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Abstract 

Weak turbulence theory presents a regular method for a statistical description of nonlinear wave interactions. The 
present review deals with an application of weak turbulence theory to Langmuir wave turbulence. Our main attention is 
devoted to a plasma with comparable ion and electron temperatures, both magnetized and unmagnetized. In this 
practically important situation ion-sound motions are heavily damped, which simplifies the physics of nonlinear 
phenomena. 

We will demonstrate that the turbulence spectra arc highly anisotropic and take the form of “jets” in k-space, and that 
the onset of a steady state is nontrivial and sometimes does not occur at all. 

On the base of the jet-like spectra approach it is possible to find the turbulence spectra, to evaluate the anomalous 
absorption rate and to determine the comparable role of the different absorption mechanisms for a number of practical 
problems: the excitation of waves by powerful electromagnetic radiation or by electron and ion beams. 

We demonstrate also that the range in which pure weak turbulence is valid is pretty narrow. The jet-like spectra 
structure stimulates a modulation instability and after that wave self-focusing and collapse. Then, weak and strong 
turbulence coexist. 

The final part of the review deals with the turbulence of nonisothermal plasmas when additional degrees of freedom are 
excited. We demonstrate that the ideas. models and methods, presented in this review, give us a chance to advance greatly 
in the understanding of turbulence patterns. 
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0. Introduction 

In common cases the characteristic times of the nonlinear wave interaction are sufficiently larger 
than their periods and one can consider the oscillations to bc locally linear with slowly varying 
parameters. This approach permits to develop a self-consistent description of turbulence in terms 
of an integro-differential wave kinetic equation (Weak Turbulence Theory). Within the weak 
turbulence framework waves are described as quasi-particles and their interactions are the decay or 
scattering of long-lived quasi-particles. 

The kinetic wave equation have a stationary solution, corresponding to thermodynamical 
equilibrium - The Rayleigh-Jeans spectrum. In the late 1960s nonequilibrium exact solutions of 
the kinetic equation were discovered Cl-43 - the Kolmogorov spectra. There are power law 
isotropic solutions providing fluxes of the energy or the number of quasi-particles from the 
excitation zone to the dissipation range through the inertial interval. 

How arc these solutions related to specific cases? Do they exist under anisotropic excitation? 
What is the character and period of their onset? The essential advance in the understanding of all 
these problems was done in the last years. The linear stability of Kolmogorov spectra was studied 
and an exact criterion was obtained [S]. Some general results on the spectra matching with 
anisotropy pump are available. All these studies are summarised in a recent book [6]. But we are 
far from the deep understanding of the whole pattern of the weak turbulence. The present review 
deals with one important example of weak turbulence--the Langmuir plasma turbulence. The 
dominant nonlinear process is a decay of plasma wave into another plasma oscillation and 
ion-sound wave 

l-+l’+s. (1) 

In an isothermal plasma, when the damping of ion-sound is larger than typical time of nonlinear 
interaction, the kinetic wave equation takes a simple form (see e.g. [7, S]) 

a&/at = nk fk •k (+’ /&nk,dk’). (2) 

Here nk is a plasmon number density in k-space, jlk comprises wave damping and excitation. Due to 
the conservation of the plasmon number in the process (1) the matrix element Tkp is antisymmetric 
Tkk, = - TkTk. Just the first studies of the weak Langmuir turbulence of isothermal plasma equation 
within Eq. (2) demonstrated quite specific features [9-l 11. The turbulence happened to be strongly 
anisotropic had pronounced peaks in k-space, the onset of steady-state spectra was slow and took 
place only due to the small noise level. It was recognized [12,13] that it is related with the general 
features of Eq. (2). It was shown that in the general situation the stationary distribution nk is 
singular, localized on surfaces, lines or, even, at some points in k-space. A small noise regularizes 
solutions of (2) and defines the width of distributions. Equation (2) has a hidden Hamiltonian 
structure which results in a nontrivial temporal evolution of turbulence. General features of this 
kinetic equation are discussed in Section 1. A conception of jet-like spectra possessed the essential 
advance in the analytical studies of the large number of particular problems. The turbulent spectra 
excited by electron beams and by powerful electromagnetic waves in an isotropic plasma are 
described in the following sections. Then the theory of the turbulence of magnetized plasma is 
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developed. In this case even crude estimates of the nonlinear processes are sensitive to the details of 
plasmon distribution in k-space and only an exact theory can provide reliable data. 

Later in the review a relation between the turbulence pattern and Kolmogorov spectra is studied. 
Briefly, the answer is: an average value of the exact solutions within the inertial interval coincide 
with the Kolmogorov ones, again demonstrating the fundamental position of the Kolmogorov- 
Richardson ideas. 

Recently intensive and detailed experimental studies of Langmuir turbulence excited by powerful 
radars were done (see e.g. [14,15]). These studies demonstrated that frequently weak turbulence 
breaks even for moderate pump intensities. As a result a discussion of the applicability of weak 
turbulence becomes important and we deal with this subject in one of the last sections. It is shown 
that the singularity of Langmuir spectra causes a modulational instability. It results in the local 
growth of the electric field and then in the Langmuir collapse or strong Landau damping switches 
on, increasing an efficiency of the plasma waves absorption. We show that this strong, spatially 
inhomogeneous turbulence inherits a lot of the homogeneous weak turbulence features and can be 
considered as a modified weak turbulence. 

PART I. LANGMUIR TURBULENCE OF ISOTHERMAL PLASMA 

1. Kinetic equation for Langmuir waves 

The dispersion law for plasma Langmuir oscillations with wave vector z and frequency o; has 
a form 

oz = fX,,(l + $k2&) (1.1) 

for wavelengths larger than the Debye radius k2ri < 1. It means that all Langmuir waves have 
close frequencies although their wavelengths can differ by several orders. This narrowness of the 
frequency spectrum can be used as a small parameter significantly simplifying description of 
nonlinear interactions. Namely, we can USC an averaging method which is based on the fact that the 
harmonic oscillations with frequency near o, arc the quickest type of motion (see [16,17]). The 
plasma motions can be divided into two types: high-frequency electron oscillations and low- 
frequency ones involving ions. The interaction of high-frequency oscillations will be neglected, 
which allows us to describe them using the linearized hydrodynamical equations for an electron gas 

(a/L?t)6n, + V.(no + &z)u, = 0 ) (1.2) 

(a/at)v, + 3& ~(h,j~~) = - +yrnp . (1.3) 

These equations can be supplemented by Maxwell’s equations from which the magnetic field 

(a'/atQz+ c2vx VXE- 47ce(n, + h)(a/at)u, = 0 (1.4) 

is eliminated. In (1.2)-(1.4) the electron density is imagined in the form 

n=no+6n,+6n, 6n,,6n*no. (1.5) 
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Here 6n and 6n, are the density variations connected with low-frequency and high-frequency 
motions, respectively. In (1.2)-(1.4) the terms of the order (bn,/&zju/u, are eliminated. From the 
continuity equation it is seen that as to order of magnitude this is the ratio of the phase velocities of 

the low- and high-frequency motions c,k/o, - krDm 4 1. Before making further consider- 
ations, it should be noted that in the nonlinear terms and the terms describing the thermal 
dispersion, the linear relations can be used for connecting &z,, u,. Taking this into account, it is not 
difficult to reduce (1.2).-(1.4) to the equation 

(l/cZ)((a2/atZ) + f$)E + Vx VXE - (3&/c2)VV*E + (cI@z/c%z,)E = 0. (1.6) 

In the linear approximation, when 6n = 0, it describes Langmuir and electromagnetic waves with 
the dispersion laws 

0:. = m2 + 3k2v2 . P T, Y a2 = co2 + k2c2 . t P (1.7) 

Now let us consider oscillations with a frequency close to the plasma one (for the Langmuir 
oscillations this means kr, 6 1, and for electromagnetic ones kc < up) and imagine the electric field 
in the form 

E = Eexp( -iot) + c.c. . (1.8) 

Here E is a slowly varying quantity ak?/?t < cup,!?. Substituting (1.8) into (1.6) and neglecting the 
second derivative, finally the following expression is obtained: 

-2io,aQat + c2 VX VxE - 3~;~ VV.E + (s,2/no)6niZ = 0. (1.9) 

Eq. (1.9) is convenient for describing oscillations with a frequency close to the plasma frequency. 
Taking into account the intrinsic electron nonlinearities in (1.2), (1.3) could lead to the excitation of 
oscillations at double plasma and zero frequencies which could lead, in turn, to the appearance of 
terms of the type r-f, V2(EE/nT) in (1.9). They arc negligibly small if the characteristic time of the 
nonlinear processes following from (1.9) satisfies a rather soft condition. 

l/r % opE”2jmnv$, - op(E2/8mT)(krD)2 , (1.10) 

here vph is a characteristic phase velocity. Besides, it should be noted that in (1.9) the quantity 
(GT,Z/C)~ is a small parameter allowing the separation of potential and nonpotential oscillations. 
Assuming that E = V$ and taking the divergence of both parts of (1.9) we obtain 

V2 i”+3~V2 

( ct 20, > 

(I/=w”V~V~ 

2 ‘n, 
(1.11) 

Eq. (1.11) conserves the integral I = s 1 Vt,b I2 d- icoinciding apart from a multiplying factor, with the 

number of Langmuir plasmons. Eq. (1.9) conserves the analogous integral i lE\‘d? having the 
meaning of the total number of Langmuir and electromagnetic plasmons. To close (1.11) it is 
necessary to find another connection between 6n and B. For this purpose it should be noted that 
the phase velocities of the electrons taking part in low-frequency motions are considerably less than 
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the thermal velocities, and they can be described in hydrodynamical terms and considered 
stationary: 

(u, V)u, = f vcpe, - ; m + 2 ; . 
0 

(1.12) 

Here the bar means averaging over time, and cpCl is the electrostatic potential of the low-frequency 
motions. Using the identity (uV)u = f Vu2 - [u x Vx u] and the Maxwell equation (l/c)(ZH/?t) = 
- V x E we obtain 

(UC V)u, + f [UC x H] = ; iq = -& VIE:I” = f V$ . 
P 

(1.13) 

Thus, it is evident that high-frequency oscillations lead to the appearance of force having 
a potential Q, (Miller’s force), and pushing out the electrons from the region of the electric field 
localization. It should be noted that this force acts on electrons only (the corresponding force acting 
on ions is m/M times smaller. As regards (1.12), it describes the Boltzmann distribution of electrons, 

Wn0 = U/LNwe~ - 4)) (1.14) 

for which a thcrmodynamical equilibrium has time to be established due to slowness of the 
low-frequency motions. The ion distribution function obeys Vlasov’s equation in the potential (pCl: 

(1.15) 

The quasi-neutrality condition 

6ni = 
s 

J dr - no = 6n = (no/T,) (ecp,r - 4) (1.16) 

allows (pel to be determined and thus the system of equations (1.9), (1.15) to be closed. Eq. (1.15) 
takes into account a nonlinear interaction of low-frequency waves which in the majority of cases 
can be neglected. After linearization of (1.15) the variation of the density 6n can be expressed 
linearly by the high-frequency force potential 4(1; t). This connection can be expressed in terms of 
the dielectric tensor; however, it is more convenient to introduce a plasma Green function Gk,n, 
defining it by the relations between Fourier transforms 

&~a = (nolT,)G&krr = tnolT,)&>((s,/s) - 1) . (1.17) 

Here E is the longitudinal part of a dielectric tensor, and E, is the electron contribution to it. For 
Gk,(> from (1.14), (1.15) it follows that 

7-C 
Ga = - 

Lkrr s kafoi/a u 

Mno 1 - (T,/Mflo)Lkn ’ LkQ = 
kv - C2 d” ’ 

(1.18) 

The Green function possesses obvious properties analogous to those of C: 

Gkn = G;mQ = G-k*. (1.19) 
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What is more, since it is expressed through c, Gkn it is also analytical in the upper half-space of the 
variable Q. In some cases the system of equations (1.9)- (1.17) can bc considerably simplified. If the 
characteristic times of all the processes are rather great r-l + k~.,.~, the ion distribution in the 
low-frequency electric field can be considered as a Boltzmann distribution: 

&z/n, = - eq,,/Ti 4 1 . (1.20) 

With the help of a quasi-neutrality condition from (1.13) it follows 

&z/no = - 4/(T, + Ti) = IE12/16nno(T, + Ti) . (1.21) 

In the potential case Eq. (I .1 l), within the framework of the above-mentioned “static” approxima- 
tion, is of the form 

V”(i$, + +c+,& V”$) + (q,/327cn,,(T, + Ti)) V. 1 V/I’ V/ = 0 . (1.22) 

From this equation the following estimate follows: 

l/r - q,(W/nT) w o,k2$, , W - E2/87c. 

From the applicability conditions for (1.22) follow: 

(1.23) 

W/nT < ml-i/MT, (krD)2 -+ (mTi/MT,) . (1.24) 

In the opposite limiting case T- ’ % kt+, for low-frequency motions the following hydrodynamical 
description is valid: 

((a2/ar2) - C: p)dn = (1/16~M) V2[E12 , C: = (T, + qTi)/M . (1.25) 

In the nonisothermal plasma T, $ Ti (see later) (1.25) is applicable at all amplitudes of the field; in 
the long-wave limit k2rh < (m/M) Ti/T, for small intensity of oscillations W/nT -C (m/M) Ti/T, the 
static equation (1.22) follows from (1.25). In an isothermal plasma ri - T, Eq. (1.25) is valid for 
describing turbulence with a high level W/nT > (m/M, k2rA),,,, when the plasma motion becomes 
supersonic under the pressure of a high-frequency field. In this case the term cz V26n in (1.25) can be 
neglected. The simple asymptotics Gke correspond to the simplified equations (1.22), (1.25). First of 
all, it should be noted that Gko is a function of the parameter 5 = SZ/kv=,. In the limit I: 4 1 or 
D < kvrt we have 

GN = -Te/(Tc + Ti) * (1.26) 

In the hydrodynamical limit { 9 1 or Q % k+,GkR has a pole corresponding to ion-sound waves. 
Expanding (1.18), we obtain 

Gkrr = k2c,2/(Q2 A k2c: + 2iy,Q) . (1.27) 

When compared with (1.25) the Green function accounts for the sonic wave damping 

~a=k~s$i&% (1.28) 

In (1.27) only Landau damping on electrons is directly taken into account; however, within the 
framework of the above-mentioned scheme it is not difficult to account for the ion Landau 
damping. The system (1.22), (1.25) was widely used in studies of strong Langmuir turbulence during 
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the last years (see e.g. [ 17-211). Recently some attempts had been made in order to modify this 
system by taking into account a finite ion temperature. Also a straightforward including of Landau 
damping was done in some early papers devoted to numerical plasma experiments (see Refs. 
[17 -211). A modification of Eq. (1.25) using a more accurate approximation of Green function 
(based on the ideas suggested in [22]) was considered in [20, 231. It follows, however, from the 
results of these papers that this simulation of an isothermal plasma with including a large damping 
is not adequate, it is impossible to improve somehow such an approach by the modification (1.25). 
Therefore, only an exact structure of the green function must be considered. We will show later that 
Langmuir spectra are quite sensitive to the structure of Green function Gk,() and its proper 
approximation is necessary for reliable numerical simulations. Finally, in the last variant of the 
simplifications of the dynamical equations valid for a sufficiently strong damping of ion-sound 
oscillations we can consider low-frequency motions as forced. Relation (1.18) can be rewritten in 
the form 

x S(ki - k - k2)6(<ti1 - ~1)~ - Q)dkl dk2 do1 dm2 . (1.29) 

It is obvious that at a low level of nonlinearity we have &,, N &b(c~) - ctik), here ok is the law of 
wave dispersion reckoned from the plasma frequency. With this accuracy the inverse Fourier time 
transform can be made in (1.29): 

&k(t) = ((2x)- 3’2/16rrnT,) 
s 

Gk, -k 2,01-02 (&,E&)d(kl - k - k,)dk, dk2 . (1.30) 

Considering the oscillations to be potential, let us introduce the variable 

ak = i(srm+)- 1’2tik , Ek = -ik$k , (1.31) 

determined in such a manner that the value s c!&l&12dk coincides with the total energy of 
Langmuir oscillations. Substituting (1.30) into (1.1 l), we obtain finally 

(auk/a t) + (ok + iyk)uk = i s Tkklkzk,‘+k,‘&%k + kl - kz - kj)dk, dk,dk3 , (1.32) 

where 

x Wd(k,k,)G((w - dllkl - kl) + G((w - d/V, - k2l)(W(klk2) 
kh k&3 

(1.33) 

The plasma oscillations damping which can be considered to be collisional Yk ‘v V,i is included in 
(1.32). The matrix element T&k&, in (1.33) possesses the SymmCtry properties following from the 
symmetry relations for the Green function: 

Tkk,k,k, = Tk*,k,kk, 3 (1.34) 
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when 

(gk + ok, = wk, + ok, . 

