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Abstract 

Using the combination of the canonical formalism for free-surface hydrodynamics and conformal mapping to the half- 
plane we obtain a simple system of pseudo-differential equations for the surface shape and hydrodynamic potential. The 
system is well-adjusted for a numerical simulation. Some typical results of such a simulation are presented. 
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1. Introduction 

The analytical description of the free-surface hydro- 

dynamics is a classical problem. For two-dimensional 

geometry the traditional approach uses the conformal 
mapping. This method is well-known for the study of 

stationary surface waves. The first important results 
date from the middle of the last century and were due 

to Stokes [ 11. Since the classical works of Nekrasov 

[ 21 and Levi-Civita [ 31 performed in the 1920s many 
publications have been devoted to this subject (see, 
for instance, the beautiful book by Stoker [ 41, and ref- 
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erences therein). The mathematical aspects of these 

works gave a powerful pulse to the development of 
some branches of the theory of integral equations and 
functional analysis. 

For nonstationary surface phenomena in the sixties 
and later the Lagrangian description was more com- 

mon [ 5-71. Some authors (see Ref. [ 81, and refer- 
ences therein) tried to perform an analytical continu- 
ation with respect to the Lagrangian coordinates. But 

this continuation inevitably faces a singularity in both 
halves of the complex plane (or inside and outside of 
the unit circle) and so far does not allow one to obtain 
actually effective results. 

Recently, Tanveer [ 9, lo] suggested to use the con- 
formal mapping for the nonstationary problem directly 

in the Euler description. He applied to the deep peri- 
odic water case the mapping of the fluid region into the 
inside of the unique circle. The equations obtained turn 
out to be quite complicated and therefore sufficiently 
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difficult for both analytical and numerical analysis. 
In this Letter we offer a simpler description of the 

nonstationary problem based on the combination of 
canonical formalism known since Ref. [ 1 l] and con- 

formal mapping. The main idea is to perform the con- 

formal mapping to the complex half-plane in action 
and therefore the equations we obtain are Hamiltonian 

ones from the very beginning. We present two equiv- 

alent versions of the equations. The first follow from 

the variational principle and include in the absence of 

capillarity the quadratic nonlinearity only. 
The equations, given in this form, are very conve- 

nient for analytical consideration. In particular, they 
contain the quadratic equation for stationary gravity 

waves found by Longuet-Higgins in 1978 (see Ref. 

[ 121) . It will be shown in the next article [ 131 that 

these equations are the natural basis for the analytical 
description of wave breaking and for construction of 

integrable models in the theory of deep water. How- 
ever, these equations are unresolved with respect to 

time derivatives and are not so good for a numerical 

simulation. 
Another form of the equations can be derived ei- 

ther from the previous system or directly from the 
Bernoulli equation and from the kinematic bound- 

ary conditions. These equations are much simpler 
than Tanveer’s. They are resolved with respect to 
time derivatives of the velocity potential and the free 
surface shape and include differentiation, taking the 
Hilbert transform on the whole axis, and rational non- 

linearities. Therefore they are naturally adjusted for 
numerical simulations by using the well-developed 

spectral methods. We develop the corresponding al- 
gorithm for the case including both gravity and capil- 
larity and present in this article the numerical results 
of its implementation. We believe that the elaborated 
algorithm is a very effective tool for the numerical 
simulation of wave breaking. 

2. Lagrangian for ideal fluid in conformal 

variables 

Let us consider an ideal fluid of infinite depth occu- 
pying on the plane (x, y) the domain y < v( X, t). Let 
the motion of the fluid be a potential one (u = V@>, 
and the fluid be incompressible (div u = 0). Hence, 
the potential obeys the Laplace equation 

V2@(x, y, t) = 0. 

The boundary conditions are 

(2.1) 

(2.3) 

Here g is the gravity acceleration and (+ is the surface 
tension. If we introduce 

cCl(x,r) =@(x,rl(x,t),t), (2.4) 

then, as it was shown in Ref. [ 111, the system is a 

Hamiltonian one and the boundary conditions (2.2) 
and (2.3) are equivalent to the canonical equations 

aq SH cY!P 6H 
-=--9 

-z=w at 6v 
(2.5) 

where H is the total energy of the system 

H = &in f &ot, (2.6) 

1 

Hki,, = 3 
s ./ 

dx (V@)= dy, (2.7) 

H~01=ipln2di+~~(~~-l)dl. (2.8) 

It is impossible to express H explicitly in terms of 
v and @. One can use the expansion in powers of 

nonlinearity kr]k (see, for instance, Ref. [ 141). 
Eqs. (2.5) realize an extremum of the action 

S= 
s 

Ldt, (2.9) 
: 

with the Lagrangian 

L= J ‘P2dx-H 
dt . 

