In fact this technique is al
classical limit of the Keldysh diagrammatic technique@14#
which is applicable to any physical system described by
teracting Fermi and Bose fields. Zakharov and L’vov@15#
extended the Wyld technique to the statistical description
Hamiltonian nonlinear-wave fields, including hydrodynam
turbulence in the Clebsch variables@16#. In Sec. IV, we will
use this particular method for treating acoustic turbulenc

Note that in such a formulation, unbounded growths
pear as divergences~or almost divergences! due to the pres-
ence of zero denominators caused by resonances—the
same resonances, in fact, that give rise to unbounded gro
in our more straightforward perturbation approach. Mo
over, diagrammatic techniques are schematic methods
identifying all problem terms and for adding them up. If o
uses the diagram technique only to the first order at wh
the first divergences appear, this is called the one-loop
proximation, and is equivalent to identifying the first lon
time nonlinear effects. This is exactly analogous to what
will do in our first approach in this paper, although we w
also display the diagram technique. The one loop approxi
tion will give the same long time behavior of the system
times oftNL defined earlier. In Appendix C we analyze tw
loop diagrams, and show that some of them gives the s
order contribution togk as two-loop diagrams. Neverthele
one may believe that even the one-loop approximation g
a qualitatively correct description of the dynamics of the s
tem.

Section V is devoted to some concluding remarks and
identification of the remaining challenges. We now beg
with deriving the basic equations of motion for weak aco
tic turbulence.

II. BASIC EQUATION OF MOTION
FOR WEAK ACOUSTIC TURBULENCE

A. Straightforward approach

Consider the Euler equations for a compressible fluid:

]r/]t1¹•~rv!50, ~2.1!
t

her

d
st
o

e
e
-
f

-

.
d
i-
f
a

-

f

-

ery
th
-
or

h
p-

e

a-
r

e

s
-

e

-

]v/]t1~v•¹!v52¹p~r!/r.

Here v(x,t) is the Euler fluid velocity,r(x,t) the density,
andp(r ,t) the pressure which, in the general case, is a fu
tion of fluid density and specific entropys @p5p(r,s)#. In
ideal fluids where there is no viscosity and heat exchan
the entropy per unit volume is carried by the fluid, i.e.,
obeys the equation]s/]t1(v•¹)s50. A fluid in which the
specific entropy is constant throughout the volume is ca
barotropic; the pressure in such a fluid is a single-valu
function of the densityp5p(r). In this case,¹p/r may be
expressed via the gradient of specific enthalpy of unit m
w5E1pV anddw5Vdp5dp/r. Thus¹p/r5¹w.

Writing the fluid densityr„x,t… asr0„11h(x,t)…, the ve-
locity field asv(x,t), the pressure field asp5p0(11h)m,
and the enthalpy as

w5E dp

r

5
c0
2

m21S 11~m21!h1
~m21!~m22!

2
h21••• D ,

one can write Eq.~2.1! to third order in amplitude in the
following forms:

]h

]t
1

]v i
]xi

52
]

]xi
hv i , ~2.2!

]v j
]t

1c2
]h

]x
52vm

]v i
]xm

2
c2~m22!

2

]

]xj
h2

2
c2~m22!~m23!

6

]

]xj
h3. ~2.3!

Let us introduce new variables as

h~x,t !5E (
s

eas~k,t !eik•x1 isv~k!tdk, ~2.4!

v j~x,t !5E (
s

2c2kj
sv~k!

eas~k,t !eik•x1 isv~k!tdk, ~2.5!

where 0,e!1, v(kW )5cuku and (s connotes summation
over s561. From Eqs.~2.2! and ~2.3!,

]as~k,t !

]t
5e (

sp ,sq
E dkpdkqLk,kp ,kq

s,sp ,sq asp~kp ,t !a
sq~kq ,t !

3d~kp1kq2k!

3exp$ i @spv~kp!1sqv~kq!2sv~k!#t%

1e2 (
sp ,sq ,sr

E dkpdkqdkrLk,kp ,kq ,kr
s,sp ,sq ,sr asp

3~kp ,t !a
sq~kq ,t !a

sr~kr ,t !d~kp1kq1kr2k!

3exp$ i @spv~kp!1sqv~kq!1srv~kr !

2sv~k!#t%, ~2.6!
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where the summation is done over all signs ofsp , sq , and
sr , and we use the shorthand notationvp5v(kp). The cou-
pling coefficients are

Lk,kp ,kq
s,sp ,sq 5

ic2

4 S k•kpspvp
1
k•kq
sqvq

1
sv

spvpsqvq
kp•kqD

1
i

4
~m22!sv ~2.7!

Lk,kp ,kq ,kr
s,sp ,sq ,sr 5

iv

12
~m22!~m23!. ~2.8!

These coefficients have the following important propertie
~i! Lk,kp ,kq

s,sp ,sq is symmetric under the interchange ofp and

q.
~ii ! Lkp ,k,2kq

sp ,s,2sq 5(spvp /sv)Lk,kp ,kq
s,sp ,sq .

~iii ! On the resonant manifoldM , given by

1

c
h5spukpu1squk2kpu2suku50, ~2.9!

Lk,kp ,kq
s,sp ,sq 5

ics

4
~m11!K, ~2.10!

whereuku5K. Note that ifk5(K,0,0), the resonant manifold
is not of codimension 1, but degenerates toKy5Kz50,
where kp5(Kx ,Ky ,Kz), kq5(K2Kx ,2Ky ,2Kz). There
are three cases. ~1! For Kx,0,K, ukpu52Kx ,
ukqu5K1Kx , sp52s, sq5s. ~2! For 0,Kx,K,
ukpu5Kx , ukqu5K2Kx , sp5sq5s. ~3! For 0,K,Kx ,
ukpu5Kx , ukqu5Kx2K, sp5s,sq52s.