It should be noted that in the above-considered static approximation 

(1.35) 

W2)(hb) + W3)vh~2) 
- 

kk, k2k3 I. (1.36) 

The real and imaginary parts of the Green function Gkn quickly decreases if Q $ kz+,. Therefore, 

when krD 9 m (1.33) shows that only oscillations with close wave vectors interact with one 

another. The condition (c& - ak,)/lkl - k31 - 1 gives lk, ( - (Ii31 - r; ’ @/MT, F kdife Here 
the quantity kdif is introduced which has the meaning of a characteristic size of the matrix element. 
For the validity of (1.32) it is necessary that the nonlinear corrections in the argument of the Green 
function would be negligibly small. In the region of the spectrum k2rA < m/M, when Langmuir 
oscillations cannot excite ion-sound, this condition is of the form 

l/7 - u,( W/nT) - (krD)2q, < kvTi . (1.37) 

That is, in this case (1.32) makes the static approximation equations more precise. When k2r& for 
the validity of (1.32) it is necessary that all the sonic oscillations would be forced, that is, all 
characteristic times T would exceed the ion-sound damping time ys7 > 1. Using the expression (1.27) 
for the Green function in a hydrodynamical approximation, from (1.32) we obtain for a character- 
istic time of a nonlinear process z- ’ - up (~/nT)(~~,/~,). Here l@ is the energy density within the 
interval of wave vectors of the order of the Green function size. If the noise density is uniformly 
distributed over the scale k, then I@ rr. W kdif/k, the applicability condition takes the form 

W’lnT)(kwlk) 6 kr~~mIlM)W~s)2 . (1.38) 

In particular, for an isothermal plasma, where y, - oS, condition (1.38) is in the form W/nT < k2r& 
We assume later that in the case to be considered the interaction of such a great number of 
monochromatic waves takes place that is necessary to describe these phenomena statistically. In 
this description the information on interacting wave phases is lost and the wave field is described 
using the language of mean quadratic amplitudes, pair correlation function of complex amplitudes 
&. Then for the correlation function (a,&$) we have 

(akak’) = n&-k’ . (1.39) 

To derive a closed equation for nk - kinetic equation - we assume that the wave field is a close 
Gaussian stochastic process and the fourth-order correlation function can be split into pair ones 
1125-271: 

(a~d,~k,~k,> = nknk,(ak-k,&-k, + dk-k,hk, -k,) . (1.40) 

This assumption is valid if the nonlinearity is small enough, and the relative rotation of the phases 
cannot be correlated by nonlinear interactions. A detailed consideration of an applicability of the 
weak turbulence approach is given in Section 9. A more rigorous derivation of weak turbulence 
equations can bc done also by the usage of a diagram technique (see [28]). 
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Multiplying (1.32) by a;, subtracting the complex conjugate expression and taking into account 
formula (1.39)-( 1.40), we obtain 

where T&T = - Tk,k = Im Tkk’,kk* . 
One can see that Eq. (1.41) have an isotropic solution r& = const. It is a Kolmogorov-type 

turbulence spectrum corresponding to a constant flux of the number of Langmuir plasmons 
towards small k region. 

We will show later that very often in (1.41) a small noise termfi has to be included 

(1.42) 

which represents the small thermal noise or small terms, omitted during the derivation of (1.41). As 
was told above, Eq. (1.32) is not valid when the damping of the ion-sound waves is not small 
enough. In this situation a corresponding equation must describe the evolution of ion-sound 
oscillations besides Langmuir waves. If simultaneously with the substitution (1.31) we change to the 
normal variables [24] 

uk = -ikd’(c,/?kn,)(bk - hi) (1.43,1.44) 

for the ion-sound and Langmuir oscillations, the system of equations (1.22), (1.25) is reduced to an 
equation for high-frequency waves 

(?&/at) $ iakuk = - i s [l/k,k,khk,uk,d(k - kl - k2) 

(1.45) 

and an equation for low-frequency waves 

here & = c,k is the frequency of ion-sound waves and Vkklkl is the corresponding matrix element 

1 
vkk1kz=w2J& J 

k (klkz) 
k,kz . 

Introducing the averaged variables analogously to (1.39): 

(u&) = N&k - k') , (bkbk*‘) = n&k - k') , (1.48) 

(1.47) 

(1.49) 

we obtain for the description of the decay processes 

ok = okI + i-&, , k = k, + k2 , 



188 S. L. Musher et al. /Physics Reports 2.52 (199.5) 177-274 

the following kinetic equations: 

(aNk/a 1) + “lkh = 
s 

(Rkzlkk, - Rk,.jktkb% dkz 7 

(ifn& 2) + rknk = - s Rklk,k, dkl dkz 1 

where 

(1.50) 

(1.51) 

Rkzlkk, = 2711 I/&kk, I2 [Nk,nk, - Nknk2 - Nk,Nkl&k - k, - k,)Wk - mk, - ak,) . (1.52) 

If rk is large enough, nk < Nk and Eqs. (1.50), (1.51) arc reduced to (1.41) with Tk,k,: 

(1.53) 

One can see that (1.53) can be obtained directly from (1.41) by using instead of (1.27) the following 
expression: 

(1.54) 

With the help of (1.52) one can also estimate the value off,. It will be done later. 
Up to now we are discussing only the waves in an isotropic plasma. It is easy to take into account 

a weak magnetic field when the electron cyclotron frequency (1)n is well below o,, (o,., 4 up). In this 
case it is sufficient to take into account in Eqs. (1.41) and (1.50), (1.51) the change of the dispersion 
law: 

c)k = o,(l + $k2rh + ~$(c$,/c$)sin2 0) , (1.55) 

where 6, is an angle between the wave vector k and the magnetic field B. 
In a strong magnetic field a modification of the matrix elements takes place. There are two types 

of a high-frequency potential oscillations in a magnetized plasma. The first wave is the 
upper-hybrid mode with the following dispersion law: 

ok = a,(1 + $(cflE/&sin’ 0) . (1.56) 

The main features of this mode are similar to the corresponding characteristics of Langmuir waves. 
For fusion applications low-hybrid waves are more important: 

ok = e+osol . (1.57) 

Usually, the magnetized plasma of the fusion devices is an isothermal one, and the main nonlinear 
process is the induced scattering by particles (see [29]). In this case the dynamics of turbulence is 
also described by Eq. (1.41), but with more complicated matrix clemcnts [29,30]. In a strong 
magnetic field ~J&!& $= CB~ it is possible to simplify these matrix elements up to the form 

T 
cl); (k,k:)2 

k.k’ = G (kk’)2 ---IrnG(~~I$~), (1.58) 
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where G is the same function, as in (1.18). Another specific case of a magnetized plasma will bc 
discussed below. Expression (1.58) looks very similar to the kernel of the corresponding equation 
for Langmuir waves; we will set, however, that a difference in the dispersion law changes drastically 
all patterns of the turbulence. 

2. The weak turbulence spectra are singular 

Let us consider the stationary spectra of Langmuir turbulence: 

It follows from this equation that 

Sk 

The following inequality takes place due to the condition nk > 0: 

y,,,(k) = Yk + 
s 

Tkk, nk’ dk’ > 0 . 

Passing in (2.1) to the limitfk + 0 we obtain 

~jk+[T#k,dk’)ilk=O. 

There arc a lot of solutions of (2.4). We can assume, for example, that 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2:5) 

where k, is an arbitrary set of points in k-space. The spectrum (2.5) is a solution of (2.4) if the 
quantities Nl are solutions of the finite system of equations 

yk, + 5 Tkl,/&, = 0. 
P=l 

(2.6) 

Of course: the positiveness of the solutions is not guaranteed. In the general case the solution of 
(2.4) is concentrated on some set 52 which will be called later a “compact support” or simply 
“support”. From the formal point of view, the support can be given arbitrarily. It is sufficient only 
that there should exist at least one solution of Fredholm’s integral equation of the first kind on this 
set Q: 

^lk + s TM!nk.dk’ = 0 . (2.7) 
R 
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But we have to keep in mind the criteria (2.3). Peforming the passage to the limit j;k + 0, we can 
check that the following inequality takes place 

;f,rr(k) 2 0 . (2.8) 

It means that the set Q is part of the tangent points of the non-negative function Y&) and the null 
plane. We will illustrate it by an cxamplc. Let us assume k-space to be one dimensional and 

Tkk, = k - k’ , 

from which we get 

Yk = k(k - 1) , (2.9) 

y&k) = k(k - 1) + kN - N1 , 

Prc o(: 
N= 

? 
nkdk, N1 = 

s 
knk dk . 

--r: -CC 

The function yerf is a parabola which can contact the axis of abscissa at the only one point k = k,,, 
so yeff = (k - k,,)*. There are 2k, = 1 - N, kg = N; besides nk = Nb(k - k,), therefore N, = koN. 
Solving the system of equations obtained, WC are convinced now, that k. = 0 and obtain 

nk = b(k) . (2.10) 

The information about the structure of the set of the tangent points 52 can be detcrmincd in some 
cases from general considerations. For cxamplc, if Yeff is an analytical function then the set 
52 cannot include the whole parts of the three-dimensional k-space. In this case Q must consist of 
lower-dimensional manifolds, i.e. surfaces, lines and separate points. The equality yeff = 0 can be 
fulfilled only in exceptional cases. It happens if there is a positive solution of Fredholm’s equation 
of the first kind 

yk + 
s 

Tkk’nk’ dk’ = 0 (2.11) 

over the whole range of k’. It has to be noted that the set 52 can be efficiently reconstructed at the 
small variation of -jk and Tkk!. The separate lines and the surfaces in Q must be split into separate 
points at the action of the disturbances of the general type. All the more, it happens in the 
maximally degenerate case of the coincidence fJ with the whole k-space. The unique situation of the 
structural stability corresponds to the case when the set s2 consists of a discrete set of points: any 
small variation of equation leads only to small shifts of the points. 

Nevertheless, in the concrete cases considered below we will study “jet-like” spectra concentrated 
on lines and surfaces in k-space. These considerations are the sequences of the definite approxima- 
tion - in a more precise examination the “lines” and the “surfaces” arc decomposed into an 
aggregate of separate points. This decomposition develops a “line structure” of the “jet-like” 
spectra. As a whole, those spectra will bc called “singular”, for which the “support” consists of the 
manifolds with a lower dimensionality than the dimension of k-space. Integrating (2.1) over the 
whole k-space, we obtain due to the antisymmetry of Tkk.: 

(2.12) 
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So we have in the tcndingfi to zero 

“lknkdk = 0. (2.13) 

It is the equation of the balance of the quasi-particle numbers. It follows, in particular, from 
this equation that nk = 0 in the case Yk 2 O-the damping regions are necessary for the solution 
of (2.1) to exist. 

Let us repeat the arguments above in a different manner. It follows from the condition yeff 2 0 
that the surface Yk is situated above the surface-s Tkk.nk, dk’ and that they touch one another at the 
points on which the solution nk is localized. It means that at the points where nk = 0 damping is 
larger than the “driving term”. It follows that the stability of the solutions is guaranteed by this 
circumstance. The functions yk and s Tkk, nk’ dk’ have a different origin and topology. It is naturally 
that they can touch one another only along some lines or at separate points in k-space. 

Let us examine now the influence of the small noise,fk on the solutions of (2.2). It depends on the 
dimension of the manifold 52, more precisely, from the co-dimension (a co-dimension is the 
difference between the dimensions of the whole k-space and the “support”). Up to now we assumed 
that the dimension of the phase space was equal d = 3, however, it makes sense to consider the 
cascsd= l,d=2. 

Let the co-dimension be equal to one d, = 1. Three cases are possible: 

_ the spectrum is located on a two-dimensional surface in the three-dimensional k-space; 
_ the spectrum is located on a line in the two-dimensional k-space; 
_ the spectrum is concentrated on some point in the one-dimensional k-space (as in the example 

considered above). 

Let us assume k to be a perpendicular coordinate with respect to the support. At fk = 0 we have 

?eff = rk’, cx > 0. At the small but finitc,f, =fthc function ycff becomes a positive parabola 

ljeff = r(k - dk)2 + /? , /? > 0 (2.14) 

and for the spectrum we obtain 

nk =j;l(x(k - Sk)2 + [I) . (2.15) 

The total intensity of the spectrum must be constant as theJ, tend to zero, so we have 

s 

3(: 
(f/(r(k - Sk)2 + /?)dk = N (2.16) 

- CC 

and we get that [j = 4f2/Ng2. Thus the distribution of waves is described by a Lorentz formula 
with the width d equal to 

A=2flafi. (2.17) 

The small value of the shift of the distribution Sk -Jremains uncertain, we will not take it into 
account later. 

Let the co-dimension do to be equal to two. It takes place in two cases: either the spectrum is 
located on a line in the three-dimensional k-space or the spectrum is located at a point in the 
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two-dimensional space. There are two orthogonal directions with respect to the support kr , k2 and 
we have 

?’ - a,kf + zt2k; + /I , Jeff - nk =f‘/(~!~ k: + x2k; + p) , 

while 

+ u,k; + fl)dkldkz = N . (2.18) 

The integral in (2.18) diverges, however, and must be “cut” at the some wave number ko. WC obtain 
with logarithmic accuracy 

(2.19,2.20) 

The distribution (2.18) is better located than (2.16) in spite of the logarithmically diverging “tail”, 
because the characteristic width A of the distribution can be assumed as before 

A=J&. (2.21) 

This quantity is decreasing more quickly asf-t 0 than defined by formula (2.17). 
At last, the co-dimension do = 3 can be realized only for the spectrum nk concentrated at a point 

in three-dimensional k-space. Then we have at f+ 0, 

(2.22) 

and there is an integrable singularity at k = 0 

nk =fkhcff . (2.23) 

If all the S(i are of the same order then the integration of (2.23) over the whole k-space provides the 
contribution 6N -fk,/ct (tending to zero as{+ 0) to the integral intensity. It is the only thing to be 
done: to conserve the &shaped singularity at the point k = 0. Thus the “smoothing” of the singular 
spectrum does not occur by including the small thermal noise at the do = 3 case. This smoothing 
takes place as soon as a finite, completely defined value1;, is given. The phenomenon is completely 
analogous to the phase transition of the second kind at the transition of liquid helium from the 
super-fluid state into the normal one. The singular part of the spectrum corresponds to the 
super-fluid component and the “smoothed” part - to the normal one. WC will show now that 
sometimes it is enough to have a very small level of thermal noisef;, for the regularization of the 
singular spectra and the transforming into smooth distributions. Let us consider the simplified 
one-dimensional example 

cc 
T(k - k’)n,,dk’ =fk 

> 
(2.24) 

also T (co) = 0 and T(q) > 0 at q > 0. Let us examine 

(2.25) 

with T(q) = - T(-q). We assume 
Fredholm’s equation of the first kind 

s 

CC 
Yk + T(k - k’)n,,dk’ = 0 

- n: 
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and try to obtain the criteria for the smooth regular solution of (2.25) to exist. We denote by Sr the 
width of the increment yn and by ~3~ the characteristic scale of the kernel T(q). It is evident that if 
d2 2 6, we have no smooth solutions of (2.25). In this case the spectrum consists of the spectral 
peaks separated by the interval * k2. We have a right to assume the regular distribution at 
~3~ < 6r. The formal solution of (2.25) takes the form 

ni = (1/2x) p/,JT,)exp(-iki,)di, , 
s 

(2.26) 

where 7). and TA are the Fourier transforms of the functions Yk and T(q), respectively. This solution 
is meaningless for 6, -C S2 because the function yJT, increases at large 3.. In the opposite case 
6, 9 & the function YA/tj. decreases at large 3. if Yk is a sufficiently smooth function. Generally 
speaking, the smoothness of yk is unclear a priori. For the case of insufficient smoothness of the yk 
the stationary spectrum is the aggregate of very close spectral peaks. It is evident that only small 
variations of yk arc enough to achieve the complete regularization of the solution. It can bc done by 
including the term fk/n,+ in Eq. (2.25). Thus, the ratio of c?~,c?~ defines the type of the stationary 
spectra by taking into account the thermal noise. We will speak of the singular regime at 6, I & 
and at 6r $ ~3~ - of the regular one. The limiting case of the complete regularization corresponds to 
~3~ + 0, then it can assume T(q) + T,,6’( q). Eq. (2.25) takes the form 

yk + T,(a/ak)tZ, = 0 (2.27) 

and its solution is 

J 
k 

nk = -(l/To) x&i 7 
(2.28) 

ko 

the integration is performed from the point k0 (yko = 0); this expression is valid until the obtained 
sohrtion nk is positive. This solution must be merged later with the trivial solution nk = 0. It is 
necessary to emphasize that formula (2.26) gives a true picture only if the Fourier transform Tl. has 
no zeroes different from A = 0. In fact, let us assume the pair of such zeroes to be given at the points 
3. = + A,, (TkA,, = 0); then it is possible to add to any solution of (2.25) the oscillating term 
A cos(i,k + 4) with arbitrary A and 4, Furthermore, for Eq. (2.25) to be solvable the orthogonality 
7,‘ to the functions sin A0 k, cos ,I,, k is demanded. Generally speaking, this criterion is not fulfilled. 
The situation can be redeemed by taking into account the term &/irk. Then the orthogonality 
criteria become the system of equations which determine A and 4: 

Yk 
Sk 

- nk” + A cos(i,k + 4) 
cosi,kdk = 0, 

yk 

Fk 
- r$’ + A cos(&k + 4) 

sin&kdk = 0. 