(2.10) 

Let us perform a conformal mapping of the domain 
y < v to the lower half-plane of the complex variable 
w = u + iu. In conformal variables the shape of the 
surface is given by the parametric representation 

Y = Y(W t). x = n(u, t) = z4 + squ, t). (2.11) 
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We assume here and further that y + 0, (CI --+ 0 at 
Ju] -+ 00. In this case y and I are related by the Hilbert 

transform 

y=An, 2 = -By, 

where by definition 

(2.12) 

Af(u) = ;P 
O” f(u’) du’ 

s u’-c4 ’ 

Pf(u) = -;(Y). 
In the conformal variables 

(2.13) 

rlr dx = iytxu - xt~u > du, 

and the kinetic and potential energy are 

(2.14) 

Hkin = -!j 
s 

@lClll dn, 

+CC +CU 

Hpot = ;g 
.I 

y*x, du + (+ 
s 

(lz,l - xu) du. 

-CC --oo 
(2.15) 

d 
YuPt - YrFu + gyyu - “au 

xu ( > j-J = Af, (3.4) 

a 
- &P, + x,w, - gyx, - “au 

YU 

( > 
m = f. (3.5) 

The Lagrangian factor f can be easily excluded. For 
simplicity we present the result only in the case of 

u = 0. NOW the resulting equation is quadratic, 

x,W,-x,~~+Zi(-y,~,+y,W,)+g(yx,-Ayy,) =o 
Here and further ( 3.6) 

7. =x+iy, jzUj2=x~+y~. 

Finally, the Lagrangian takes the form 

(2.16) 

L= 
J 

T(yy,x, -x,y,)du+; 
J 

writu, 

-- :g J 
y*x, du - (+ 

J 
( ]zUl - x,) du. (2.17) 

To take into account relations (2.12) one must replace 

+CO 

L+E=L+ 
J 

f x (y - ib) du. 

-co 

(2.18) 

3. Equations of motion (implicit form) 

To obtain the equations of motion one has to put the 
variational derivatives of the action S equal to zero. 
The condition SS/W = 0 gives the equation 

ytxu - xryu = -iiq,, (3.1) 

or 

y,(l +z,) -k,yu =-A?&. (3.2) 

This is nothing but the kinematic boundary condition 

(2.2) written in the conformal variables. 

Integrating Eq. (3.2) over the real axis -oc < u < 
fco gives the mass conservation law, 

+03 +CC 

d 

z J 
y(1 +P,)du=; 

J 
vdx=O. (3.3) 

-cc -m 

The conditions GS/Sx = 0 and GS/Sy = 0 give 

or 

+g(Y +YG _flYYU) =O. (3.7) 

Eqs. (3.2) and (3.7) are especially simple for station- 
ary waves. In this case 

d a 

at=% 
i3.8) 

and from (3.2) one can find 

3v = c&y. (3.9) 

Eq. (3.7) now takes the form 

c’&YU + S(Y - Y&U - &YU) = 0, (3.10) 

which is exactly the quadratic equation, obtained in 
1978 by Longuet-Higgins [ 121. 

In the absence of gravity Eq. (3.7) is 

(l+P,)W,-x,~Y,+A(-y,W,+y,~~) =o. (3.11) 
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The system (3.2)) (3.11) allows an interesting class 
of exact solutions. Let us put 

P=Po(u) +1Yl(u)t, y=.Yo(u) $Yl(U)f, 

.T = &J(u) + RI (u)t. (3.12) 

The coefficients in (3.12) satisfy the following close 

system, 

yIPI, - Zlylu = -A%,, 

PIflU - ilWlU = fwlY,u - Yl~lu), (3.13) 

y1(1 + Zou) - Zlyou = -fiwbu, 
!Pl(l + Zou) - .FlTO, = A(W,yo, - y1Wou). (3.14) 