B. Hamiltonian description of acoustic turbulence

1. Equations of motion and canonical variables

Consider again the Euler equations for a compress
fluid, Eqs.~2.1!. The enthalpy of a unit massw5E1pV is
equal to the derivative of internal energy of unit volum
«(r)5Er with respect to fluid density:w5d«/dr. As a
result of direct differentiation with respect to time, it
readily evident that equations~2.1! conserve the energy o
the fluid

H5E @rv2/21«~r!# dr . ~2.11!

One can show~see, for example,@1#! that Eqs.~2.1! may be
written in the Hamiltonian forms

]r/]t5dH/dF, ]F/]t52dH/dr, ~2.12!

]l/]t5dH/dm, ]m/]t52dH/dl, ~2.13!

if the velocity v(r ,t) is presented in terms of two pairs o
Clebsch variables (r,F) and (l,n) as follows:

v5l
¹m

r
1¹F. ~2.14!
le

Here the energy~2.11! is expressed in terms (r,F) and
(l,n), so that Eq.~2.14! becomes the Hamiltonian of th
system. As seen from Eq.~2.14!, the case withl50 or
m5const corresponds to potential fluid motions which a
defined by a pair of variables (r,F) according to Eqs.
~2.12!. It is convenient to transform in thek representation
from the real canonical variables,F(k),r(k) to the complex
onesb(k) and b* (k),

F~k!52 iA~c/2r0k!@b~k!2b* ~2k!#, ~2.15!

dr~k!5A~r0k/2!@b~k!1b* ~2k!#. ~2.16!

Heredr(k)5@r(k)2r0(k)# is the Fourier transform of den
sity deviation from the steady state.

2. Hamiltonian of acoustic turbulence

Let us expand the Hamiltonian~2.11! ~expressed in terms
of b, b* ) in power series

H5H01Hint . ~2.17!

HereH0 is quadratic inb andb* , giving the Hamiltonian of
noninteracting waves:

H05E ckb~k!b* ~k!dk, ~2.18!

with linear dispersion relationv0(k)5ck. In the Hamil-
tonian of interactionHint , we take into account only three
wave processes:

Hint5
1
2 E ~V~k,k1 ,k2!b1* b2b31c.c.!

3d~k12k22k3! dk1dk2dk3 . ~2.19!

Here we neglected 0↔3 processes~processes described b
b1* b2* b3* andb1b2b3 terms!, because they are nonresona
This means that if we take into account the 0↔3 term, it is
not going to change our final results; thus we can neglec
from the very beginning. We also neglected contributio
from four-wave and higher terms, because three-wave in
action is the dominant one.

The coupling coefficient of the three-wave interaction
given by @1#

V~k0 ,k1 ,k2!5S ckk1k24p3r0
D 1/2~3g1cosu011cosu021cosu12!,

~2.20!

whereg is some dimensionless constant of the order of un
and u i j is the angle betweenk i and k j . Since we have an
almost linear dispersion relation, only almost parallel wa
vectors can interact; therefore cosuij with high accuracy can
be replaced by 1, and Eq.~2.20! reduces to

V~k0 ,k1 ,k2!5S ckk1k24p3r0
D 1/23~g11!. ~2.21!
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3. Canonical equation of motion

The Hamiltonian equations of motion~2.12! for the com-
plex canonical variablesb andb* have the standard form@1#

i
]b~k,t !

]t
5

dH
db* ~k,t !

. ~2.22!

For the acoustic Hamiltonians~2.17!–~2.19!, this equation
takes the form

F i ]

]t
2ckGb~k,t !5 1

2 E V~k,q,p!b~q!b~p!

3d~k2q2p!
dq dp

~2p!3

1E V* ~k,q,p!b~q!* b~p!

3d~k1q2p!
d3q d3p

~2p!3
. ~2.23!

It is sometimes convenient to concentrate attention on ste
state turbulence, which may be described in thek,v repre-
sentation. After performing a time Fourier transform, o
has, instead of~2.23!,

@v2ck#b~k,v!5 1
2 E V~k,k1 ,k2!b1b2d~k2k12k2!

3d~v2v12v2!
dk1dv1dk2dv2

~2p!4

1E V* ~k,k1 ,k2!b1* b2d~k1k12k2!

3d~v1v12v2!
dk1dv1dk2dv2

~2p!4
.

~2.24!

Hereafter we will refer to this as thebasic equation of motion
for the acoustic turbulence normal variables bk , and bk* ,
and use it for a statistical description of acoustic turbulen

C. Relations between wave amplitudesa1
„k…, a2

„k… with
normal variables of acoustic turbulenceb„k…, b* „k…

Comparing Eqs.~2.4! and ~2.5!, we obtain

dr~k,t !5r0e$a1~k,t !exp@ iv~k!t#

1a2~k,t !exp@2 iv~k!t#%~2p!3/2, ~2.25!

F~k,t !5
ic2e

v~k!
$a1~k,t !exp@ iv~k!t#

2a2~k,t !exp@2 iv~k!t#%~2p!3/2, ~2.26!
dy

e.

HereF is velocity potential:v5¹F. This gives

a1~k,t !5
exp@2 iv~k!t#

2e~2p!3/2 Fdr~k,t !

r0
2 iF~k,t !

v~k!

c2 G ,
a2~k,t !5

exp@ iv~k!t#

2e~2p!3/2 Fdr~k,t !

r0
1 iF~k,t !

vk

c2 G .
~2.27!

Note thata1 anda2 are dimensionless variables.
Now we can easily expressa1(k) anda(k) in terms of

b(k) andb* (k), and thereby relate the two alternative a
proaches presented in this paper,

a1~k,t !5
1

e S k

2cr0
D 1/2~2p!23/2exp@2 iv~k!t#b* ~2k!,

~2.28!

a2~k,t !5
1

e S k

2cr0
D 1/2~2p!23/2exp@ iv~k!t#b~k!.

~2.29!

To check that the two approaches are consistent, we rew
the equation of motion~2.6! for ak

s , neglectinge2 ~four-wave
interaction! terms,

]as~k,t !