Thus, in the presence of additional zeroes of the function T,. the regular spectrum n: has an 
oscillatory structure with period 2x/j_ 0. We will see later that such oscillations arc seen at the 
numerical modelling of the induced scattering kinetics. 
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3. Jets in k-space 

The considerations, presented above, arc very general. We now start to apply these ideas to 
a detailed study of Langmuir turbulence spectra. The main equation is (see (1.42)): 

(ank/at) + 2nk lk - (’ jb&lk,dk’) -fk = 0, (3.1) 

where Tkk, = - Tk,k = Im Tkk’,kk’. The characteristic size of the kernel Tkk, in (3.1) kdir ‘v (l/r,) 

xJ-7 m M IS the maximum momentum to be transfered in a single scattering act. This value plays 
a basic role in the theory of Langmuir turbulence. The characteristic size of the region of excitation 
Ak (the size of yk) depends on the method of pumping. In the case Ak 9 k,i, one can expect 
(according to the results of the previous sections) an excitation of the smooth over k spectra with 
a typical scales much larger than the characteristic size of the matrix element Tkk’. In this case it is 
possible to substitute nk’ in (3.1) as 

nk’ 2: nk + (ank/ak)(lk'I - lkl) . (3.2) 

Really it is more convenient to write 

(3.3) 

where the prime on the d-function denotes differentiation with respect to the argument; the 
constant N is equal to 

s .T. 

z= - xImG(x)dx. 
-ZZ 

(3.4) 

As was mentioned above, the function G(x) is analytical in the upper semiplane and this integral 
can be calculated exactly with the help of dispersion relations: SI = rc. This approximation of the 
matrix element Tu, is the so-called “differential approximation”. Finally we obtain [31-333: 

Tkk, = - - T ‘9” ; ,’ -f$cosR’(l - cosQ)6'(lkl - lk'l) ; 
D 0 e 

(3.5) 

here Q is the angle between the vectors k and k’, the prime on the &function denotes differentiation 
with respect to the argument. It has to be noted that (3.5) does not depend on the ratio of electron 
and ion tempcraturcs. The approximation (3.5) means that the spectra are smooth functions of the 
moduli of the wave vectors and all singularity is concentrated in the angular behavior. For each 
fixed modulus Ikl the spectra are located on the set of tangent points of a unit sphere and the 
function y&k,n) is defined on this sphere (here n = k/k). This set consists of separate points which 
can be fused into lines in some exceptional cases. According to this statement the spectra in k-space 
will be concentrated on lines or surfaces in k-space. These lines (or surfaces) will be called 
two-dimensional or one-dimensional ‘Ijets”, respectively. We restrict ourselves henceforth to the 



S. L. Musher et al. /Physics Reports 252 (I YY5) I 77 2 74 195 

axially symmetrical situation. We denote by 0 and 0’ the angles between the chosen direction and 
k and k’, and obtain ultimately 

5Nk,J2t = Nk,. 
( 

y&,x) +(8/3/k) 
s 

1 

T(x,y)N(ky)dy . 
> -1 

We have introduced here the notation x = cos 0, y = cos O’, N(k, x) = k%(k, x) and 

(3.6) 

7c2 m 1 
mY)=~&q’ - 0: T (1 - x2y2 + 3x2y2 - 3xy + 3xy3 + 3x3y - 5x3y3) . 

D 0 e 
(3.7) 

We note that the kernel T(X, y) if of a definite sign 

T(X,Y) 2 0 (3.8) 

and is symmetrical 

T(X,Y) = T(Y,X) 7 7--X, -Y) = T(X,Y) . (3.9) 

In addition 

T(l,l)=T(-1, -l)=O. (3.10) 

When the excitation of waves is strictly isotropic, the spectrum n(k,x) does not depend on x and 
Eq. (3.6) is simplified to the form 

((:lQ$!!l) + n&k - To(C?n/Jak)) = 0. (3.11) 

here 

x2 m 1 op2 
TO=TMFn 

D 0 e 

and the spectra are regular. In the opposite casts (~(k, x) is anisotropic) the spectra arc singular. Let 
us define 

s 

1 

?,,I = - (c?/i3k) r(X,y)N(ky)dy 

In accordance with all’the foregoing we 
oscillations in the form 

N(k, X) = C Ni(k)G(X - Xi(k)) a 

(3.12) 

must seek the spectral density N(k,x) of Langmuir 

(3.13) 

Here Xi(k) is the shape of the jet and N,(k) is the intensity distribution along the jet. In the axially 
symmetrical situation the jets are two-dimensional; the only possible type of one-dimensional jet is 
x = f 1, when the surfaces ok and ynl are tangent at their poles. Let us assume that we know the 
number of jets P and their shapes xi(k), i = 1, . . . ,Y. Then, substituting (3.13) into the stationary 
equation ynl = 0, we obtain a system of ordinary differential equations for the determination of the 
intensities: 

y(k,X(k)) + 2 T(Xi(k),Xj(k))(i!Nj/Zk) - 1 (a/~Xj)T(Xi(k),Xj(k))(aXj(k)/ak)Nj(k) = 0. (3.14) 
j _i 
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The number of jets and the fact of existence or absence of one-dimensional jets on the poles should 
be determined from geometric considerations. To determine the shape of the ith two-dimensional 
jet it is necessary to use the obvious relation 

(alax)CY(k,x) - +?“lllx=ri(k) = 0. (3.15) 

Substituting N(k,x) in (3.15), we obtain an additional set of equations which makes the system 
(3.14) closed. The jet transports the llux of Langmuir quanta over the spectrum into the region of 
small wave numbers. Let us determine the value of this flux Pk. To this end, we integrate (3.6) over 
angles and introduce the symbol 

s 

1 

Iij= N(k,x)dx. (3.16) 
-1 

We have 

Pk = : s 1 s 1 1 
N(k,x)N(k,y)dxdy > 0, t?N/ill = s y(k,x)N(k,x)dx + aP,/?k . 

-1 -1 -1 

(3.17) 

Substituting (3.13) into (3.17) we express Pk in terms of the intensities of the jets: 

pk = i C T(xi(k),xj(k))Ni(k)Nj(k) . 
i.j 

(3.18) 

It is seen from (3.18) that the spectrum cannot consist of merely one one-dimensional jet, since 
a single one-dimensional jet Nj(k,x) = NS(x + I) would lead to a zero flux, by virtue of the 
conditions T(1: 1) = T(- 1, - 1) = 0. We consider now several examples of the determination of 
the shape of the jets. 

1. Assume that the condition y(k, x) G 0 is satisfied in a region of k-space, k, < I/cl < k,. What is 
realized in this region is the Kolmogorov situation, which corresponds to a constancy of the flux of 
Langmuir quanta. The Kolmogorov solution of (3.6) is obviously of the form 

N(k,x) =f’(x), (3.19) 

whcrefis an arbitrary function of x. WC see therefore that the trajectories of the jets on the (k,x) 
plane should be straight lines parallel to the k axis. The position of these lines is determined by the 
condition that they be joined together at lkl = k2. 

2. Let y(k,x) have a sharply pronounced maximum at x = + 1. In this case there are two 
one-dimensional jets 

N(k,x) = N1 6(x - 1) + NZ8(x + 1) , (3.20) 

with 

aN,/ak = - y(k, - l)/T(-1,l) , 3NZ/6k = -;,(k, l)/T(l, -1) . (3.21) 

The condition of “external stability” (3.15) yields the necessary and sufficient criterion for the 
existence of two one-dimensional jets: 

y(k,x) < f{ (x2 + x3),i(k, 1) + (x2 - x3),;(k, - 1)) . (3.22) 
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This criterion takes on a particularly simple form in the symmetrical situation, when y(k,x) = 
~(k, -x). We then have 

“J&x) < x2y(k, 1) , 1x1 < 1 . (3.23) 

It follows from the results of Section 2 that jets can possess an oscillating structure (to be 
“spotted”). Let us consider this phenomena for our case of two one-dimensional jets. Eq. (3.6) is 
reduced to the form 

(3.24) 

The kernel T(k - k’) = T(K) quickly decreases for K 9 kdir, so we can change the lower limit of 
integration in (3.24) to - rc). The problem of the oscillating structure of nk is defined now by the 
existence of additional zeroes of the Fourier transform Q(t) of the kernel (except for c = 0). For 
7-i 4 T, we can take the “hydrodynamical” approximation of the Green function and obtain 

Q(C) = To exp(-(l/,/o,)rkdir)sin(rkdir) , (3.25) 

which corresponds to an infinite number of zeroes. For 7-i - T, the existence of zeroes is defned by 
the fine structure of the ion distribution function. For most experimental parameters the plasma is 
usually a nonisothermal one. It means that the jets will be always “spotted”. We will show later that 
the jet-like spectra are modulated, the characteristic size of these “spots” is close to kdir. 

3. Let y(k, x) be a symmetrical function of x and let it have a sharply pronounced maximum at 
x = 0. We consider the possible existence of one two-dimensional jet at the point x = 0. Putting 
N(k,x) = N(k)d(x), we obtain 

#,O) = - T(O,O)aN(k)/a k . (3.26) 

Condition (3.15) yields 

y(k,x) < y(k,O)(l - x2). (3.27) 

The situation with one two-dimensional jet is also characteristic of the case when y(k, x) has a sharp 
maximum at sufficiently small x. 

In the general case, the problem of determining the number of jets and their shapes is quite 
complicated; nor is the question of uniqueness of such a distribution trivial. Some examples of the 
jet-like Langmuir spectra are presented in the review [34]. 

3. I. Influence of a weak magnetic field 

Imposition of the weak magnetic field causes a modification of the dispersion law of the 
electrostatic plasma oscillations [35]: 

(3.28) 

One can see that it leads to an effective enlargement of the inertial interval; it is caused by a 
decrease of the wave numbers when increasing the angle between the wave vector and the magnetic 
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field. Let us remind that in a plasma without external magnetic field the inertial interval is 
equal to 

N - UplCkdrr - (ur,lc) mm (3.29) 

“steps” of the spectral cascading. Even for thermonuclear parameters N - 5--6. It means that 
already at the moderate excesses above the instability threshold ymax/Vei - N Langmuir spectra 
(smooth or singular) reach the collapse region k N 0. The presence of the magnetic field makes the 
conditions for the collisional absorption of the wave energy more favorable tending to a heating of 
the bulk of the particles. The nonlinear effects in the cask CO” < oP are the same as in a plasma 
without a magnetic field. The ions can be regarded as unmagnctized under the weak condition 

8nnT/H2 9 m/M . 

Therefore, it is necessary to take into account only the differences in the frequencies for the Green 
function Gkn. It does not change the anisotropic character of the induced scattering by ions, and 
Langmuir spectra must be jet-like. This conclusion was first obtained in [36] (for more details see 
Section 6), and later such spectra were investigated, c.g. at the parametric excitation [37,38] (set 
also Section 7) and at the interaction of a relativistic electron beam with a plasma [393. 

4. Peak-kinetics model 

Assume that the characteristic size of the excitation region Ak < kdif and that the maximum of j$ 
lie in k-space near k,, lk,,l 9 kdir. An analysis of the matrix element shows that the waves 
interacting most strongly with the initial ones are those located along the vector kO near the points 
k. + kdife In this case the waves in the vicinity of the point -kc, + kdif will grow, and those in the 
vicinity of the point _t k. + kdif will attenuate. If the initial noise level is small, then a peak with 
width Ak 4 kdir is produced near the point - k. + kdif. Repeating this reasoning, we arrive at the 
conclusion that the spectrum in k-space will comprise after a certain time a linear sequence of peaks 
located near the points +(ko - nk,i,) [40-431. Assuming that the intensities of all peaks differ 
from the noise level, we represent the distribution nk in the form 

Ilk = t N,,J(k,, - nk,i,) + 2 M,b( -ko + nk,if) . (4.1) 
n=0 ?I=0 

The kinetic equation now takes the form 

ZN,/?t = N,[;+, + T(M,-, -M,+,)], (4.2) 

aM,/zt = W,ho + T(%I - N,+,)l , (4.3) 

where T is the largest absolute value of Tkp. In the symmetrical case we have M, = N, and (4.2), 
(4.3) reduce to the single equation 

aN”/at = N,Crn + T(N,-, - N,+,)] . (4.4) 
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Eqs. (4.2) (4.4) describe the kinetics of the peaks; the actual peak width does not enter in these 
equations. Nonetheless, these peaks must not bc too narrow (~?kr,,)~ $ W/n7’,, for otherwise the 
quasi-monochromatic peaks will experience an automodulation instability (see corresponding 
section of this review). In the stationary situation the number of the peaks and their intensities arc 
possible to calculate under the assumption that 

s 

= Yk + T(k - k’)n;dk’ = 0 (4.5) 
0 

at nk # 0, or in the “peak’‘-approximation 

yn + 1 T(k, - k,)N, = 0 
m 

and the criteria of the “external stability” has to be fulfilled 

s 

00 

Yk + T(k - k’)n; dk’ < 0 
0 

(4.6) 

(4.7) 

at nk = 0. The latter equation can be re-written in the form 

^r’(k,) + c T’(k, - k,)N, = 0, 
m 

here the prime denotes differentiation with respect to the argument. Eqs. (4.6), (4.8) can be 
simplified if we assume that only the nearest-peaks interact effectively due to the quick decreasing 
of the function T(K). Then we obtain 

l/G,) + T(k, - k,-I)%, - T(k,+r - k,W,+, = 0, 

y’(k,) + T’(k, - k,_ ,) - T’(O)N, - T’(k,+ 1 - k,)N,-, = 0 . 

There is a solution of this system of equations in the dissipationless case: 

k,=nAk, N, = const , 2T’(Ak) = T’(0). (4.9) 

It is a chain of equidistant peaks with the same amplitudes; the distance between the neighbours is 
equal to the value kdif with good accuracy. It is possible also to obtain the amplitudes of peaks in 
the case of nonzero damping, e.g. collisional one v,i. It takes the form of a chain of linearly 
decreasing peaks. The amplitude of the last one is equal to NC = V,i/Ty where T = T(k, - 

k”-1) = - T(krz+l - k,) = T(kdif). 

5. Kinetics of the induced scattering of Langmuir waves by ions 

Kinetics of the induced scattering of Langmuir waves is qualitatively different from the well- 
known kinetics of quasi-particles in the solid state. As will be shown in this section, the behavior of 
weak Langmuir turbulence is defined mainly by the two remarkable features: by the existence of 
a Hamiltonian structure of the kinetic equation and by a “theorem of uniqueness”. The structure of 
the equation and the behavior of its solutions are similar to the corresponding features of the 
equations by LotkaaVolterra [44], initially used for the description of the dynamics of fish 
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populations and auto-catalytic reactions. The kinetic equation in the “peak” approximation is 
analogous to the Lotka-Volterra equation and this was noted more than once (see e.g. [45]). So it 
is possible to use a general Volterra invariant in order to provide a condition of the “stability as 
a whole” [46]. 