A discussion of the solutions of the system (3.13), 

(3.14) is beyond the scope of this article. 
One can express P from (3.2) 

‘ly = a,‘A[y,(l + Z-,) - it&41 (3.15) 

and substitute the result to the Lagrangian (2.17). Af- 

ter a simple calculation we find [ 121 3 

L = &in - H,,ot, 
+‘X 

Hkin=-; s tytxu - xtYu)I^ra,‘(Ytxu - XtYu) du, 

After applying to (3.11) the Hilbert transformation 
and integrating along the real axis we obtain 

+CC 

d 

Z. / 
PyU du = 0. (3.19) 

--LX 

The identities (3.18) and (3.19) are the conservation 
laws for the vertical and horizontal momentum of the 

fluid. 
We mention also that the stationary equation (3.10) 

can be obtained by minimization of the following ac- 
tion functional, 

+CO +CC 

s= 1c2 
2 

s 
y&+&+;g 

J 
y*( 1 +Z,) du, (3.20) 

-co --oo 

which is nothing but the action (2.9) calculated for 
stationary waves. 

4. Equations of motion (explicit form) 

It is important to resolve Eqs. (3.1), (3.4) and 
(3.5) with respect to yt, xt and Pt. Eq. (3.1) can be 

rewritten now as follows, 

ztz; - zTzu = -2iAP (4.1) 

+CO +oO 

HP,, = ;g 
J 

y2x, du + u 
J 

(lz,l -A,) du. (3.16) 
--oo -m 

In particular, in the case g = 0, g = 0 

L = H. (3.17) 

This is a general relation between a Hamiltonian and 
a Lagrangian for the case when H is a quadratic func- 
tional of the momenta. 

It is important that in the absence of capillarity L is 
a quartic functional of the coordinate y( U, t). 

After integrating Eq. (3.11) along the real axis we 
find 

+cc 
d 

-J dt 
‘P(l+f,)du=O. (3.18) 

-a3 

3 We are grateful to Dr. A. Balk, who directed our attention to 

the possibility of representing the Lagrangian in the form (3.16). 

or 

Zt ‘: - iiP ---_- 2i_ 

ZU z,* 121412' 

Let us introduce the projection operators 

(4.2) 

B*=$(lTiA), (P*)2=P*. (4.3) 

The function zt/zU can be analytically continued to 
the lower half-plane, while the function z:/z,’ can be 
continued to the upper half-plane. Hence 

Be ?!I =_!(l+i&)Z!Z=() ( > G Z,* 
and 

A 

Z, = z,tfi- i)f$, 
or 

(4.4) 

(4.5) 
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ha@ 
XI = (x,A+ y,>A 

12u12. 
(4.6) 

The simplest way to find the equation for q, 
is by rewriting the dynamic boundary condi- 
tion (2.3) in conformal variables. For *(~,t) = 

@(n(u,t).Y(kt),~), 

@r I!‘=‘I= p, - @xx, - @yYt. (4.7) 

Using the parametric representation (2.11) and the 

Cauchy-Riemann conditions, 

xu = YUY XL, = -yu> (4.8) 

and the identity GOlo+ = -Z&, ID=0 one can easily 

see that at u = 0 

(4.9) 

Substituting (4.9) and (4.7) into (2.3) andusing Rqs. 
(4.5) and (4.6) one can find after elementary calcu- 
lations 

One can recall that p and y are no longer canonically 
conjugated variables. The momentum conjugated to y, 

was found by the authors (E.K. and AD.) and was 
used in Ref. [ 151 to calculate high-order terms in the 

Hamiltonian expansion. 
The equation for stationary waves, obtained from 

the system (4.5), (4.6) and (4. lo), has the following 

form, 

c2 I a yu c2 
-+gy-y--p-J=2 42u1* 

(4.11) 

and it is cubic if cr = 0. 

5. Numerical simulation 

We performed the numerical integration of the sys- 
tem (4.5)) (4.10) imposing the periodic boundary 

conditions,@(w) =@(w+2n), z(w) = z(w+2n-), 

-rr < u 6 r. In this case the Hilbert transformation 

(2.13) has to be replaced as follows, 

Af= &P 
s 

f(u’) cot[ ;(u’ - u)] du’. 