]t
5e(

spsq
E dkpdkqLk,kp ,kq

s,sp ,sq asp~kp ,t !a
sq~kq ,t !

3d~kp1kq2k!

3exp$ i @spv~kp!1sqv~kq!2sv~k!#t%.

~2.30!

Now we substitute Eqs.~2.28! and~2.29! into Eq.~2.30!, and
obtain

F ]

]t
1 iv~k!Gb~k,t !52 i E dpdqS kpqc4p3r0

D 1/2
3@~m22!1cosuk,p1cosuk,q

1cosup,q#

3@d~k1p1q!bp* bq*12dk1p2qbp* bq

1d~k2p2q!bpbq#. ~2.31!

Now one can see that Eq.~2.31! looks exactly like Eq.
~2.22!, with Hamiltonian ~2.19! and coupling coefficient
~2.20!. Thus one concludes that the two approaches
equivalent, and that a choice between them is a questio
taste.

III. LONG-TIME ANALYSIS OF STATISTICAL
BEHAVIOR

The analysis proceeds by first forming the hierarchy
equations for the spectral cumulants~correlation functions of
the wave amplitudes! defined as follows. The mean is zero

^as~k!as8~k8!&5d~k1k8!qss8~k,k8!, ~3.1!
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^as~k!as8~k8!as9~k9!&5d~k1k81k9!qss8s9~k,k8,k9!,
~3.2!

^as~k!as8~k8!as9~k9!as-~k-!&

5d~k1k81k91k-!qss8s9s-~k,k8,k9,k-!

1d~k1k8!d~k91k-!qss8~k,k8!qs9s-~k9,k-!

1d~k1k9!d~k81k-!qss9~k,k9!qs8s-~k8,k-!

1d~k1k-!d~k81k9!qss-~k,k-!qs8s9~k8,k9!,

~3.3!

where^•••& denotes average and the presence of thed func-
tion is a direct reflection of the spatial homogeneity. Inde
the property of spatial homogeneity affords one a way
defining averages, which does not depend on the presen
a joint distribution. We can define the avera
^h(x)h(x1r )& as simply an average over the base coor
nate, namely,

^h~x!h~x1r !&5
1

~2L !3
E

2L

L

h~x!h~x1r !dx. ~3.4!

To derive the main results of this paper, it is sufficient
write the equations for the second and third order cumula
They are

dqk•k8
ss8

dt
5eP008(

sqsp
E dkpdkqLk,kp ,kq

s,sp ,sq q
k8kpkq

s8spsq

3exp@ i ~spvp1sqvq2svk!t#d~k2p2q!,

k1k850, ~3.5!

dqk•k8k9
ss8s9

dt
5eP00809E dkpdkqLk,kp ,kq

s,sp ,sq q
k8,k9,kp ,kq

s8,s9,sp ,sq

3d~k2p2q!exp@ i ~spvp1sqvg2svk!t#

12eP00809(
spsq

L
k,2k8,2k9

s,sp ,sq q
k8,2k8

s8,sp q
k9,2k9

s9,sq

3exp@ i ~spv81sqv92sv!t#,

k1k81k950, ~3.6!

where the symbolP008 (P00809) means that we sum over a
replacements 0→08, 08→0 (0→08,08→09, 09→0, 0
→09,08→0, 09→08).

The total energy of the system per unit volume can
written as
,
f
of

i-

s.

e

lim
r→0

K r0v j~x!v j~x1r !1
c2r0

m
h~x!h~x1r ! ~3.7!

1
rc2

2m
~m22!h~x!h~x1r !L

5 limr→0(
s1s2

E r0c
2e2

2
~12s1s2!q

s1s2~k!eikrdk

5 limr→0E r0c
2e2„q12~k!1q21~k!…eikrdk

5E 2r0c
2e2q12~k!dk,

sinceq12(k)5q21(2k). The spectral energy is therefor
2rc2e2q12(k). For convenience we denoteq12(k) as
e(k).

To leading order ine, qss8(k,k8) and qss8s9(k,k8,k9)

@which we may callq0
ss8(k,k8) andq0

ss8s9(k,k8,k9)# are in-
dependent of time. Anticipating, however, that certain pa
of the higher order iterates in their asymptotic expansio

may become unbounded, we will allow bothq0
ss8(k,k8) and

q0
ss8s9(k,k8,k9) to be slowly varying in time,

dq0
ss8~k,k8!

dt
5e2F2

ss8 ,

dq0
ss8s9~k,k8,k9!

dt
5e2F3

ss8s9 ~3.8!

and we will chooseF2 andF3 to remove those terms with
unbounded growth from the later iteration. We will find th
for s852s, F2

s2s is given by the right-hand side of th
acoustic KE,

F2
ss85q0

s s8~k,k8! lim
e2→0

(
spsq

E sqsp
sv E ~Lk,kp ,kq

s,sp ,sq !2qsp ,2sp~kp!

3D~spvp1sqvq2sv!d~kp1kq2k!dkpdkq

1 lim
e2→0

(
spsq

E sqsp
sv E ~Lk,kp ,kq

s,sp ,sq !2q0
s s8~kq ,2kq!q

sp ,2sp

3~kp!D~spvp1sqvq2sv!d~kp1kq2k!dkpdkq ,

and thatF2
ss andF3

ss8s9 have the forms

iq0
ss~k,k8!~V̄k

s1V̄k8
s

! ~3.9!

and

iq0
ss8s9~k,k8,k9!~V̄k

s1V̄k8
s81V̄k9

s9 !, ~3.10!

respectively. It is clear thatV̄k
s can be interpreted as a com

plex frequency modification. Its exact expression is given

V̄k
s524i lim

e2→0

(
spsq

E sqsp
sv E ~Lk,kp ,kq

s,sp ,sq !2qsp ,2sp~kp!
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D~spvp1sqvq2sv!d~kp1kq2k!dkpdkq ,

and, when calculated, is precisely equal tos(v2cuku)e2 in
Eq. ~1.17!. Note that, in Eq.~3.11!, t5Te2 andT is finite.
The ln(1/e2) coefficient comes from the term lnt or
ln(T/e2)5lnT1ln(1/e2) in the asymptotic expansion. For fi
nite T, the dominant part is ln(1/e2).