Let us assume the stationary solution rzf to exist and examine the functional 

(5.1) 

One can see that the quantity I is positive. Let us calculate the time-derivative I; after simple 
transformations we obtain 

dl 

z= - s 

fk @k(t) - $8’ dk 

nk(tbk . 
(5.2) 

The derivative is less than zero for any distribution of Langmuir waves and is equal to zero only if 
nk(r) = n;;‘. Thus, in the nonstationary regime, the quantity I must decrease with time. It means that 
any solution of Eq. (1.41) as t + cc is tending to the steady state (of course, if it exists at all). It is 
also clear, that the stationary solution is unique [46]. Eq. (5.2) can be re-written in the form 

dl 

Tt=- s 

Y,rr(k) bk(d -- f&?2 dk ~- 

nk(t) 

and the quantity I is simplified too 

I = !. 
2 s 

(5.3) 

(5.4) 

Thus, the characteristic time of the relaxation z,,~ is defined by the integral of yefr(k) being 
“weighted” with (nk(t) - n:)/&(t), and, consequently, ~~~~ strongly depends on the degree of 
deviation from the steady state. The relaxation is the slowest for disturbances near the maximum of 
nz (where Yeff has a minimum). As j;l -+ 0 rrel is tending to infinity. It does not mean, however, that at 
fk = 0 there is no relaxation at all. There occurs a change in the relaxation law from an exponential 
to a power-law one. Let us consider again an example (2.9) from Section 2 of the review. It is 
possible for this example to integrate directly the kinetic equation 

n&(r) = ~~k(O)exp(--k*t + k@ -.fi (l)) -h(t)) , (5.5) 

where 

aji /a 1 = I, , afop t = N,(t) ) (5.6) 

and nk(0) is the initial distribution; for simplicity we will assume nk(0) = const = n,. Forjo andj, 
we obtain 

afO/z r = (2n0J@)exp(~r(l -jM2 -ji) , afl/at = -(I -fo/t)afo/at. 

Asymptotically as t + cc there is ajo/ t -+ 1, so we have 

afipt = -I ; +tl’ -fl = ln(2n,&/$), I = 1 -jolt 40. 
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Finally,f, + -In (2no&/$), I -+ 1/2t as t + cc and 

r&(t) -+ (&/2J;;)exp( -k2t + fk) . (5.7) 

The distribution (5.7) is a growing and tightening packet of waves. The width of the packet is 

decreasing as l/J? and the integral intensity is relaxing the most quickly, as l/t”. WhenJk # 0 we 
would obtain “two-scale” dynamics: Eq. (5.7) would be applicable up to z - I,&, then the 
relaxation would go according to the exponential law 7 - ns(‘/f. A sharp slowing of the relaxation 
atfk --, 0 is explained by the fact that the kinetic equation (1.41) atfj = 0 is a Hamiltonian one [47] 
in spite of the presence of dissipation and consequently the phase volume and other integral 
invariants are conserved. Let us prove it. From the meaning of the quantity nk it is evident that 
nk > 0, so we may introduce a new variable Zk = ln nk determined along all of the real axis. 
Eq. (1.41) can be re-written at f, = 0 in the form 

s Rkk’(i)zk,/a t)dk’ + 2(rk - exp(zk)) = 0 , 

where Rkk, is the kernel of the operator inverse to the operator with the kernel Tkk, and 
rk = j Rkk,^lk, dk’. It is evident that R kk’ = - Rpk. Eq. (5.8) is Hamiltonian, i.e. can be Written in the 
form 

s &(i‘Zk,/at)dK = dH/bz; , (5.9) 

where the Hamiltonian H takes the form 

H = dk(cxp(zk) - r/&) . (5.10) 

With the help of (5.8) it is easy to make sure that H is an integral of motion. When yk = 0, it 
transforms to the well-known law of the conservation of the number of quanta which is valid as was 
mentioned in the Section 1, yet within the framework of a dynamic description. When Yk is not 
equal to zero, the Hamiltonian His not calculated constructively, because of the difficulties of the 
inversion of Tkk,. However, it follows that (5.8) has no asymptotic steady stationary solutions. In 
reality, in a stationary state the Hamiltonian H differs, generally speaking, from that calculated 
from the initial data. Thus, the relaxation process to a stationary state (if it takes place) occurs only 
due to a small noise term which breaks the Hamiltonian structure and makes really Eq. (1.41) 
a kinetic one. 

Let us examine briefly the time evolution of small disturbances of the stationary spectrum 
nk(t) = ni’ + &z,(t), i&(t) 6 nz in the scope of the one-dimensional approximation for the smooth 
distribution 

tank/a 0 + nk( yk - T,)ank/zk) =fk ; (5.11) 

the small noise term is added to the (3.8). Linearizing (5.11) and assuming 6nk - exp(iQt - iqk), WC 
obtain the corresponding dispersion law 

52, = T,,nc q + i jJr$ . (5.12) 
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One can see that small disturbances of the stationary distribution are “second sound” waves 
moving along the spectrum with a velocity D N T,nz towards the region of small k. These 
disturbances are neutrally stable asfk + 0 (in according to the results of this section). 

We can consider also an evolution of small disturbances of the stationary spectrum in the “peak 
kinetics” model (see [48, 49, Eq. (4.4)]), 

aN,lat = TN,(N,-, -N,+,) + (Y, - v,)N, +S. (5.13) 

Let us assume the case of the large excesses over threshold yn $ v,, then we can take the amplitudes 
of the “neighbors” to be approximately equal to N,“’ ‘v 8. Linearizing (5.13) under approximation 
SN, = N,, - fi 4 fi and assuming SN, - exp(iQt - in&c), we obtain 

Q = 2NT sin(&) + iflfi . (5.14) 

It follows from the results of numerical experiments [49, SO], that 6 N 4. One can see that in the 
singular case we have a similar picture as in the regular one - the characteristic time of the onset of 
the steady state is defined by the small thermal noise and the frequency of oscillations is defined by 
the nonlinear interaction of Langmuir waves. The same conclusions can be obtained for the 
three-dimensional (3-D) spectra. 

The considerations presented above in this section, are valid, strictly speaking, in the idealized 
case of an infinite homogeneous system and also only in the case of the not large excesses over 
threshold of the excitation of Langmuir oscillations. Namely, there are another mechanisms 
of wave damping and the onset of the steady state. It appears due to the “carrying out” waves from 
the region of the excitation due to inhomogeneity or to the finite size of pumping (for details see 
Section 7). Then, as was mentioned above, the main feature of Langmuir turbulence is the existence 
of an energy flux toward small k-region. At the excesses over threshold ypmax/Vei > N = ko/kdif 
(after N steps of the spectral pumping from the region of the instability k - k,) the oscillations 
reach the region k - 0. There is no linear damping of long Langmuir waves and there begins an 
accumulation of the wave energy, leading to the appearance of a “condensate” and Langmuir 
collapse [Sl]. It appears necessary to consider the interaction between the region k - 0 and the 
remaining turbulence. It will be considered at the end of this section; the main conclusion is: 
a collapse represents an effective damping of Langmuir waves for small wave vectors. This 
important circumstance changes the dynamics of Langmuir turbulence, leading, for example, to the 
deep modulations of the energy flux into the plasma from external pumping (see Section 6). 

Singular and regular regimes are possible also in the nonstationary case. We consider first the 
regular regime [50]. Assume that initially there is in k-space a region where we can neglect the 
damping and the thermal noise. Eq. (1.41) or (2.24) takes in this region the form 

s 00 

an,lat = 2nk T(k - k’)+ dk’ . (5.15) 
-m 

We consider solutions of (5.15) in the form of waves travelling with constant velocity u towards the 
smaller wave numbers. We note that the kernel in (5.15) can be represented in the form 

m T(k - k’) = (a/a k)S(k - k’) , 
s 

S(k)dk = q , (5.16) 
-a, 
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where S( 5) is a positive function that decreases as Ill -+co.Wca~sumethatn~+n,aslkl-+~. 
Making the substitution a/at + d/?k, we integrate (5.16) (x = (n/no) - 1): 

3c 
ln(l + xk) = (2no/c) 

SL 
S(k - kl)Xk’dk’ . (5.17) 

If xln,x 3 1, the characteristic dimension of the solution in k-space is dk + kdif, then 

S(k - k’) = 4 6(k - k’) + Xkiif 
a2 

a (k - k’)2 
6(k - k’) 1 

Here o! is a dimensionless parameter. Eq. (5.17) now takes the form 

XP Z2X 2 
2qno __ 

1-B 
k’ @-x+2(1x_8)=o’ B=y. dZ,r 

Eq. (5.19) has for 0 < /I < 1 a solution that decreases on both sides 

(5.18) 

(5.19) 

xk = 3(1 - jQcosh-2 J 1-j k 

4xpk$ 
(5.20) 

The solution (5.20) is a solitary waveesoliton - and is valid for 1 - b < 1. In the same approxima- 
tion, the nonstationary equation (5.15) reduces to the well-known Kortewegde Vries equation 

(5.21) 

The characteristic scale of the soliton k,,J&@?j(l - p) % kdif decreases with decreasing fi. We 
consider Eq. (5.17) in the limiting case as b + 0. The characteristic size of the soliton should now be 
small in comparison with kdif, and Eq. (5.17) can be simplified to 

xk = cxp@(k)N) - 1 . (5.22) 

Here 

&q(k) = (kdiflq)S(k) - 1 7 A’ = (l/k,ir) [= Xk dk . (5.23) 
J-XI 

The dimensionless parameter N is the ratio of the number of quasi-particles in the soliton to the 
number of “background’ particles over the dimension kdif. To determine N it is necessary to solve 
the transcendental equation 

N = (l/kdir) [= [exp(PS(k)N) - l] dk . 
J -co 

(5.24) 

Using the narrowness of the soliton, we can put in (5.24) 

L!(k) = So(l - k2/k;) , (5.25) 
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where k. - kdiffe Calculating the integral, we obtain 

N = J& 2 eP” , (5.26) 

from which it follows, with logarithmic accuracy, that n - p- ’ ln(fi- ‘) as I--) 0, and the character- 
istic scale of the soliton is 

Ak - kdirln-1’2(1/fi) < kdif . (5.27) 

Since the real parameter of this approximation is the quantity In _- 1’2 (1 /I), it is valid only for very 
small p. Nonetheless, a comparison of the two limiting cases allows us to assume that a solution of 
the soliton type exists in the entire interval 0 < ,G < 1. Then in practically the entire interval, with 
the exception of the vicinity of its ends, the soliton dimension is Ak 2 kdif. Inasmuch as fi - l/u, WC 
can state that the soliton dimension depends slightly on the velocity. However, the soliton intensity 
does depend on the velocity in an essential manner. There exists a minimal velocity u. = 2qno; as 

G+U~ we have N - ,/m, and at c % u. we get N - (t’/~o)ln(u/vo). Expressing the velocity 
in terms of the maximum soliton amplitude and the noise amplitude, we obtain 

c - 2q 4dln(bJ~0) . (5.28) 

Actually the dependence of the velocity on the thermal noise is weaker, since nmax (if nmax $ no) is 
also proportional to In no. Therefore, in fact the velocity is determined only by the parameters of 
the growth rate: u - Yinsck. The soliton can manage to become attenuated by the collisions before 
reaching the region of small k, if yoke > v, which coincides with the criterion for the existence of 
a stationary solution of (5.15). When the soliton is damped, it is slowed down and ultimately the 
soliton is stopped. Within the framework of the Korteweg-de Vries equation, the solitons are 
repelled (see e.g. [52]); this probably takes place also within the framework of the more exact 
Eq. (5.16). The onset of the stationary state can therefore be represented as the result of slowing 
down of solitons. In the opposite case */ins! > yoko/Ak, the soliton does not have time to slow down 
and is absorbed only in the collapse region. Then there are no grounds for expecting a stationary 
state to be established; this conclusion is confirmed (see below) by results of numerical experiments. 
In the case of a narrow instability growth rate and when a condition inverse to the applicability of 
(5.15) is satisfied, a nonstationary singular regime described by a corresponding equation from the 
Section 4 is realized. It was shown in [53] that Eq. (4.4) has at yinst = 0 an exact solution in the form 
of a soliton that travels along a chain of peaks: 

N,(t) = F(Tt - n/s - zo) , 

where 

(5.29) 

a 

1 -h+hcosh6t’ 

The quantities 6, h and s arc obtained from the equations 

S[(l - 6)2 + b2sinh2(6/s)] = 2No(1 - b)(l - b + a)sinh(J/s) , 

6(1 - b) = No(2 - 2b + a)sinh(a/s) , 6 = 2Nosinh(6/s) . 
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For a 9 1 we have approximately 

6 = N,,u , b* = 1/2u. s = 6/ln u . (5.31) 

The soliton has a velocity 

t’ = TN~u k,ir/ln u , No - nokdir . (5.32) 

We note that, as was shown in [54], Eq. (4.4) with yinst = 0 is a perfectly integrable dynamic system, 
within the framework of which one can obtain exact formulas describing soliton collisions. It is 
shown by the same token that the solitons are repelled by one another. The same (at 7 = 0) is true 
for the systems (4.2) and (4.3). For ~inst + y0 k/kdir, the nonstationary regime constitutes a successive 
detachment of the solitons from the instability region. Let us estimate the parameters of this 
process. To this end WC consider the interaction of two peaks, 

ij N,/‘at = Nr (:linst - TN*,) ) ZN,/at = TN2N, , (5.33) 

of which the first is in the instability region and the second is at a distance kdir from this region. At 
t = 0 we have N, = N2 = No. The system (5.33) has an integral 

Nr + N2 - 2N, = (;+,,,/T)N2/N,, . (5.34) 

The maximum amplitude is reached when the intensities of both peaks are comparable; for 
N1,2/N,, + 1 we obtain with logarithmic accuracy 

N max ‘V ~(Yinsr/T)ln(Yi”S,/2TNo) . 
The characteristic time of the process is 

z - riiit ln(‘/i,,,/2TNo) . 

The average energy flux to the plasma 

(5.35) 

(5.36) 

(5.37) 

does not depend on the thermal-noise level. Strictly speaking, formula (5.35) contains also factors of 
the type In In Yi”,t/2TNoy which are set equal to unity in order of magnitude. 

5. I. Coexistence of weak turbulence and Langmuir collapse 

One can see, however, that the kinetic pattern, presented above, is not complete and self- 
consistent. The matter is that spectral cascading due to induced scattering is directed towards the 
small k-range from the pumping region and it results in the condensation of plasmons in the state 
k = 0 at the sufficiently large excesses above threshold ./nl/;)damp > k/kdir. Let us remind ourselves 
briefly what occurs later on (see for example [SS]). A condensation of Langmuir waves brings into 
a development of a modulational instability and the appearance of high local maxima of the electric 
field. An arising ponderomotive force is pushing out the plasma and is creating “cavities”. The 
nonlinear stage of the modulational instability results in the compression of the cavities accom- 
panied by kinetic effects - phenomena called “Langmuir collapse”. This phenomena is well 
investigated now by various numerical simulations (see e.g. [56,58]) and confirmed experimentally 
[57-593. In the final stage of the collapse practically all energy, trapped in the cavities, is transferred 
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to the particles. Hence, there occurs an effective nonlinear mechanism of dissipation in the plasma. 
The compression of the cavities is a self-accelerated process and arising as a result of compression 
the Langmuir spectrum drops quickly towards large k numbers. The main part of the energy is 
concentrated at k I Ak, (Akr,)2 N W/noT, where W is the density of the condensate energy. 
Usually Ak is sufficiently smaller than the characteristic wave number of the excited plasmons 
k,, and therefore Langmuir collapse can be considered as a sink of the wave energy at k % 0. It can 
be modelled, for example, by absorbing boundary conditions at small k. Absence of a real 
interaction between collapsed cavities and weak turbulence spectra is quite natural. Namely, 
during the developed stage of Langmuir collapse the cavities have a characteristic size I, which 
is smaller than the mean distance between the cavities -(Ak) _ ’ and their evolution in time is 
very fast. Therefore, only a few “weak turbulent” plasmons can interact with the cavities. The 
value of Ak can be estimated as follows. The energy, trapped in the cavity, is transferred to the 
particles during a time interval 5, which is the “longest” time of Langmuir collapse phenomena, 
precisely, an inverse growth rate of the modulational instability ;);old. For a low level of 
condensate W/n,, T I m/Mymod - co, W/n, T; if W/n, T > m/M (supersonic collapse [SS]) Y,,,“d - 

o,,,/(m/M) W/no T. The rate of the energy dissipation via collapse Qab can be written as 

Q ab - Ymod W. 