-77 

Its spectral (Fourier) eigenvalues, as for the infinite 

domain, are nothing but i sgn( k), so that 

(Qf)k = i en(k) fk. 

Therefore, using the pseudo-spectral method is the 
most suitable way to integrate (4.5) and (4.10). 
For this system we developed an implicit difference 

scheme where all operations in space (including 
Hilbert transformation) were performed using the 
pseudo-spectral method. The difference approxima- 

tion to the equations is 

The index IY means that the value for yu was chosen as 

y,” = fly;+* + (1 -a)y,“, 

and J = jzu/* is the Jacobian of the conformal trans- 

formation. For u = 4 scheme (5.1) conserves all the 
integrals of motion of the original equations, namely: 

energy, amount of fluid, and both momenta. Unfor- 
tunately, for (+ = i there was observed a numerical 

instability in (5.1) and we were forced to use (T = 

$. Calculations were performed with quartic accuracy 
(approximately 30 decimal digits). 

We considered a periodic problem in the infinite 
half-strip with width 27r (both in the real space and af- 
ter conformal transformation) in the absence of grav- 
ity and surface tension. Initial conditions were chosen 
symmetric with respect to x : r](x) = v( -x). We 
used this symmetry in the computer simulation, per- 
forming integration in the domain 0 Q x < V. Calcu- 
lations were stopped when the accuracy to resolve the 
peak required more than 215 grid points in the whole 
domain. The dimensionless time at that moment was 

usually about 1.0. 
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I .I) 

Fig. 1. Surface profile g(x) (solid line), potential on the surface 

e(x) (dashed line) and vertical velocity on the surface & (x, 9) 
(dotted line) at t = 1.09. 
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x 

Fig. 2. Steepness vx (solid line), J& (dashed line) and horizontal 

velocity 4,(x, 7) (dotted line) at I = 1.09. 

Below we present a typical example of the numer- 
ical integration. Initial conditions for this run were 

chosen in the form 

Z =u, @=-Alog[l -exp(-iu- l)], 

A = 0.2 sinh( e). (5.2) 

Fig. I displays the surface profile T(X) , the potential 
on the surface $(x) and the vertical velocity on the 
surface q& (x, ~7). The surface profile has a jet form, 
which is typical for such problems. In Fig. 2 the steep- 
ness vX, cc/X and the horizontal velocity &(x, 7) are 
given. 

The behavior of the real part of the conformal map- 
ping on the real axis x(u) in the vicinity of the origin 

0.R 

0.6' 

0. 1 

x(u) /’ 
/ 

/ 
A’ 

/’ 
/’ 

,I’ 

/’ 
O.%s ,/ 

I/’ 

t=1.09 ( 

_._l., ,,. .__-._.-. ,,,r.rT-_--. .,. ,,” 

I,’ 

o.oi. ,. ._ . ,, I ,,,_. I, ,I 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 

II 

Fig. 3. The real part of the conformal mapping on the real axis 

x(u) in the vicinity of the origin at t = 1.09. 

is shown in Fig. 3. It should be mentioned here that the 

surface profile in conformal variables is much steeper 
than in the real variables, x, ---f 0;) in the origin. This 

fact is an obstacle for simulation at large t. 
It is important to compare our numerical results with 

recent theoretical predictions of the formation of sin- 

gularitieson the surface of deep fluid 116,171. In these 
articles we studied an “almost flat” free surface in the 
absence of gravity and capillarity. The first two terms 
in the expansion of the Hamiltonian in “natural” (not 

in conformal!) variables give the integrable equation 

a@ ( > a?@ 2=o -$7+2 - 
dn . 

(5.3) 

(Here ly% = p*!P.) This equation describes the for- 

mation of “weak” singularities v M 1x13/2, so that the 

curvature vXX z 1.x1-1/2 becomes infinite as x -+ 0. 
So far we did not observe a definite tendency to the 
creation of weak singularities in the numerical simu- 
lation. We instead observed the formation of growing 
peaks of the finger or jet type. A qualitative explana- 

tion of this fact is offered in Ref. [ 131. Here we can 
only mention that the reduced model (5.3) acquires 
instability, which disappears when taking into account 
the next term in the expansion of the Hamiltonian. 
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