The perturbations method has the advantage that it is r
tively simple to execute. However, there is noa priori guar-
antee that terms appearing later in the formal series ca
have time dependencies, which mean they affect the lea
approximations on time scales comparable to or less t
e22 ~e.g., a terme4t3 should be accounted for before th
term e2t). To check this, one must have a systematic
proach for exploring all orders in the formal perturbati
series, and removing~renormalizing! in groups those reso
nances which make their cumulative effects at time sca
e2N

„ln(1/e)2M
…, N,M51,2,3,. . . . The diagram approach

which requires some familiarity to execute, is designed to
this and, both for completeness and the fact that we will h
to proceed beyond the one-loop approximation to resolve
questions of the angular redistribution of spectral energy,
include it here.

IV. DIAGRAMMATIC APPROACH TO ACOUSTIC
TURBULENCE

A. Objects of diagrammatic technique

Let us define the ‘‘bare’’ Green’s function of Eq.~2.24! as

G0~k!5
1

v2ck1 i0
. ~4.1!

One may see from Eq.~2.24! that this function describes th
response of the system of noninteracting acoustic wave
some external force. In the denominator we added the t
1 i0 by requirement of causality. We remark that causa
~the arrow of time! is introduced in the perturbation approa
by the limit t→`, and the fact that sgnt appears in Eq.~1.7!.
Next we introduce the ‘‘dressed’’ Green function, which
the response of interacting wave systems on this force:

~2p!4G~k,v!d~k2k8!d~v2v8!5 K db~k,v!

d f ~k8,v8! L .
~4.2!

We will also be interested in the double correlation functi
n(k,v) of the acoustic fieldb,b* ,

~2p!4n~k,v!d~k2k8!d~v2v8!5^b~k,v!b* ~k8,v8!&.
~4.3!

The simultaneous double correlator of the acoustic fi
n(k) is determined by

~2p!3n~k!d~k2k8!5^b~k,t !b* ~k8,t !&. ~4.4!

This is related to the different-time correlators in thev rep-
resentationn(k,v) as follows:
la-

ot
ng
n

-

s

o
e
e
e

on
m
y

d

n~k!5E n~k,v!
dv

2p
. ~4.5!

The Green’s and correlation functions together with t
bare vertexV(k,q,p), Eq. ~2.20!, are the basic objects o
diagrammatic perturbation approach which we are going
use@see Fig. 1~a!#.

B. Dyson-Wyld equations

In the diagrammatic series for the Green’s function, o
may perform the partial Dyson’s summation over on
particle irreducible diagrams. This results in the Dyson eq
tion for the Green’s functions,

G~k,v!5
1

v2v0~k!1 i02S~k,v!
, ~4.6!

where the ‘‘mass operator’’S(k,v) gives the nonlinear cor-
rection to the complex frequencyv0(k)1 i0 due to the in-
teraction~2.19!. This is an infinite series with respect to th
bare amplitudeV(k,q,p), Eq. ~2.20!, dressed Green’s func
tion ~4.2! and double correlation functionn(k,v), Eq. ~4.3!.
All of the contributions of the second and fourth orders
V are shown in Fig. 1~b!.

We have not specified the direction of arrows in Fig. 1~b!;
each diagram should be interpreted as a sum of diagr
with all possible directions of arrows compatible with vorte
V(k,q,p), describing the three-wave processes 1↔2. For
example, diagram (a) in Fig. 1~b! corresponds to three dia
grams shown in Fig. 2. The diagram (a4) on Fig. 2 describes
the nonresonant process 0↔3, which is not essential for ou
consideration.

With the help of the similar Dyson’s summing of one
particle irreducible diagrams, one can derive Wyld’s equ
tion for n(k,v):

n~k,v!5uG~k,v!u2@D~k,v!1F~k,v!#. ~4.7!

HereD(k,v) is the correlation function of the white noise

FIG. 1. ~a! Basic objects of diagrammatic pertubation approa
~b! First terms in the expansion of mass operatorS(k,v).
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~2p!4D~k,v!d~k2k8!d~v2v8!5^ f ~kv! f * ~k8v8!&,
~4.8!

and the mass operatorF(k,v) describes the nonlinear co
rections toD(k,v). This is an infinite series with respect t
the same objectsG(k,v),n(k,v), and V(k,q,p). All dia-
grams of the second and fourth orders are shown in Fig. 3~a!.

We also have not specified arrow directions in the d
grams forS(k,v) andF(k,v). In complete analogy with
diagrams forG(k,v), one diagram in Fig. 3~a! corresponds
to two diagrams (a1) and (a2) in Fig. 3~b!. All the rest
diagrams forF(k,v) reproduce in the same way—on
chooses all possible directions of arrows, and discards th
which are incompatible with the definition of vertexV @see
Fig. 1~a!#.

C. One-pole approximation

1. Green’s function

We have assumed from the beginning that the wave
plitude is small. Therefore,

S~k,v!!v0~k!. ~4.9!

FIG. 2. Diagrams (a) from Fig. 1 with specified directions o
arrows.

FIG. 3. First terms in the diagrammatic pertubation expans
for mass operatorC(k,v).
-

se

-

As a result, the Green’s function has a sharp peak in
vicinity of v5ck, and one may~as a first step in the analy
sis! neglect thev dependence ofS(k,v) and put

S~k,v!.S~k,v.ck!. ~4.10!

The validity of this assumption will be checked later. Und
this assumption the Green’s function~4.2! has a simple one-
pole structure,

G̃~k,v!5
1

v2v~k!1 ig~k!
, ~4.11!

where

v~k!5v0~k!1ReS~k,v* !, ~4.12!

g~k!52ImS~k,v* !. ~4.13!