On the other hand, in the common situations a zone of the pump localization is far from the 
collapse range k,, $- Ak and the energy flux into the plasma can be calculated within the scope of 
weak turbulence. For small linear damping 

Q 'VQab 
and the value of Ak can be obtained from this relation. Let us note that for Q < cu,(m/M)2, when 
the collapse is subsonic, Ak 5 kdif, and collapse really does not affect the weak turbulence spectra. 
For a stronger pump we have 

OPi( W/n, T)“2 W = Q . 

With increasing of the pump Ak grows and, when Ak is approaching k,,, the “naive” weak 
turbulence description is not valid. 

Strictly speaking, considerations presented above on the coexistence of weak turbulence and 
Langmuir collapse, are valid for broad and smooth distributions. The singular structure of 
Langmuir spectra enhances the role of the modulational instability and the weak turbulence 
approach have to be modified. In more detail it will be discussed in Section 9. 

6. Dynamics of weak turbulence spectra 

In this section we shall consider the nonstationary behavior of weak Langmuir turbulence. The 
detailed theory of the steady-state spectra is developed in previous sections; it turned out to be 
possible to obtain only in general results about the onset of these spectra. We shall be concerned 
now with both the realization of such spectra and the dynamics of their onset. Reliable and 
long-term numerical simulation will be used as a constructive method to prove the existence and 
stability “as a whole” of the energy distributions over scales and to study the evolution of spectra. 
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Excitation of Langmuir waves by a relativistic electron beam, by an external electromagnetic wave 
at a frequency near the plasma frequency and the mutual evolution of the electromagnetic and 
Langmuir oscillations will be taken as physical examples of the developed theory; sometimes we 
shall discuss also results of numerical experiments with some model growth rates to consider 
a more general situation. It has been shown above that two different types of spectra can be 
expected-a smooth and a spike-like one. Qualitatively we have been known already the main 
parameters defining a transition from the regular spectra to singular. However, in the many 
interesting cases only a numerical experiment can demonstrate what type of spectra is realized. For 
example, in the case of parametric excitation with a frequency near the plasma one there is an 
intermediate situation (see Section 8): the size of the growth rate region is Ak - ikdify and 
a qualitative analysis cannot give the definite answer on the type of spectral distributions. We shall 
represent at first the results of simulation in the differential approximation and within a “peak- 
kinetics” model, then we shall discuss the numerical solution of the exact equations (1.41). At the 
end of the section we can examine the applicability of simplified models and evaluate quantitatively 
the degree of deviations from exact results. 

6.1. Instability of’ relativistic electron beam 

We have shown that the structure of Langmuir spectra is sensitive to the scale of the excitation 
region. We will be able to consider the “narrow” and “wide” regime of the wave excitation by 
changing the parameters of an electron beam. As was noted in [60], the principal mechanism that 
limits the growth of Langmuir oscillations is induced scattering by ions, which leads to a transfer of 
energy from the instability zone (k > up/c) into the region of smaller wave numbers. The character- 
istic time of the onset of the quasi-stationary spectrum of oscillations then turns out to be 
significantly smaller than the time of the variation of the distribution function of the electron beam. 
Thus, the distribution function of the beam electrons can be regarded as specified in the problem of 
determining the spectrum. We denote by E the energy of an individual electron, by A0 and AE the 
angle and the energy spreads of the particles, and by &, the beam density. If the angular spread A0 is 
not too small, 

A0 > (nbmc2/nOE)“4 , (6.1) 

then the instability is kinetic, i.e. the beam does not influence the wave dispersion law, and 
determines only the growth rate. If in addition 

A0 > (mc2/E)JAE/E , (6.2) 

then the spread of the beam electrons relative to the absolute value of the velocity can be neglected 
in the calculation of the growth rate, and we can put u = cpllpl, wherep is the electron momentum. 
The only oscillations that can interact with the beam are those whose wave vectors satisfy the 
Cherenkov resonance condition 

w,-kv=o (6.3) 

or 

1(0,/c) - kit I - bplWW2 + k,. A0 9 (6.4) 
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where kII and k_ denote the longitudinal and transverse (with respect to the beam axis) components 
of the vector k. The instability growth rate y(k, x = cos 0) is given by the formula (see [61]): 

y(k,x) = .,,~ 

( )[ 

0, 
x1.2 = kc x+J1 -x2 (1 -x ) --J-l 3 g(y) = mc j-;f(w)pdp (6.5) 

(Jis the beam distribution function). For the maximal (at fixed k) value of the growth rate, which is 
reached for x - q/kc, the following estimate holds true 

nb mc2 1 
7 - % n, 7 (A(J)2 k2C2 . (6.6) 

Eq. (6.5) shows that for a beam with a monotonic distribution function g(x) the growth rate is 
positive in the right half of the resonance region and negative in the left. A plot of y(k,x) for fixed 
k is shown in Fig. 6.1. The function y(k, x) has a narrow maximum with a width of the order of A8. 
This circumstance greatly simplifies the problem of finding the stationary spectrum of the oscilla- 
tions in the case when the angle spread of the beam is small enough (A0 < 1) (see [62]). 

When k $ cop/c, the maximum of the function y(k, x) lies close enough to the point x = 0. In 
accordance with the results of the Section 3, in this case the spectrum should consist of one 
two-dimensional jet, the position of which coincides, accurate to A8, with the position of the 
maximum of the growth rate. Therefore, in the region k % m,/c the spectrum takes the form [62] 

N(k,x) = N(k)d(x - up/kc) , (6.7) 

Fig. 6.1. Plot of the instability growth rate of a relativistic clcctron beam against the angle (X = cos 0) for a fixed value of 
the wave vector. 
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where the intensity N(k,x) can be obtained from the formula (3.11) by using (6.6): 

N(k) = (T(x&), x,(k)))- “* 
s 

kz ‘1(q)(T(x,(q),x,(q)))-1’2dq 3 (6.8) 

where x,,(k) = cu,/kc. Calculations show that at k I 1.6~Jc the spectrum (6.7) does not have 
“external stability”: it is unstable relative to the excitation of waves outside the “jet” x0(k). 
Consequently, formula (6.7) holds true only for k 2 1.6a1,/c. From the fact that y(k,x) is a poly- 
nomial of third order in x (see (6.5) and Fig. 6.1), we can see that in addition to the initial jet (6.7), 
there can appear in the region k I 1.60,/c not more than two additional jets; in the case of two jets, 
one of them must be one-dimensional. 

All the foregoing calculations are based on the use of the differential approximation. Strictly 
speaking, this is possible only for beams with not too small angle spreads: 

(6.9) 

It is obvious, however, that when the condition 

(I/m)J;nIM < ~~,/C@r,/C % J;nIM) (6.10) 

is satisfied for sufficiently large wave numbers 

k - u,/c 9 (l/r,,)~ (6.11) 

the condition for the applicability of the differential approximation is satisfied independently of the 
angular width of the beam. Thus, a jet structure is always obtained in the region of large wave 
numbers (see later). 

6.2. Numerical model&g in the case qf the d.$%rential approximation 

To verify the ideas concerning the jet-type of the spectrum and to investigate the dynamics of 
their onset, the kinetic equation describing the process of nonlinear Landau damping (induced 
scattering by ions) was solved in [62]. Specifically, the following equation was considered: 

s .’ 

al/(q,x)/az = I’(q,x) r(q,x) + @/?q) R(x,y)~/(q,y)dy + Edwq,wq* 1 (6.12) 
-1 

where z, q, V, r, R and cd are dimensionless quantities determined by the relations 

R(x, y) = 1 - x2 - y2 - 3xy + 3yx3 + 3xy3 + 3x2y2 - 5x3y3 , 
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where ymax denotes the maximum instability growth rate. The term corresponding to the thermal 
noise was not introduced directly in explicit form in (6.12), but it was assumed in the calculations 
that V( 4, x) has a lower bound No - 1O-3-1O-2. The “diffusivity” term ~&~V(~,x)/aq~ was 
introduced in order to provide an applicability of the differential approximation and to prevent 
“breaking” of waves in k-space. The diffusion coefficient cd had to range from 2.5 x 10M4 to 
5 x 10e3. One applied to Eq. (6.12) a difference scheme of the Crank-Nicholson type uncondi- 
tionally stable and of second order of accuracy in time (see [64]). To integrate with respect to the 
cosine of the angle x in (6.12) Gaussian quadratures of suitable order of accuracy (with the nodes 
that “condensc” toward the points x = + 1) were used, thus ensuring the best accuracy for the 
solutions of the type ofjcts. In typical variants, the number of points was 100 for the modulus of the 
wave vector and 32 for the angle. The initial conditions corresponded to a minimal level of 
oscillations I’(k, y) = N,,. The instability zone was located at 2 > q > 1; for small q < 0.2 one 
introduced linear damping that increased towards q = 0 and ensured a “sink” for the energy. Thus, 
one expected the realization of the Kolmogorov regime in the region 0.2 < q < 1. In addition to the 
usual methods of verifying the difference scheme, one monitored the conservation of the total 
number of quasi-particles at r( q, x) E 0 up to z = 100. One considered the case of not too small 
total angle spread At9 - 15”. The development of the instability is illustrated by Fig. 6.3. We see, 
that a stationary spectrum of the jet-type develops as time passes. In the inertial interval (q < 1) 
there are two one-dimensional jets, and in the region of large wave numbers (q > 1.5) there is one 
two-dimensional jet, as predicted by the theory. In the intermediate region (1 < q < 1.5), two 
two-dimensional jets are formed, and they “stick” at x = 1 to the ends of the interval 1x1 = 1 and 
are transformed into one-dimensional ones. The development of the nonlinear instability picture 
proceeds as follows. At first the oscillations grow exponentially in the region where the increment is 
positive, and the first two-dimensional jet is formed. Then, at x = - 1, a “germ” of the second 
two-dimensional jet and one of one-dimensional jets is produced. The development of the 
one-dimensional jet recalls the propagation of the shock waves in k-space [65] in the region of 
small wave numbers. The thickness of these shock waves increased with increasing “diffusion” 
coefficient cd. The complete steady-state picture is established within the time of order of 30-40 
reciprocal increments, and a stationary flux of the number of quasi-particles is produced in this case 
in the inertial region. The character of the establishment of the flux at the point q = 0.70 is shown in 

0 A8 1 

Fig. 6.2. Plot of the instability growth rate of a relativistic electron beam as function of k, for a fixed value of the 
modulus of the wave vector. 
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Fig. 6.4 (it shows the instant at z = 10 arrival), and the dependence of the steady-state flux on k is 
shown in Fig. 6.5. The value of the flux in the region of small wave numbers, Pk = 0.06, which is 
expressed in terms of dimensionless variables, agrees with the estimate Pk - (Ak/k)2 (see (3.14)) with 
an effective width of the increment Ak/k - 0.25 for A0 - 15”. 

It is worth to note that the nonlinear theory of the relaxation of a relativistic electron beam 
(REB) in a plasma (see corresponding review [60]) is founded mainly on the theory developed in 
Sections 3 (differential approximation) and 6. 

Fig. 6.3. Level lines of the function In(N(k, x)/N,) at different instants of time: a - t = 8, b - t = 20. c - t = 100. The 
lines arc marked with the values of the function. In the shaded region where N(k, x) = No. 
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Fig. 6.4. Time dependence of the flux of Langmuir plasmons for k = 0.7. 

The representation of Langmuir spectra as a set of “jets” in k-space (one- or two-dimensional 
ones) is based essentially on the “external stability” -namely, stability of jets relative to the 
excitation of waves outside the jets. These results are obtained in Section 3 within the scope of 
differential approximation which is valid, strictly speaking, for regular, “smooth” distributions. It 
can be shown, however, that the singular spectra represented by a sequences of b-shaped peaks are 
unstable (for example, one-dimensional jets with equidistant sequence of peaks are unstable with 
respect to the excitation of oscillations at large angles to the jet). Therefore, in order to ascertain the 
limits of applicability of the differential approximation and “peak kinetics” model, a numerical 
simulation of the exact equations (1.41) are highly desirable. 

6.3. Numerical modelling of‘ the exact equations (1.41) 

We will start with the simulation of the exact equations (1.41) in the axially symmetrical case 
(corresponding, for example, to the interaction of a plasma with a powerful electromagnetic wave 
or a beam of charged particles) [63,66,67]. In typical variants, the number of points was loo-150 
in modulo k and 32-64 with respect to angle. A numerical solution of such equations is a time- 
consuming one, therefore a special fast method was developed [67], based on the ideas of 
“splitting” the calculations. The Crank -Nicholson difference scheme of second order of accuracy in 
time was applied to Eq. (1.41). In the integration over angle 8 one used the quadratures of an 
appropriate order of accuracy, which took into account the possible singularity of the spectra. 

The first series of the numerical experiments corresponded to the excitation of Langmuir waves 
by a relativistic electron beam (REB) (for the growth rate see (6.9, (6.6); one added also a damping 
of the waves equal to the frequency of an electron-ion collisions v,~). The distribution of oscillations 
excited by REB with an angle spread At? = 10” at large excesses above threshold ymax 9 V,i is shown 
in Fig. 6.5. We see that in the inertial region, k < CL+,/C, there are two quasi-one-dimensional jets 
(0 < 15”, x - 0 < 15”) that are su&icntly well described by the one-dimensional model. The 
characteristic width of the “instability zone” over modulus k is Ak - ((ti,/c)(AQ2 (see (6.4)), 
therefore the regular regime in the inertial interval is accessible only for beams with a very large 
angle spreads: 

(A(1)2 > (6.13) 
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Fig. 6.5. Plot of the flux of Langmuir plasmons against the modulus of the wave vector for t = 100. 

It was shown also by the numerical experiments that in the opposite case a singular regime was 
established and quasi-one-dimensional jets were split into N - o,/kdirc separate “spots”. At 
sufficiently large excesses above threshold Ymax/V,i > N the steady state was not reached and there 
occurred a successive detachment of the solitary impulses and their moving toward the region of 
small k. Their length, velocity and other parameters are well described by the results of Sections 
3 and 4 (see also the last part of Section 6). We see that a slight spreading of the peaks over angle 8 is 
sufficient for the spectra to conserve a jet-like character independently of the “width” of the growth 
rate in modulus of k. There occurred also that a characteristic time of the onset of Langmuir spectra 
was close to the estimates (5.12) or (5.14) 

?sl h (l/Ymax)(nsl/nnoise) 7 (6.14) 

and it practically did not depend on the detailed structure of the solutions. 
Let us examine now the region k > cop/c, where the situation is quite complicated. One can 

obtain preliminary considerations from Fig. 6.2 where Yb is shown as a function of k, for a fixed 
value of k,. It is seen that there is a sharp maximum (its width is approximately equal to the angle 
spread of REB AO) and a gently sloping “foot”. As appears from the results of the above sections the 
spectra would consist of regular and singular parts simultaneously. Therefore, it is impossible to 
describe it neither by differential approximation (Section 3), nor by the “peak kinetics” model 
(Section 4). Numerical experiments [63,70] confirmed these assumptions. The distribution of 
oscillations along the two-dimensional jet kcos 8 = (cop/c) (see Fig. 6.5) looks like a pedestal with 
sharp peaks on it. We present also a plot of the energy flux (see Fig. 6.7) as a function of the wave 
vector 

Qk = s C0,y,Qd COS 8 . (6.15) 

The sharp maxima at distances - kdif along this jet show that in spite of the smooth variation of 
the oscillation amplitude the width of the jet pulsates strongly. These pulsations are caused mainly 
by successive “birth” of solitons in the region of the maximal growth rate k - cop/c and their 
moving towards small k (see Sections 4 and 5). 
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Fig. 6.6. Level lines of the function In(N(k, x)/N”) for the case of excitation of waves by a relativistic electron beam (a 
consideration of the exact equations) with the following parameters (yOt = 20, A0 = 15”. ~~~~~~~~ + 1). 

Fig. 6.7. Plot of the function Qk (at k 2 wBIc) for the case of excitation by a RER (Yet = 20). 