Now we have to decide how to choosev* ‘‘in the best
way.’’ The simplest way is to putv*5v0(k)5ck, as was
stated in Eq.~4.10!. As a next step we can take a ‘‘mor
accurate’’ expressionv*5v(k), i.e., to take into accoun
the real part of correction tov0(k). But later we will see that
a better choice is

v*5v~k!1 ig~k!, ~4.14!

which is consistent with the position of the pole
G̃* (k,v). We will show that this choice is self-consisten
while deriving the balance equation in Sec. V C.

2. Double correlation function

The same type of approximation may be performed
the correlation function. That is, in the Wyld equation~4.7!
one may replaceG(k,v) by G̃(k,v), and neglect thev
dependence of F(k,v) by putting F(k,v)→F̃(k)
5F(k,v* ), or

ñ~k,v!5uG̃~k,v!u2@D~k!1F̃~k!#, ~4.15!

We will call this one-pole approximation for the correlatio
function.

D. One-loop approximation

Let us begin our treatment with the simple one-loop~or
direct interaction! approximation for mass operatorsS and
F. This approximation corresponds to taking into accou
just the second order@in bare vertexV, Eq. ~2.20!# diagrams
for the mass operatorsS andF. The two-loop approxima-
tion will be considered in Appendix C. We will estimat
two-loop diagrams, and will show that some of them give t
same order contribution togk as one-loop diagrams. There
fore, the one-loop approximation is an uncontrolled appro
mation, but we believe that it gives qualitatively correct r
sults. Note that these diagrams include the dressed Gre
function, in contrast to the approximation of the kinet
equation which is nothing but a one-loop approximation w
the bare Green’s function inside. We will see below that t
difference is very important in the particular case of acous
turbulence. The KE for waves with a linear dispersion la
forbids the angular evolution of energy because conserva
n
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laws of energy and momentum allow interaction only f
waves with parallel wave vectors. In the one-loop appro
mation with a dressed Green’s function, the conserva
lawsv(k)6v(k1)5v(k6k1) are satisfied with some accu
racy@of the order ofg(k)#. As a result, there exists a cone
allowed angles betweenk and k1 in which interactions are
allowed. Therefore one has to expect some angle evolu
of wave packages within this approximation. Combining E
~4.11! with Eq. ~4.15!, one has the following expression:

n~k,v!5
2g~k!ñ~k!

@v2v~k!#21g2~k!
. ~4.16!
n
th
-

he
i-
n

n
.

1. Calculations ofS„k,v…

In the one-loop approximation, the expression f
S(k,v) has the form

S~k,v!5Sa1~k,v!1Sa2~k,v!1Sa3~k,v!, ~4.17!

whereS j (k,v) is given by Eqs.~A1!–~A3!. Our goal here is
to analyze these expressions in the one-pole approxima
by substituting in it ‘‘one-pole’ expressionsn(k,v) and
G(k,v) from Eqs.~4.11! and~4.16!. In the resulting expres-
sion one can perform the integration overv analytically. The
result is
S~k,v!5E d3k1d
3k2

~2p!3 S uV~k2 ,k,k1!u2d~k1k12k2!@n~k1!2n~k2!#
v1v~k1!2v~k2!1 i ~g11g2!

1
uV~k0 ,k1 ,k2!u2d~k2k12k2!n~k2!

v2v~k1!2v~k2!1 i ~g11g2!
D .

~4.18!
in

of
al
Next we introduceS(k)5S(k,v* ), with v* given by Eq.
~4.14!, and consider Eq.~4.18! in the limit of smallg, which
allows us to perform analytically integrations over perpe
dicular components of wave vectors. The result for
damping frequencyg(k) may be represented in the follow
ing form ~for details, see Appendix B!:

g~k!5
A2k2

4pcE1/L
`

n~q!q2dq.
A2k2

4pc
N~V!. ~4.19!

Here we introduced a cutoff for smallk at 1/L, whereL is
the size of the box. We also introduced ‘‘the density of t
number of particles’’N(V) in the solid angle according to

N~V!5E k2n~k!dk, ~4.20!

such that the total number of particles

N5E N~V!dV. ~4.21!

After substitutingA from Eq. ~B11!, one has the following
estimate forg(k):

g~k!.k2N~V!/r0 , ~4.22!

Consider nowS8(k)[ReS(k). It follows from Eq.~B12!
that

S~k!5
A2

4p2cE dqE
0

ymax
dy q2n~q!

y

y21Gk12
2

3@~k212kq1q2!2~k222kq1q2!#

.
A2k

p2c2E dqE
0

ymax ydy

y21Gk12
2 @cq3n~q!#, ~4.23!

whereGk125g(k)1g(k1)1g(k2) is the ‘‘triad interaction’’
frequency. One may evaluate the integral with respect toy as
-
e

Ł~q!5 ln
ymax
Gkkq

. ln
ck2

qg~k!
. ~4.24!

After substitutingg(k) from Eq. ~4.22!, one has

Ł~q!} lnr0 /qN~V!. ~4.25!

The main contribution to integral~4.23! over q comes from
the infrared regionq.1/L. This gives the estimate

S8~k!5
A2k

p2c2
ŁE~V!, ~4.26!

where we have defined the density of the wave energy
solid angle as

E~V!5E v0~k!n~k!k2dk. ~4.27!

This value relates toN(V) as follows:

E~V!.
c

L
N~V!. ~4.28!

Equation ~4.26! together with the expression~B11! for A
may be written as

S8~k!.cke ln1/e , ~4.29!

where

e.E~V!/r0c
2 ~4.30!

is the dimensionless parameter of nonlinearity, the ratio
energy of acoustic turbulence, and the density of therm
energy of mediar0c

2.ñT, whereñ is the concentration of
atoms.

Equation~4.22! for g(k) may be written in a similar form,

g~k!.ck~kL!e . ~4.31!

One can see that
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g~k!

S8~k!
}

kL

ln1/e
. ~4.32!

This means that, for a large enough inertial interval,

g~k!@S8~k!, ~4.33!

and one may neglect the nonlinear correctionsS8(k) to the
frequency with respect to the damping of the wavesg(k).
This shows that our above calculations ofS(k) is self-
consistent. Later we also will take into account only damp
g(k) in the expressions for the Green’s functions, taki
v(k)5v0(k)5ck.

2. Calculations ofF„k,v…

In the one-loop approximation expression forF(k,v) has
the form ~A4!. After substitution ofn(k,v) in the one-pole
approximation~4.16! one may perform analytically integra
tion over frequencies:

F~k,v!5E d3k1d
3k2

~2p!3
n~k1!n~k2!

3F uV~k,k1 ,k2!u2~g~k1!1g~k2!!d~k2k12k2!

@v2v~k1!2v~k2!#
21@g~k1!1g~k2!#

2

1
uV~k2 ,k1 ,k!u2~g~k1!1g~k2!!d~k1k12k2!

@v1v~k1!2v~k2!#
21@g~k1!1g~k2!#

2 G .
~4.34!

We will analyze this expression in Sec. IV D 3.
g

3. Balance equation

Consider the Dyson-Wyld equations~4.6! and~4.7! in the
inertial interval, where one can neglectg0(k) in comparison
with ImS(k,v) andD(k) in comparison withF(k,v):

G~k,v!5
1

v2v0~k!2S~k,v!
, ~4.35!

n~k,v!5uG~k,v!u2F~k,v!. ~4.36!

It follows from Eq. ~4.6! that

ImG~k,v!5uG~k,v!u2ImS~k,v!. ~4.37!

By comparing Eqs.~4.36! and ~4.37!, one may see that the
combination

L~k,v![F~k,v!ImG~k,v!2n~k,v!ImS~k,v!
~4.38!

is equal to zero. In particular,

L~k![E L~k,v!
dv

2p
50. ~4.39!

Together with Eq.~4.38!, this gives

ImE dv

2p
@F~k,v!G~k,v!2n~k,v!S~k,v!#50.

~4.40!

Let us now compute the first term in Eq.~4.40!. By substi-
tuting Eq.~4.34! for F(k,v), and Eq.~4.11! and integration
overv, one has
lf
E dv

2p
G~k,v!F~k,v!5E dk1dk2

~2p!3
n~k1!n~k2!F12 uV~k,k1 ,k2!u2d~k2k12k2!

v0~k!2v0~k1!2v0~k2!2 iGk12
1

uV~k2 ,k1 ,k!u2d~k1k12k2!

v0~k!1v0~k1!2v0~k2!2 iGk12
G .

(4.41)

Next we will perform integration overv in Eq. ~4.40!. Remember thatS(k,v) is an analytical function in the upper ha
plane ofv, while n(k,v) has one pole there. Therefore,

ImE dv

2p
n~k,v!S~k,v!5n~k!ImS~k,v* ! ~4.42!

wherev* is given by Eq.~4.14!. This is the justification of our choicev* .
Now let us put everything together to obtain

05L~k!5E dk1dk2
~2p!3

Gk12H d~k2k12k2!
1

2

uV~k,k1 ,k2!u2$n~k1!n~k2!2n~k!@n~k1!1n~k2!#%

„v0~k!2v0~k1!2v0~k2!…
21Gk12

2 1d~k1k12k2!

3
uV~k2 ,k1 ,k!u2$n~k2!@n~k1!1n~k!#2n~k!n~k1!%

„v0~k!1v0~k1!2v0~k2!…
21Gk12

2 J . ~4.43!
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This is the main result of the diagrammatic approach:
balance equation for stationary in time acoustic turbulen.
In the nonstationary case one can similarly obtain thegener-
alized kinetic equationin the form

]n~k,t !

]t
5L~k,t !, ~4.44!

whereL(k,t) is given by Eq.~4.43! with a correlator de-
pending on timen(k j )→n(k j ,t).. In the limit g(k)→0, this
expression turns into the well known~cf. @1#! collision inte-
gral for the three-wave kinetic equation

St$n~k,t !%5 limGk12→0L~k!52pE dk1dk2
~2p!3

1

2
d~k2k12k2!

3uV~k,k1 ,k2!u2$n~k1!n~k2!2n~k!

3@n~k1!1n~k2!#%d@v0~k!2v0~k1!

2v0~k2!#

1d~k1k12k2!uV~k2 ,k1 ,k!u2

3$n~k2!@n~k1!1n~k!#2n~k!n~k1!%

3d@v0~k!1v0~k1!2v0~k2!#. ~4.45!

We see that the generalized kinetic equation differs from
well known collision term in the three-wave kinetic equati
by replacingd functions on the corresponding Lorenz fun
tion with the width of theGk12-triad interaction frequency.

V. CONCLUSION

In the present paper we have begun to develop a con
tent statistical description of acoustic turbulence based b
on the long time asymptotic analyses~Sec. III! and on the
perturbation diagrammatic approach~Sec. IV!. The first ap-
proach is more straightforward. The diagrammatic appro
provides a systematic way of analyzing higher order term
the perturbation theory.

Our main result is that nonlinear corrections to the f
quency are much smaller than the nonlinear damping of
waves. We also find the balance equation~4.43!, which gen-
eralizes the simple kinetic equation for acoustic waves. O
can show that the balance equation~4.43! has the same iso
tropic solution~Zakharov-Sagdeev spectrum! as the kinetic
equation. However, the kinetic equation for acoustic tur
lence does not describe the angle evolution of turbulen
any arbitrary angle distribution is the solution of KE. In co
trast, our balance equation~4.43! contains terms which de
scribe an angular redistribution of the energy because of
nonzero value of the interaction cone, which is proportio
to Gk12. However, we have yet to show that this express
contains all such terms to this order.