6.4. Fine structure of one-dimensional jets 

We see, that the numerical experiments arc confirming the basic conclusion of Sections 2 and 
3 on this jet-like structure of Langmuir turbulence. It is natural to consider a fine structure of the 
jets. To check on the considerations developed in Sections 3 and 5, concerning the structure of 
the one-dimensional spectra, one performed a special series of numerical experiments. Specifically, 
one considered the equation (see (2.24)) 

G(tc,K’)NKrdrc’ -tf, (6.16) 

where K, 2, r, G(K, rc’),f are dimensionless quantities defined by the relations 

G(K, K’) = $&Tmax 3 K = 2kj3kdif . -c = Ymax t, 

r = Ykhm > N, = nk Tmxhmax . 

In typical variants, the number of points in modulus k was 200 (one “diffusion interval” kdif span- 
ned 15 points), and the noise level was lo-‘-lo- ‘. For the growth rate one chose the model 
expression 

)“k = yoexp( - (k - ko)2!62) - 1 . (6.17) 

At the first stage of experiments 6 was chosen to be much larger than kdif - a “broad” growth rate. 
For large excesses above threshold (yO @ l), a periodic detachment of the solitons takes place (see 
(5.20)), with a characteristic width of the order of kdif (see Fig. 6.8). For small excesses above 
threshold, a stationary regular distribution was established. The character of the onset coincides 
with that described in Section 4. Fig. 6.9 shows stationary spectra for different 6. It is seen that the 
envelope of these distributions is described sufficiently well by a differential approximation, and the 
distribution itself is deeply modulated in accordance with the results of Sections 2 and 3. 
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Fig. 6.8. Distribution of Nt for the case of a “broad’ growth rate in the one-dimensional model for an infinite excess over 
the instability threshold at three successive instants of time; the point marked z is the point of the maximum growth rate 
increment. 

Fig. 6.9. Distribution of NI, for small excesses over the instability threshold for growth rates with ditferent ratios b/kdir. 

In the case of a “narrow” growth rate (6 < kdir), the distribution of the oscillations in modulus 
k is practically independent of the exact value of 6 and has a singular character. Fig. 6.10 shows the 
stationary distribution of the oscillations at yrnax /JJ,, = 4.37. The width of peaks is determined by the 
noise level and we can obtain an estimate 

(6.18) 

which is in a good agreement with the results of Sections 2 and 4. 

6.5. Spectra of parametric turbulence 

Let us examine the parametric instability of a plasma placed in a homogeneous oscillating 
electric field with frequency o. = CO, + 0, D < u,. Eq. (1.41) can be easily generalized to include 
this case. The external electric field can be considered as a part of Langmuir spectra with k = 0, it 
corresponds to the following change of the variable in the dynamic equation (1.41) 

nk + nk -I- Ei/8mo T . 

It leads to the appearance in the kinetic equation (1.41) of a growth rate of the parametric 
instability 

y&x) = (~,IEoI~/~~~~T,)x~~~G~,R-~~ . (6.19) 
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Fig. 6.10. Stationary distribution of Nk for yet = 100; the excess over threshold is 4.37. 

Section 8 contains the detailed discussion of the validity of such a description (including the 
important problem of the “anomalous” correlators (QU-k)). It follows from (6.19) that 
yp(k, x) = yp(k, -x) and, in addition, 

y,(k,x) < X2Yp(k, I) . 

From this, in accordance with the criterion (3.23), it follows that within the framework of 
differential approximation the spectrum of Langmuir turbulence excited by a homogeneous 
oscillating electric field must consist of two one-dimensional jets at x = f 1. One can see, however, 
that there are no grounds to changing over to the differential approximation in lkl, since yP and the 
kernel Tkk, in (1.41) vary in k-space on the same characteristic scale (namely, the “size” of (6.19) is 
kdif/‘2); therefore numerical simulations are necessary. A typical example of the numerical solution 
of (1.41) with pump (6.19) is shown in Fig. 6.11, namely the stationary distribution in k-space at low 
excesses above threshold. It is seen that despite the angle-width of y,(k,x) being of order of unity, 
a one-dimensional approximation describes the situation satisfactorily the angle width of the 
“spots” is sufficiently small - 10” -15”. 

The imaginary part of G in (6.19) describes two overlapping processes [7l]: 

_ the conversion of an electromagnetic wave by ions and the decay of an electromagnetic wave into 
a plasma wave and a virtual ion-sound wave 

(flu + ok + kur, ; (6.20) 

._ aperiodic decay instability of an electromagnetic wave into a plasma wave and a virtual 
ion-sound oscillation 

Coo + wk ?- kc, . (6.21) 

The corresponding equations describing the nonlinear stage of these processes with taking into 
account anomalous correlators and a detailed discussion of their comparative role are derived in 
Section 8. We shall represent here only some results of the numerical simulation of these equations 
which confirm in particular the possibility to neglect the process (6.21) [71]. Namely, it follows 
from Figs. 6.12 and 6.13, there is only a series of peaks due to the process (6.20). Well above 
threshold, ykobl > ko/kdify with the energy absorption due to plasma-wave collapse (see Fig. 6.13), 
no steady state is established. The energy evolved at k - k. is transferred by pulses to the longwave 
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Fig. 6.11. Level lines of the function In(n(k, x)/r~,,~~~) for a parametric excitation of Langmuir oscillations. The shaded 
region corresponds to n(k, x) = nnoise. a. b for large excesses above threshold at two successive instants of time; c the same 
level lines for a twofold excess above the parametric instability threshold (7,~ = 60). 

region. It results, of course, in the low-frequency modulations of the energy flux with a character- 
istic time ykoT - h blko/Tf) ( in accordance with the estimates of Section 5). It is worth to note also 
that these numerical experiments for large excesses above the threshold of the parametrical 
instability (see Fig. 6.13) clearly confirm the existence of the solitons (5.29) moving along the chain 
of peaks. 

6.6. Mutual evolution of’ electromagnetic and Langmuir waves 

In the previous sections a detailed theory of Langmuir turbulence was developed. Now we start 
to consider the influence of the additional channel of dissipation - a conversion of Langmuir waves 
into electromagnetic ones by ions: 

l+t+i, (6.22) 

ofi-&, + Jk -k’(W,. (6.23) 

The matrix elements of this nonlinear interaction is of the same order as for the induced scattering 
by ions 

f+l+i. (6.24) 

The lth channel has to be taken into account for a dense plasma when the electromagnetic 
waves with frequencies near CO, do not escape the plasma volume. It is possible to derive the 
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Fig. 6.12. Distribution of waves n, in k-space for the case in which the coeffkicnt giving the level of the pump above 
threshold is equal to yk.j = 3.2. 

Fig. 6.13. Wave distribution in k-space at several successive times for the case in which the pump is infinitely far above 
the threshold of instability. 

corresponding equations similarly to the derivation of (1.32), (1.41) (see [74]). One has only to bear 
in mind that the frequencies of the electromagnetic waves with a different polarizations are the 
same. So their phases are not arbitrary, generally speaking, and it is necessary to use a description 
using a polarization tensor [75], (see also [76]). The resulting equations are bulky, so, for a better 
understanding and simplicity we will consider two limiting cases - other ones will be situated 
between them. 

1. Let us assume that Langmuir spectra consist of two symmetrical one-dimensional jets. This is 
realized, e.g. under parametric RF-heating at a frequency o. - op. The electromagnetic waves 
appearing due to the conversion (6.23) will create also a singular distribution with the vector of 
electric field being parallel to the field of the Langmuir oscillations; the wave vectors of the t-waves 
will fill isotropically a plane which is perpendicular to the Langmuir jets. Due to the excitation of 
only one type of polarization the system of equations takes a simple form: 

fc?n:/t! t = n: Tkk.& dk’ -t. 
s 

Rkkf& dk’ - rk , 1 
@i2Q3 t = n: - 

II s 
Rkk’n:rdk’ - V,i ) 1 

(6.25) 

(6.26) 
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(6.27) 

Here n: is taken at the cylindrical normalization. As was shown above, the realization of the 
smooth or singular distribution over modulus k is defined by the ratio of the width of the excitation 
region 6k to the characteristic size kdir of the kernel Tkke. Let us consider at first a singular case 
6k < kdif and change to the satellite approximation. It follows from (6.23) that the distance between 
the electromagnetic and Langmuir peaks is - kTJ2. Therefore, the t-waves are situated between 
the corresponding Langmuir oscillations. Let us assume only Langmuir peaks N’ to exist and 
examine the stability to the appearance of the t-peaks N’. One can see that at moderate excesses 
above threshold 7,,/vei < ko/kdif (the point k. corresponds to the maximum of the pumping) only 
a solution without t-waves N’ = 0 is stable. At the large exceedings l/p/v,i > ko/kdif Langmuir jet 
reaches a small k region and the growth rate for the excitation of t-waves becomes positive. But it is 
impossible to construct a stationary solution with a finite values of N’, IV* in this case (there 
appears a growing condensate at k 1: 0 due to the absence of longwave damping oft- and l-waves) 
and it is necessary to apply a numerical simulation. Summarizing its results, it can be concluded 
that the ratio of the total energy of t-waves to the total energy of l-waves is small for any excesses 
above threshold and is practically independent of the parameter ak/kdif. 

2. In the isotropic case there is no polarization of the electromagnetic radiation 

n:(k) = n;(k) s +n’(k) 

and the corresponding kinetic equations can be written in the form 

(6.28) 

fan:/a t = n: [S Tkk,ni*dk’ + $ 
s 

Rkksrz:,dk’ - V,i + I/* 1 + Yeif= T’n: + V,if, (6.29) 

fan:/8 t = n: 
[ s 

- .J Rkk*n:,dk’ - V,i 1 + v,iJ’= r*n: + Veif, (6.30) 

where the kernel r,,, = (1/47t)s Tkkr dS2. In the case of moderate excess above threshold Langmuir 
waves occupy a bounded region in k; one finds analytically from (6.29), (6.30) (e.g. in the satellite 
approximation) that t-oscillations are not excited r’ < 0. In the opposite case of large excesses 
7,/v,, > k”/kdif the distribution n: reaches the region k = 0 (r’(O) > 0) and the growth rate of the 
excitation of t-waves become positive in the whole k-interval r’(O) > 0. Due to the impossibility to 
obtain an analytical solution of (6.29), (6.30), one performed a numerical simulation for the initial 
distribution n: = n: = nnoise. The model expression yP = y. exp( -(k - ko)2/(6k)2) was taken for the 
growth rate; it turned out that all results depended slightly on the ratio Gk/kdif. Numerical 
simulation showed that for small processes yo/v,i < ko/kdif the total energy of the electromagnetic 
waves Q’ was on the noise level and the distribution of Langmuir waves was practically the same, as 
it was without taking into account the conversion process (6.23). For large excesses there was no 
onset of the steady-state spectra, there was a periodical detachment of pulses from the region of 
instability moving to the small k region, where an accumulation of the wave energy (for l- and 
t-oscillations) took place. The total energies are close Q’ - Q’, but qualitatively and quantitatively 
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Langmuir spectra are really the same as without Ith conversion. It is worth noting and instructive 
that it is possible to construct within the scope of the differential approximation a stationary 
solution describing a different pattern of t- and I-oscillations in the isotropic case [60]. Let us 
discuss this problem in more detail. This solution can be characterized by the accumulation of the 
main part of the energy in the electromagnetic waves and the absence of an energy flux toward the 
small k region. One can see that it is unstable within the exact equations (6.29), (6.30) relative to the 
breach of the validity of the differential approximation. Namely, the amplitude of small perturba- 
tions increases while their width decreases as - e-/O’ This instability takes a “floating” type and it . 
could lead, in principle, to the only modification of the proposed stationary solution. So one can 
assume that (6.29), (6.30) have a stationary solution slightly differing from the one obtained in the 
differential approximation. One performed the following numerical test of this assumption: the 
mutual evolution of l-t waves was examined for the analytical solution from [60] taken as an initial 
condition. It was found that during a short time interval t - 5ve; ’ the Langmuir spectra became the 
same qualitatively as at the “noise” initial conditions n: = n: = nnoise, Langmuir and electromag- 
netic condensates appeared and the energy was distributed in equal parts among t- and I- 
oscillations. This example confirms the conclusion that the differential approximation is applicable, 
strictly speaking, for the preliminary qualitative description of the kinetics of weak turbulence and 
one has to use it with care. It is worth to add also that this approximation gives an understatements 
of the values of the fluxes of energy into the plasma as compared with the exact consideration 
within Eq. (1.41), e.g. in the case of excitation of Langmuir waves by a relativistic electron beam 
considered above the difference was lo-15 times. In the work [78] one performed a detailed 
comparison of the satellite and differential approximations with an exact approach in the mag- 
netoactive plasma. It follows that the satellite model is more useful for the quantitative calculations 
of plasma heating (it will be discussed in Section 7). 

7. Weak turbulence of an isothermal magnetoactive plasma 

We start now to consider the weak turbulence of the potential oscillations in a magnetoactive 
plasma. As was mentioned above, two high-frequency branches of the oscillations exist. The main 
features of the upper-hybrid waves are similar in many aspects to Langmuir ones in isotropic 
plasmas and were discussed in Section 3. Here we will discuss the nonlinear interactions of the 
lower-hybrid oscillations, which have quite a different pattern of turbulence. The dispersion law for 
the lower-hybrid (LH) plasmons now takes the form 

(7.1) 

It is a strong function of the angle 0 between the wave vector and the direction of the magnetic field 
and changes significantly with a variation of the wave vector. It means that the inertial interval can 
be larger than in a plasma without a magnetic field, the problem of the energy condensation near 
the “bottom” of spectra is not so severe and the applicability region of weak turbulence could be 
very broad. The main nonlinear process in an isothermal magnetoactive plasma is again the 
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induced scattering of Langmuir oscillations by ions. The evolution of the density of Langmuir 
plasmons is described by the same equation (1.41) but with another matrix element Tkk,. 

where 

(7.2) 

(7.3) 

and CO+ and o_ are the roots of the dispersion relation 

CO4 - (0,” + C&)“2 + 0; C& cos20 = 0 . (7.4) 

The Green function Gko is in the case of unmagnetized ions (kz+, 9 mIj,) the same as (1.1 S), while 
in the opposite limit (kcTi 4 c+,) it differs by the replacement of k by k,. The term yk must include 
apart from the term IJ~ corresponding to the excitation of the waves also a linear damping; it 
consists of the frequency of electron-ion collisions and Landau damping by electrons 

At first we will give a qualitative discussion of the structure of the solutions 
transfer process the frequency of the Langmuir waves is changed by an amount 

(7.5) 

of (7.2). In each 

AC& - Ik - k&, 6 ok . (7.6) 

The absolute magnitude of the wave vector can then either increase or decrease; an increase of the 
wave vector does not violate the conservation laws as it would be in the case of a plasma without 
a magnetic field. To understand the direction of the spectral transfer as regards the modulus k we 
consider how the growth rate of the instability of a narrow packet with.wavc vector k. is built up. 
The scattered waves are excited near the resonant surface 

mko - (ok = Ik - koluTi (7.7) 

(taking into account thermal corrections to the dispersion law does not significantly distort the 
resonance surface and does not introduce any changes in the results given below). The growth rate 
of the instability does not change along this surface and the angular width of the excited zone is of 

the order of magnitude of the step in the spectral transfer AX = ,,/w) kr, (x 3 cos 0); i.e. it 
increases with increasing k. When the larger phase volume is taken into account the oscillations arc 
thus transferred to the region of short wavelengths. When the wavelength decreases, however, the 
linear Landau damping of the waves increases steeply, leading to a further transfer to the region of 
a large k. The energy of the oscillations therefore displays a tendency to “condense” in some point 
in k-space; a “jet” in a short wavelength region could bc formed. 

Let us go into a more detailed study of the stationary solutions of (7.2). First, we consider the case 
<OH $ cd,., [79]. Using the fact that the spectral transfer step in a single scattering process is small, 
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Ax < 1, we simplify the kernel T&k,, changing to a differential approximation (see Sections 1 and 3). 
We have for unmagnetized ions 

Tkk’ = & 6(1x1 - Ix’l) . (7.8) 

If the iOnS are magnetized, ktr, < (flu{, we must change k to k, in (7.8). We also recognize that by 
virtue of the symmetry in a strong magnetic field the solutions have to be axially symmetrical too. 
Using this we get for the quantity Nk z N(k, x) = 2nk2nk the equation 

((a/at) + rk)Nk = y,,Nk . 

Ln a plasma with unmagnetizcd ions (kuTi + OH,) 

(7.9) 

~“1 = & > x ?- x 
0 t. ax s 

(k2 + k’2) N (k’, x) dk’ , 

and in the opposite case 

4 7t 

?in’ = 2mno u:., x3k2 & xN(k', x) + ~k’~ & x3N(k’,x) dk’ . 
> 

(7.10) 

(7.11) 

It is worth to note that (in the contrast to the isotropic plasma) it is impossible to obtain 
analytically even an estimate of ynl without information on the turbulence spectra. At the two cases 
considered below-- the parametric excitation and the relaxation of the ion beam, e.g. the plasmon 
distributions are concentrated in quite different regions in k-space and, hence, the nonlinear 
characteristics are different. 

There is an additional advantage to change to the differential approximation in a magnetoactive 
plasma. It is connected with the fact that the maximum of the induced scattering is independent of 
k. An excitation of waves, for example, by a parametric heating by a RF-wave with frequency oo, 
products mainly oscillations near the line 

x0 = oo/o, - kuT,/q, . 

Due to induced scattering each 

x = x0 + (k + ko/cu,)u~i , 

(7.12) 

element of this line excites waves closely to 

(7.13) 

and it is clear from Fig. 7.1 that the whole line simulates Langmuir waves in the whole k-space. 
There occurs thus a fast smoothing out of the wave distribution over angle and this gives us the 
additional reason for describing it in the differential approximation. 

Eq. (7.9) determines the stationary solutions with a great degree of arbitrariness. This arbitrari- 
ness is removed, as was shown in Section 3, by the requirement that the stationary state must be 
stable under the excitation of oscillations in those regions of k-space, where Nk = 0, or, in 
“geometrical” terms: the curve I‘, must lie above the curve ynl and touches it in those points where 
the oscillations arc excited (Nk # 0). It is clear from (7.10) and (7.11) that the curve ynl is a parabola, 
ynl = cl + c2k2. One can see that in the inertial interval of angles (li,, = 0) it can touch the curve 
rk only in the single point k,(x). The solution therefore in the coordinates k, x is a jet, extending 
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Fig. 7.1. Structure of the growth rate of the induced scattering by ions: 1 is the line on which the growth rate of the 
pumping due to parametric instability reaches its maximum; on the lines 2 and 3 the growth rates of the induced 
scattering generated by the points A and B reach their maxima. It is clear that the oscillations excited by the line 1 fill 
a broad region of k-space. 

into the region of small x. To assess its location we put in (7.9) Nk = N(x)6(k - k,(x)). To calculate 
its location let the ions be unmagnetized, in which case 

*/“I cc x $ xN(x)[k3 + k;(x)] . (7.14) 

The point of contact k,(x) is then determined by the set of equations 

^i’nl = rk, 3 d(yn, - rd/dkik=k, = 0. (7.15) 

We shall show below that kO(x) changes slowly with changing angle. Taking k. out from under the 
differentiation sign and dividing the first equation by the second we get the simple relation: 

drk,/dko = rk,/k, ’ (7.16) 

It is clear that k. is independent of the shape of the spectrum and is solely determined by the linear 
damping. Using its explicit form we get for the contribution of the Landau damping y,, in the point 

ko 
Y,_ z v,iVwd2 , 

and the quantity kor, is defined 

korD z J1/2 ln(e_+,/v,i) . 

by the condition 

(7.17) 

(7.18) 

The value of k. depends slightly on the plasma parameters; when the ratio Op/V,i changes from lo3 
to 105, the magnitude of korD changes from i to :. It means that the linear damping of the waves is 
defined mainly by electron- -ion collisions. The dependence k. on x appears only in the next order of 
the small parameter kor,: 

k,(x) = ko(l - $(kor,)21nx), (7.19) 
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and this justifies the assumption made by us that k,(x) is a smooth function up to the limits of the 

applicability of our consideration x - &G. 
The preceding calculations were performed in the assumption that the electron distribution 

function had a Maxwellian character. Quasi-linear effects change the nature of the Landau 
damping in the jet region, but one can easily check that it does not lead to a shift in it. The 
contribution of the collisional damping increases in that case even more. Knowing the region of 
wave numbers in which the oscillations are concentrated we can express the conditions that the 
ions are unmagnetized in terms of the parameters of the problem: 

(7.20) 

In the opposite limiting case of magnetized ions the jet is located near the same value k0 and its 
location changes also little with changing x. However, the nature of the change k,(x) is more 
complicated and is determined by the shape of the spectrum. It is possible now to obtain an 
analytical expressions for the Langmuir spectrum from these relations for any concrete type of the 
wave excitation. 

Then let us consider the structure of Langmuir spectra in a dense plasma muc& -+ c$. It 
corresponds to the practically very important case of quasi- perpendicular wave propagation. Such 
waves are excited for the lower-hybrid heating in tokomaks, in quasi-perpendicular collisionless 
shock waves, etc. It has been shown [SO] that the basic nonlinear process for the electrostatic waves 
is again induced scattering by ions. In this case the main role in the corresponding matrix element 
Tkk, is played by the third term describing the interaction of oscillations via scattering by the 
velocity fluctuations [Sl]. Making use of the smallness of the step of the spectral pumping over 
frequencies, Aok < c&, WC transform anologously to the above procedure to the differential 
approximation. The expression ynl takes the form 

7t 0; 0; !?’ d 
‘/n’ = 2n0m c.& + (I.$ I$, dx s 

(k2 + k’2mk, dk’ . (7.21) 

It is a parabola again, therefore in the inertial frequency interval b/, = 0) the steady-state Langmuir 
spectrum takes the form of a jet Nk - fi(k - k,(x)). Its location is practically the same as in the 
previous case. 

Let us briefly discuss the turbulence in the frequency region near the lower-hybrid resonance 
[83,83]. The results, obtained above, have to be modified. First of all, the dispersion law changes to 

ok” = C$(l + z2 + y2) ) z2 = (M/m)cos2 0 , y=kR, 0: = (o~w&h~ + cf&)(m/M) , 

where 

The character of the induced scattering is changing too, the main process is the induced scattering 
by electrons in this frequency region. It is related to the fact that the ion-sound oscillations are 
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strongly damped by virtue of Landau damping by electrons in the angle region cos 0 - Jrn/M. 
This conclusion does not depend on the ratio of Ti/Te and the induced scattering by electrons 
remains the main process in a nonisothermal plasma (T, % Ti). The corresponding matrix element 
Tkk, was obtained in [82] by an averaging procedure similar to the one used in Section 1. The 
difference is due to the necessity to consider the low-frequency electron response by a kinetic 
manner too. It gives 

(7.22) 

where the Green function G is described by the same equation G = (c,/.s) - 1, but now the electron 
part E, includes also the kinetic effects. Let us assume that the turbulence spectra are axially 
symmetrical. In the region z P k,, R the spectral transfer proceeds, as one can see easily, in such 
a way that in a single scattering process lz - z’l 4 z. This gives a basis for changing with respect to 
the variable z to the differential approximation. The kinetic equations are similar to the equations 
of Section 3 and the present one (for a corresponding matrix clement Tkk, see Section 1). It is clear 
from the above results that oscillations generated due to a linear excitation close to some z = zP 
afterwards are transferred, due to scattering, to the region of lower frequencies and at the same time 
are stored rapidly in the large k-region forming these stable solutions in the shape of jets 

N(k,x) = N(x)G(k - k,) . (7.23) 

The physical reason for the energy accumulation in the short-wavelength region is, as was shown 
above in this section, the increase of phase volume of the oscillations with increasing k. 

For smaller z the transfer along the spectrum occurs in a nondifferential manner. It is then worth 
noting that at the same time as taking into account the fact that the transfer is nondifferential it is 
necessary to retain the thermal corrections to the dispersion law 

(7.24) 

Let us discuss the effect of the thermal corrections in (7.24) on the location of the jet-like spectra. If 
the waves are concentrated in the large k range, for small z the “thermal” term bccomcs the 
dominant one. The decrease in frequency in the cascading process means that the wave number 
k must decrease, similar to the isotropic plasma case. As a result the jet turns out to be in the small 
k range. On the other hand, if the angular correction in (7.24) is dominant, it follows from the 
arguments presented above, that cascading must increase the wave numbers. Hence, after 

cos0 - @ in the cascading process toward the low-frequency range the jet bends and 
approaches the region o = o ,>n along the line z = y, where the thermal and angular corrections to 
the dispersion law are of the same order. So we can put 

N(k,z) = N(z)d(k - (z[R-') . (7.25) 

In the vicinity of the oLI, the physical situation becomes quite similar to the isotropic plasma 
turbulence. The induced scattering does not change the plasmon wave numbers and, due to the 
small variation of the frequency, the condensation of the energy in the long wave range of the 
spectra takes place. As a result, modulational instability and collapse of LH-waves occur. Their 
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physical pattern is similar to the situation in an isotropic plasma. But many collapse features are 
quite different (see [90,91]). For example, the cavity structure is strongly anisotropic and both 
electrons and ions are accelerated as a result of LH-collapse. 

At the excitation of the low branch of Langmuir oscillations in a weak magnetic field (on 6 or,) 
the turbulence spectrum also takes the form of ajet and is concentrated in the region of large wave 

vectors kern - 1i2y/&Qvei). 0 ne must exclude only the vicinity of the cyclotron resonance 
cos 0 > 0.6, where the jet is turned down to the small k-region. The paper [S4] was devoted to the 
detailed investigation of such spectra including the nontrivial problem of their isotropization. 

Up to now we consider Langmuir turbulence only using the differential approximation. The fine 
structure of the jets can be obtained in the same way as in Sections 335 (see [SS]). Some results of 
these papers [84,85] are given in Figs. 7.2-7.6; the exact kinetic equations were solved within the 
on 9 o, region. It is worth to underline one important and nontrivial conclusion of [SS]. A direct 
comparison of the solutions of the kinetic equation with the exact matrix element Tkk, was 
developed and the results obtained by means of the differential approximation and “peak-kinetics” 
(or “satellite”) model. One demonstrated for the case of parametric excitation of waves that the 
satellite approximation gives a good qualitative and quantitative description of weak Langmuir 
spectra, while the differential approximation describes only the qualitative nature of the wave 

.r x, -3h x,-Zh xf -h x, x0 x, -3h x, -2h x,-h 

Fig. 7.2. (a) Contour of constant value of the function In[N(k,x)/N,,,;,,J for the steady-state solution of the exact 

kinetic equation for excess over threshold ypmrx /vci = 3.2; (b) the same, but in the dilTerentia1 approximation. 
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Fig. 7.3. (a)-(d) Contours of constant value of the function In [N(k, x)/N,,~,,] for the exact matrix element at various 
instants with ypmar /v,~ = 5.2; 5 = IY&,,; (a) t = 6; (b) T = 80; (c) z = 560 (the wave distribution reaches a steady state); 
(d) the same in the differential approximation (7 = 80). 

Y 

Fig. 7.4. The dependence of the maximum value yhrnlr of the growth rate of the beam instability on the parameter 

y = J(Mjm)cost9. 

distribution averaged along the jets; it underestimates the characteristics of this averaged distribu- 
tion by an order of magnitude. Another important point is that in the differential approximation it 
is impossible to improve the accuracy of retaining the second etc. terms in the series expansion of 
the kernel Tkk.. The characteristic length of the modulations occurring in the solutions of the exact 
equations is of the order of xdir and therefore they cannot be described by any modification of the 
differential approximation. 
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Fig. 7.5. The dependence of yh on the absolute value of the wave vector at a fixed value of y. The distribution function is 
chosen to have the formfb (r exp[ - (cl - u,,~~,,,)~/Au~], where I;,,~~~, = lo+, and AC = 0.1 rbcam 

Fig. 7.6. The linear wave damping rate Ii and the damping rate yn, as functions of the wave vector at a fixed value of y. 
Curves 1 and 2 correspond to the two stable, stationary solutions of Eq. (7.9). 

7. I. Turbulence spectra excited by ion beams 

The considerations above deal with the plasmon distribution along the inertial interval which is 
a typical problem in parametric pumping. If the turbulence is excited by a beam of charged 
particles, the plasmon distributions are defined mainly by the structure of the growth rate region 
(similar to the isotropic plasma case). It occurs, for example, in the case of the nonlinear relaxation 
of ion beams propagating across a magnetic field. It is related to the problem of the structure of 
a transverse shock wave [SS], in which the beam is created by the ions reflected from the shock 
front, or to the problem of anomalous plasma ionization [89] and of the nonlinear stage of the 
loss-cone instability. The relative motion of ions excites intense plasma oscillations with frequen- 
cies in the vicinity of the lower-hybrid one OLn, belonging to the region mH, < CI_I < on. These 
oscillations, in turn, interact with both the beam and the plasma, giving rise to an efficient 
collisionless beam relaxation. We will obtain turbulence spectra excited in this case [87] as an 
application example of the theory developed above. Scattering by particles are the main nonlinear 
processes at frequencies which are not too close to OLu, it gives rise to a transfer of the wave energy 
to the region 1 coLtI - 0.11 < qH. One can easily seen that the situation described here turns out to be 
very close to the one arising when Langmuir waves are excited in a plasma without a magnetic 
Geld. The accumulation of the oscillations in the long-wavelength region leads to a modulation 
instability and collapse. A collapse of the “lower-hybrid condensate” creates a strong effective 
damping, which as in the case of an isotropic plasma does not change essentially the turbulence 
structure and can be included phenomenologically into the kinetic equations. The lower-hybrid 
collapse was prcdictcd and first investigated in [90] within the simplified model taking into 
account only the first angular harmonics of the electrostatic potential. Recently a detailed study 
was performed of this phenomena [91] with the help of a three-dimensional numerical simulation, 
which confirmed the results of [90] and one obtained a developed picture of the strong nonlinear 
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processes near ar,H. Due to the narrowness of the strong turbulence region the energy transfer from 
the beam to the oscillations is determined usually by weak turbulence [87-89,921. The absorption 
of the wave energy does not lead to the heating plasma as a whole, but rather to the formation of 
“hot tails” (ion and electron) with a power-law dependence. 

We will consider the frequently encountered situation in which the relaxation length greatly 
exceeds the ion gyroradius, so that the ion distribution function fb is isotropic in the plane 
perpendicular to the magnetic field. By assuming the instability to be kinetic, it is possible to obtain 
expressions for the growth rate [93] yP (for simplicity, we will represent the corresponding 
dependences in graphical form in Figs. 7.4 and 7.5 and give only estimates). Let AC 4 t‘b be the 
characteristic width of the beam distribution fb, ub is the average velocity of the beam. Then the 
maximum growth rate is achieved at 

o/k N t$, - Av ‘v t),, , (7.26) 

and the following estimate for the maximum value of the growth rate takes place: 

(7.27) 

The growth rate is a smooth function of the angle 8, since */b,max - (l/w,J (see Fig. 7.4). The 
dependence of the growth rate on the absolute value of the wave vector is shown in Fig. 7.5. The 
maximum is achieved at ok - WLH and k. - mLH/ub and it will be assumed that the latter quantity 
is much less than r; 1 and r, I. With increasing y the graph of the maximum growth rate bends 
towards the region of large values of 

koR - h_H/Db)h,/~p)Y . 

At koR - 3, a strong Landau damping is switched on and the instability disappears. Furthermore, 
with an increase of y, the value of the growth rate itself is decreasing and the threshold ^Jb = V,i/2 of 
the instability may be inaccessible for large value of y. These effects allow us to restrict the 
discussion to the propagation of quasi-transverse oscillations only. 

It was shown above that for y > 1 the major role is played by the scattering by ions, whereas for 
y -C 1 the scattering by electrons becomes the most important. We will consider the region y > 1 
first and examine the case mk(L)n < 0 z. This condition is practically always satisfied in astrophysi- 
cal applications [SS, 89,921. The kinetic equation has the form (7.9), where Yb is included in the fk 
term, as well as Landau and collisional damping. Expression for ynl takes the form of a parabola 
(see (7.21)). It follows from the considerations above (see (7.15)) that for stationary solutions the 
surface rk lies higher than yn, and is tangent to it at the points where the solution exists. Fig. 7.6 
shows the dependence of rk on the wave vector for a fixed value of y. Since ?“I is a parabola, there 
exist two stable stationary solutions, corresponding to the curves 1 and 2 in Fig. 7.6. In both cases, 
the distribution of the oscillations is singular and has the form of a jet in k-space. 