One may imagine three very different ways of the an
evolution of anisotropic acoustic turbulence. The first one
a tendency to form very narrow beams with a characteri
width of about one interaction angle. The second one is
approach to isotropy downstream from the large wave v
tors. The last possibility is to form a beam with a charact
istic width of about unity, exactly as it happens in the turb
lence of waves with weak dispersion@17#. Another important
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question is, do the spectra of acoustic turbulence depen
the features of pumping or they are universal~independent of
details of energy influx!? We intend to answer these que
tions ~in the framework approximations we made in that p
per! in our next project. It is an exciting challenge to try
go beyond the approximations made here in order to un
stand whether the scaling index of the interaction vertex
the system of acoustic waves in two- and three-dimensio
media must be renormalized or not.
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APPENDIX A: RULES FOR WRITING AND READING OF
DIAGRAMS FOR MASS OPERATORS

Here we state without proof the set of rules for writin
down diagrammatic series.

~1! In order to write down all diagrams forS andF of
2n order in vertices, one should draw 2n vertices and con-
nect them with each other by linesn andG in all possible
ways. Two ends must be left free. If both ends are straig
we will obtain a diagram forF(k,v); if one of them is
wavy, this will be a diagram forS(k,v).

~2! The diagrams forF andS containing closed loops in
Green’s function~GF! are absent. This follows from the fac
that the Wyld’s diagrammatic technique~DT! appears from
glued trees.

~3! There is no mass operator with two wavy ends in D
~4! In the diagrams forF ~for S) one can pass from ever

vertex along theG lines to the entrance and exit in a sing
way.

~5! In every diagram forS there is a single root linking
the entrance and exit along theG lines – the backbone of the
diagram. The restG lines of the diagrams may be called th
rips.

~6! The diagrams forF contain a basic cross section
which they may be cut in a single way into two parts only
linesn(k,v).

~7! EveryV vertex is entered by one arrow and exited
two. TheV* vertex is entered by two arrows and exited
one.

One can show~see@12#! that rules~3!–~7! follows from
~1! and ~2!. The rules of reading diagrams are the follows

~1! Write down the product of DT objects~double corr-
elator, Green function, or vertex! ~with corresponding argu-
ments! corresponding to each element of the diagram.

~2! Write downd functions in the 4-momenta for 2n21
vertices in such a way that the sum of entering t
4-momenta is equal to the sum of exiting them. One of
vertices~for, example the one corresponding to the end
the diagram! does not contain thed function.

~3! Perform an integration along all internal lines of di
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gram :di5@dki /(2p)d#dv i /(2p), whered is the space di-
mension.

~4! Multiply the diagram by (2p)(d11).
~5! Multiply the diagram by 1/p, wherep is the number of

elements in its symmetry group. For example diagra
(a1), (a2), and (a3) correspond to the following analytica
expressionsq:

Sa1~k,v!5E d3k1d
3k2

~2p!3
dv1dv2

2p
d~k1k12k2!

3d~v1v12v2!uV~k2 ,k,k1!u2G2n1 ,

~A1!

Sa2~k,v!5E d3k1d
3k2

~2p!3
dv1dv2

2p
d~k1k12k2!

3d~v1v12v2!uV~k2 ,k,k1!u2G1* n2 ,

~A2!
ak
e

pr
m

s

Sa3~k,v!5E d3k1d
3k2

~2p!3
dv1dv2

2p
d~k2k12k2!

3d~v2v12v2!uV~k,k1 ,k2!u2G1n2 .

~A3!

Here we defined the following shorthand notatio
Gj5G(k j ,v j ), andni5ni(k i ,v i). In the same way one ca
find analytical expressions forFa(k,v):

F~k,v!5E d3k1d
3k2

~2p!3
dv1dv2

2p F12 uV~k,k1 ,k2!u2n1n2

3d~k2k12k2!d~v2v12v2!

1uV~k2 ,k1 ,k!u2n1n2d~k1k12k2!

3d~v1v12v2!G . ~A4!

Analytical expressions fors in fourth order diagrams~two-
loop diagrams! will be shown in Appendix C.
APPENDIX B: CALCULATION OF S„k,v…-DETAILS

Let us start from Eq.~4.18! and introduceS(k)5S(k,v* ) with v* given by Eq.~4.14!:

S~k!5E d3k1d
3k2

~2p!3 S uV~k2 ,k,k1!u2d~k1k12k2!@n~k1!2n~k2!#
v~k!1v~k1!2v~k2!1 iGk12

1
uV~k0 ,k1 ,k2!u2d~k2k12k2!n~k2!

v~k!2v~k1!2v~k2!1 iGk12
D , ~B1!
n

where

Gk125g~k!1g~k1!1g~k2! ~B2!

is the ‘‘triad-interaction’’ frequency and 1/Gk12 is the triad
interaction time. One can consider Eqs.~B1! and ~B2! as
integral equations for the damping of waveg(k)
52 ImS(k) and for the frequency v(k)5v0(k)
1ReS(k).

First we consider these equations in the limit of we
interaction whereG→0, and the main contribution to th
first term in Eq.~B1! comes from the region where

v~k!1v~k1!5v~k2!, k1k15k2 . ~B3!

These are conservation laws for three-wave confluence
cesses 011→2. The main contribution for the second ter
in Eq. ~B1! comes from the region

v~k!5v~k1!1v~k2!, k5k11k2 . ~B4!

These are conservation laws for decays processes 0→112.
For weak interaction one may replacev(k) onv0(k)5ck in
Eqs.~B3! and~B4!. Than it follows from Eqs.~B3! and~B4!
thatk1ik2ik, with k1 ,k2 directed alongk. This fact makes it
natural to introduce new variables in integrals~B1!: the scale
positive variableq.0, and two-dimensional vectork, such
that
o-

k15qk/k1k, k'k. ~B5!

In the first term of Eq.~B1!,

k25~k1q!k/k1k, 0<q. ~B6!

In the second term,

k25~k2q!k/k2k, 0<q<k. ~B7!

For k!k the denominators in integrals~B1! strongly depend
on k. Indeed,

v0~k!1v~k1!2v~ uk1k1u!5ck
k2

2q~k1q!
, ~B8!

v0~k!2v~k1!2v~ uk2k1u!52ck
k2

2q~k2q!
. ~B9!

This allows us to neglect thek dependence of interactio
V(k,q,p) and correlationn(k i) in the numerator of~B1! for
estimation. The result is

S~k!5
A2k

8p2E
0

k2

dk2F E
0

`

dq
q~k1q!@n~q!2n~k1q!#

ckk2/@2q~k1q!#1 iGk12

1E
0

k

dq
q~k2q!n~q!

2ckk2/@2q~k2q!#1 iGk12
G , ~B10!
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where

A53~g11!Ac/4p3r0 ~B11!

is a factor in Eq.~2.20! so that, for parallel or almost paralle
wave vectors,V(k,q,p)5AAkqp. After changing variables
this integral becomes more transparent,

S~k!5
A2

4p2cF E dqE
0

ymax
dyq2~k1q!2

@n~q!2n~k1q!#

y1 iGk12

2E
0

ymax
dyE

0

k

dq
q2~k2q!2n~q!

y2 iGk12
G . ~B12!

One may estimateymax.ck2/2q from the fact that our ex-
pressions were obtained by expanding ink/k; therefore they
should be at leastk,k.

Now let us consider the imaginary and real parts ofS
separately. It is convenient to begin wit
g(k)52 ImS(k):

g~k!.
A2

4p2cE0
`

dyF E
0

`

dq q2~k1q!2

3Gk12

@n~q!2n~k1q!#

y21Gk12
2

1E
0

k

dq
q2~k2q!2n~q!Gk12

y21Gk12
2 G . ~B13!

Here we changed the upper limit of integration,ymax→`,
because the main contribution to the integral comes from
areay.G!ck. After trivial integration with respect toy,
one has

g~k!.
A2

8pcF E0`q2~k1q!2@n~q!2n~k1q!#dq

1E
0

k

q2~k2q!2n~q!dqG . ~B14!

This expression forg(k) corresponds to that given by th
kinetic equation@1# for waves. For further progress it is ne
essary to make some assumption aboutn(q). Let us assume
that n(q) vanishes with growing ofq faster than 1/q4. @Re-
member, that in the Zakharov-Sagdeev spectrumn(q)
}q29/2, and in the Kadomtsev-Petviashvili spectrumn(q)
}q24. This assumption is true for the Zakharov-Sagde
spectrum, and is not true for the Kadomtsev-Petviash
one.# For such spectra the main contribution to the integ
comes from smallq!k. In this case contributions from firs
and second integrals in Eq.~B14! coincides, and may be
represented in the form

g~k!5
A2k2

4pcE1/L
`

n~q!q2dq.
A2k2

4pc
N~V!. ~B15!
e

v
li
l

APPENDIX C: ESTIMATION OF THE TWO-LOOP
DIAGRAMS

Let us write down analytical expression which correspo
to one of the diagrams (b) in Fig. 1~b!,

Sb~k,v!5E dk1dk2dv1dv2

~2p!8
VaVbVcVdn~k1 ,v1!

3n~k2 ,v2!G~k11k2 ,v11v2!

3G~k1k11k2 ,v1v11v2!G~k1k,v1v2!

~C1!

whereVa , Vb , Vc , andVd are vertices,

Va5V~k11k21k,k,k11k2!, ~C2!

Vb5V~k11k21k,k1 ,k1k2!, ~C3!

Vc5V~k21k,k2 ,k!, ~C4!

Vd5V~k11k2,k1 ,k2! ~C5!

We just followed the rules of DT and integrated over alld
functions. From now on, the analyses will be parallel to th
of Appendix B. Let us use Eq.~4.16! for n(k,v) and Eq.
~4.11! for G(k,v). Now we can easily perform integratio
overv1 andv2. Now, as was done in Appendix B, introduc
Sb(k)5Sb(k,v* ). Since all interacting wave vectors ar
almost parallel, we introduce two-dimensional vectorsk1
andk2 such that

k15q1k/k1k1 , k1'k, ~C6!

k25q2k/k1k2, k2'k. ~C7!

We useV(k,q,p)5AAkqp. Since k i!k, we can expand
resonance denominators in Eq.~C1! with respect tok i . The
integrals will be dominated by regions whereqi!k. Putting
everything together, one obtains

Sb~k!.E p2dq1dq2dk1
2dk2

2

2p6 A4k3~q11q2!q1q2ñq1ñq2
~C8!

3F S c~k1
21k2

2!

2~q11q2!
1Gq1 ,q2 ,q11q2D

3S c2 k1
2

q1
1

k2
2

q2
1 igkD S ck2

2

2q2
1 igkD G21

. ~C9!

Substitutingñq5n/q29/2 we see that, indeed, the domina
part comes from the region of smallqi . We can estimate al
these integrals to obtain

Sb.
A4k3L2n2

c2gk
, ~C10!

where we used the smallq cutoff 1/L. Finally,

Sb

gk
.
k3L2n2

r0
2gk

2 .
1

kL
!1, ~C11!
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and we conclude that the contribution from diagrams of ty
(b) in Fig. 1~b! is much less than the contribution from on
loop diagrams. But this is not the end of the story. Let us
to estimate contributions from diagrams of type (e) on Fig.
1~b!. Following the same guidelines, we obtain

Se~k!5E dk1k2
~2p!8

A4kk1k2~k1k1!~k1k11k2!

3~k1k2!ñk1ñk2@~vk1vk1
2vk1k1

1 iGk,k1 ,k1k1
!

3~vk1vk1
1vk2

2vk1k11k2
1 iGk,k1 ,k2 ,k1k11k2

!

r.

SR
e

y

3~vk1vk2
2vk1k2

1 iGk,k1 ,k1k2
!]21.

Let us again introducek1 andk2 as above, and, substitutin
ñq5n/q29/2, we obtain the following estimation:

Se

gk
.
A4k4n2L3

gk
2c2

.1. ~C12!

Therefore we conclude that the contribution from two-lo
diagrams is dominated by planar diagrams, and is of
order of the one-loop diagram contribution.
k
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