Let us begin by considering the first case. Here there exist two jets: 

Nk = NdY)~(k - k,(y)) + N,(y)W - k,(y)) . (7.29) 
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The first stretches along the line of the maximum growth rate k = k,,(y) and the second is located in 
the region of large k, where Landau damping becomes important. Substituting this solution in 
(7.15) yields 

YL(kO) + v,i - Yb(ko) = aki(d/dy) (Nb + Ni) + a(d/dy)(kiNb + kf Ai,) 3 

Yi.(ki ) + v,i = akT (d/dy)(Nb + N1) + ~(d/dy)(k?N, + kf N1) 3 

(7.30) 

(7.3 1) 

where 

7l 
ai (M/m)li2 . a=2MnCl;+CO:, 

By substracting (7.30) from (7.31), we obtain 

a(k: - k;)(dldy)U% + N,) = y,,(k,) - yi(k,) + ?/t, > 0 . (7.32) 

Thus, the total number Nh + Ni of waves increases with y, and the natural boundary conditions 
Nk = 0 cannot be satisfied for y > yo, where yb(yO) = v,i + yL. Therefore, the distribution of the 

oscillations has the form of a single jet. In contrast to the case considered at the beginning of this 
section, plasmons are concentrated in the comparably low k-range. It can be seen in Fig. 7.7 that for 
a “narrow” beam, when Ati 4 Q,, the jet is located at the maximum of the growth rate 
k. 2: (qJq,)(l + AC/Z;). For Av - q,, the precise location of the jet in the region of positive growth 
rates is determined by conditions (7.15). Since the obtained results are weakly dependent on ko, we 
shall assume, in the following, that k. = a,&,. The onset of such a distribution of jets was 
confirmed by a numerical solution of (7.9). This result is related in an essential way to the axial 
symmetry of the growth rate. 

The distribution of oscillations along the jet is described by the equation 

1 =2ako+koNb. dy (7.33) 

Fig. 7.7. The angular distribution of the oscillation energy density W(y) at yO = 20. 
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Typically in astrophysical applications the collisional damping is negligible, Landau damping is 
also small along almost the whole jet. By taking this into account, Eq. (7.33) yields 

WY) = & y” Yb - dy’ 
0 s y k,(f) 

l/b&h3 

= 2~kobbLH 
[arctan y. - arctan y] , (7.34) 

where y, is the initial point of the jet. In a weakly collisional plasma the value y. is defined by 
Landau damping, which becomes significant for kZvT./ali - 4, i.e. 

For y < 1, the main nonlinear process is scattering by electrons. The corresponding equation 
describing the evolution of plasmons has the same form as (7.9), and ynl has been found, for 
example, in [82]: 

k2y& $ +; &yNk,kf2 dk’ . (7.35) 

It can be seen that ynl is a parabola as a function of k. Therefore, by repeating all the arguments 
used earlier, one can find that the spectrum also is built-up of a single jet, located along the line of 
the maximum growth rate. The equation for the jet-like spectrum coincides with (7.33) and, 
therefore expression (7.34) is valid up to the limit of applicability of the differential approximation 

WAY 2 - k,ur,, i.e. y N koR. 
The energy density of oscillations in the inertial interval y* and y, is 

W = d-j 
s 

‘a cok N&f) dy’ 
Yf 

MYO) - c?(Y)1 9 

where 

g(y) = 
s 

’ [arctan y. - arctan y’] dy’ 
0 

= ln( 1 + y’) - y arctan 
( > 

ly”+,oyy , 

and the energy flux entering the plasma in this interval is 

Q = nT r’(“)(oA + o,‘) $ [4(yo) _ +(y*)] 

nu;mLH r 

(7.36) 

(7.37) 

(7.38) 

The plots of W, 4(y) are shown in Figs. 7.7 and 7.8. Here y* is the boundary of the strong 
turbulence zone. 
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01 10 20 Yo 

Fig. 7.8. The function a(~,), describing for y* < 1 the energy flux into the plasma. At y,, 2 10, it is seen that the quantity 
Q is practically independent of yO and max 4’,(yO) = 1.6. 

The estimates, presented in [87], are demonstrating that the interaction with the ion beam is 
considerably weak inside the strong turbulence zone and the energy deposition is defined by the 
weak turbulence theory. 

Finally, let us discuss briefly the role of decay processes of the type ok -+ ok, + e&. Their growth 
rate ‘jd - ok( lV/nT)(k~)~ is sufficiently large, and they may compete with the induced scattering 
(see [98,99]). Nevertheless, for o < 2~0~” the decay processes are forbidden, because of the form of 
the dispersion law. Since the energy density in a jet increases with decreasing y, all the oscillation 
energy is, in effect, concentrated in the vicinity of w LH and, therefore, the role of the decay processes 
is small and they can be neglected. 

7.2. Injluence of inhomogeneity 

It has been shown that singularity of the turbulent spectra is a consequence of the Fredholm 
structure of the kinetic equations. A small noise level causes a regularization of the spectral pattern, 
but does not change the integral parameters of the turbulence. Plasma inhomogeneity also breaks 
the Frcdholm structure and its influence often can be more essential than the effect of external 
noise. If the inhomogeneity is strong enough it can suppress entirely the excitation of waves. Hence, 
we will consider below the influence of a sufficiently weak inhomogeneity in the case of the 
parametric excitation 

(7.39) 

Here L is a characteristic scale of the inhomogeneity and yp is a growth rate of the parametric 
instability. A Similar criterion exists for the case of the beam-plasma interaction [95]. In such 
a situation it can be restricted to only a consideration of the inertial interval. 

The kinetic equation (1.41) must be modified in the following way: 

(7.40) 

Let us consider briefly the case of an isotropic plasma. Due to the smallness of the group velocities 
one can neglect the second term in (7.40) and consequently the convection of plasmons. To estimate 
the broadening of the jet-like spectra let us consider the third term in (7.40) as external noise and 
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use the results of Section 2. For a two-dimensional jet we obtain 

(7.41) 

One can see that the broadening of the singular spectra is small. It means that, as the effect of the 
noise terms, an inhomogeneity leads to a smoothing of the plasmon distribution, but does not 
change the integral features of the turbulence. 

The situation changes drastically in the magnetoactive plasma. As was shown in this section, in 
the case of the excitation of Langmuir plasmons with the dispersion cl)k = ~,lcosOl = o,k,/k 
nonlinear processes result in the “condensation” of the spectrum in the region of large wave vectors, 
where plasma damping is strong. A considerable change in the damping and, consequently, 
a significant modification in the spectrum results from just a slight broadening caused by an 
inhomogeneity Ak/k 2 (kr,)‘. 

Let us consider the steady state; for simplicity we will discuss the case of a strong magnetic field 
on P 0,. In this case k?ok/5 k - ri?ak/ar, but, due to the singularity of the spectra, the convection 
term o, 5rzk/?r in (7.40) can be neglected. If we consider the case when the gradient of the density is 
parallel to the magnetic field and op” < okc&,, the plasmon distribution has to be axially symmetri- 
cal and nk = n,‘(X), (x = cos 0). It is convenient to separate oscillations travclling in the direction of 
increasing concentration n; (y) and in the opposite direction n; (y), where y = 1 xl. Generally 
speaking, they correspond to different nonlinear terms y,;. In the assumed case of a strong 
magnetic field e&mu B oi the third term in the kernel of the kinetic equation (7.2) dominates. 
Going over to the differential approximation we obtain (compare with (7.11)) 

rii = k2yWWyCo + y(dldy)yCz f 2ky2(d/dy)y2G , 
(7.42) 

Ci = (7t2/Mn) 
J 

k2+i(nk(y) + ( - l)‘nl(y)dk 

The narrowness of the distribution in k-space allows us to ignore the spatial migration of 
oscillations and to assume that a/? k, = xa/8 k. Consequently, the steady-state kinetic equation 
simplifies to 

(7.43) 

The structure of the solution (7.43) is shown qualitatively in Fig. 7.9. Since oscillations drift away, 
steady-state conditions are obtained if yn$ > rk, i.e. if the curves :/$ intersect the curve rk at two 
points and the distribution of the oscillations is no longer singular (see Fig. 7.9). In the case of 
oscillations travelling along the concentration gradient we find that n: for k > k, is of the order of 
the thermal noise ni. The wave vector of n$ decreases along the inhomogeneity, but it begins to rise 
in the region rl, > rk. The maximum of the distribution nk+ obviously coincides with the point 
K+ and then in the range 72 < rk there is a rapid fall to the thermal noise level. A distribution ni is 
of similar form, except that the fall in the range k > k- is steeper because of the strong Landau 
damping. Thus, the spectrum has the form of two jets representing waves travelling in opposite 
directions. A reduction in the gradient reduces the thickness of the jets and causes them to coalesce 
into one. 
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Fig. 7.9. (a) Dcpendenccs of vi,, y,l and 1; on the wave vector k. (b). Dependences on k of the number of waves n; and 
n; travelling in the direction of increasing and decreasing concentration, respectively. 

We shall assume that the concentration profile is linear 8ruk/sz = ok/L. For simplicity, we shall 
consider fairly low oscillations obeying y2 4 1. It can be assumed that ?;I = r;i - ynl, 
k+ = k_ = k2, K+ = K- = k,. Since the dependence of ynl on k is known, Eq. (7.43) can be 
integrated, which gives 

s k 

nit = Qexp ,“* (S,i - rk)--& dk , 6 = n,0cxp 
k s 

kl (?“I - r,)$ydk 9 
k 

(7.44) 

where the limits of integration are selected in accordance with the qualitative nature of the solution 
described above and ni is the thermal noise level. Going over to dimensionless variables and 
integrating, we obtain 

Inn:(y) = I 
k;-k3 d 

3 ydl’yCo+(kz-k) Y$YC,-~ 
( ) 

-(?j)“‘~(exp( -&)-exP( -&))I. 

lnni(y) = 1 
[ 

k3-kk: d 
3 yd-/o+(k-kl) Y-$YG-I 

( ) 

-(t$‘;‘~(w( -&)-ew( -&))]. (7.45) 

where I = (L/Q,) (v,i/c1)k). Here the n,,!’ are normalized to ni and all the frequencies are normalized 
to v,i; k is understood to mean krD, whereas Co, C1, C2 arc still described by the formulas (7.42) but 
with other values of the coefficient before the integral n:‘/Mn -+ R2ni/Mnv,iri. Knowing the 
explicit dependence of nc on the wave vector, we can integrate in Eq. (7.42) and obtain a closed 
system of equations. Obviously, the main contribution to the integral of n; is the region of the 
maximum where k - kl and the integral of n; is dominated by the region near k - k2. Calculating 
the integral by the steepest descent method we shall arrive at a closed, but complicated system of 
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equations. It was studied in [94] and here we present only estimates. When the spectral broadening 
is small Ak/k 4 (kr,,)*, the structure of the solution and the value of -J,_-region change slightly. 
Therefore, we shall be interested in the opposite limiting case. At the boundary of the validity of this 
condition Ak/k - (krD)’ the width of the jets and the distance between them are of the same order 
of magnitude. The connection between Ak and the size of the density gradient L causing this 
broadening can be estimated in the same manner as the broadening due to thermal noise (see 
Section 2). From (7.43) we obtain 

y’o,/L n,JAk - (C*/Sk’)(y,, - rk)Ak2nk . 

Substituting here 

(?*/Ck2)(ynl - fk) - v,iri/(krn)4, 

we obtain the value L = L,, when Akjk = (krD)* and 

L, - (mplvei) rDy2/(krD)5 . 

(7.46) 

(7.47) 

At first sight the reason for the broadening of the spectra of an inhomogeneous plasma is 
obvious: the wave vector of oscillations travelling in a medium with an inhomogeneous concentra- 
tion changes in accordance with the equation fik,/TJt = - (?wk/az. However, if we estimate the 
change in the wave vector also during the oscillation life time v,i ‘: we find that this change is 
considerably less than the broadening obtained above. The answer is as follows: in a homogeneous 
medium the contraction of the spectrum into a jet is due to the nonlinear processes, associated with 
Fredholm structure of the kinetic equations, and this is why the spectrum is so sensitive to a change 
in the structure of these equations. It follows that even a weak inhomogeneity can influence 
significantly the process of the “condensation” into jets. 

With decreasing the value of L, n: and n; diverge to the left and right of ko. The collisionless 
damping increases in the case of n;-, whereas for n:’ WC can ignore the term representing this 
damping. As a result, the ratio of N- to N+ decreases 

Iv-/w - (L/L,p4, 

where L, is given by (7.47). Landau damping and hence, a producing of fast electrons, is determined 
by the N- waves propagating toward the direction of decreasing density. As a result, a very weak 
inhomogeneity generates a macroscopic current, which can be large enough [96]. 

We have shown that the effect of an inhomogeneity is to alter the structure of the equations, 
giving rise to an effective “noise” so that a transverse inhomogeneity should also deform the 
spectrum. Since in typical experiments such an inhomogeneity is considerably greater than the 
longitudinal one, and also because oscillations travel mainly across the magnetic field, this aspect is 
very important. We can easily show that if 

(7.48) 

the turbulence spectrum is greatly modified. However, an inhomogeneity results primarily in an 
angular change of the spectra, namely, their axial symmetry, but may not give rise to fast electrons. 

Much more important can be a stochastic long-wavelength inhomogcneity (see [94,98]). Such 
effects can be due to, for example, drift or magneto-acoustic oscillations which always occur in 
typical experiments. The scattering of oscillations by such an inhomogeneity results in diffusion in 
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k-space, so that the steady-state equation (7.40) can be written in the form 

D,Z2nk/ak’ + DIA,nk = nk(Tk - -i),,,) . (7.49) 

Since such a low-frequency turbulence can naturally be assumed to be axially symmetric, the most 
important effect is the diffusion in the transverse direction. The diffusion coefficient DI can be 
obtained consistently from the kinetic wave equation, transferring to the differential approxima- 
tion; but in our case it is sufhcient to obtain simple estimates [97:98]. Let the change in the 
concentration of the inhomogeneity be 6n and the characteristic transverse wave vector be 4. Then, 
the order of magnitude of the diffusion coefficient is D,_ - (a kl/if!!t)2r, where z is the time for 
high-frequency oscillations to travel a distance q- ‘, z - (qc,,)- ’ - kO/qmk, and ak,T? I is governed 
by the condition 2k,fit = - Vlok, so that the diffusion coefficient is 

DI - okqko(6n/n)2 . 

Eq. (7.49) coincides with the stationary Schrodinger equation, nk is similar to the ground state 
$-function in the potential rk - ynl. For small values of &n/n, rk - ynl has a parabolic profile and 
the solution of (7.49) is a well-known one. After that it is possible to calculate C,, and C2 and finally 
to determine the spectrum. For higher values of h/n the variational principle can be used [98]; 
qualitative estimates are the following. A broadening of the jet due to the diffusion is 6k, which can 
be determined from Eq. (7.49) exactly as has been done above 

D,/6k2 - (a2/Ck2) (jfnl - rk)Sk2 - v,i/(krD)2(hk/k)2 (7.50) 

A considerable increase in Landau damping occurs when &k/k 2 (kOrD)2, so that the intensity of 
the long-wavelength oscillations corresponding to the onset of significant heating of electron “tails” 
is given by 

(6n/nj2 2 (Veik/Wq)(krDJ3 (7.5 1) 

We can see that the fluctuation level defined by Eq. (7.51) is very low. In the case of characteristic 
parameters of tokamaks at frequencies of the order of the lower-hybrid one, low-frequency 
oscillations have a considerable influence on the spectra of the high-frequency turbulence even for 
&n/n I 1% and they increase considerably the number of fast electrons. It should be stressed that 
even if a transverse inhomogcneity dominates in the generation of fast electrons, an analysis of the 
longitudinal inhomogeneity is very important because it leads to the heating of the electrons and 
the generation of a current becoming anisotropic. 

Up to now, we considered only the influence of external inhomogeneities. But an “internal 
inhomogeneity” can arise spontaneously, due to the development of the modulational instability. 
For two-dimensional jets, what is the case in a magnetized plasma, instability does not lead to 
collapse, but to the spectral broadening. This problem will be discussed in Section 9. 

8. Langmuir turbulence under parametric excitation 

We presented above a detailed study of turbulence spectra in the inertial interval and some 
results on the matching of these spectra with the pumping region. Unfortunately, for the two most 
common ways of Langmuir waves excitation: by a beam of charged particles or by a powerful 
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electromagnetic wave, it is difficult directly to apply this general theory. As was shown in the 
Section 6 the essential part of the turbulence spectra interacts with the particles if the beam is not 
strictly monochromatic. The inertial interval turns out to be a narrow one and the beam structure 
defines the jets pattern to a great extent. The situation is even worse for the case of parametric 
excitation. Usually most attention is concentrated on the first-order decay instability 

which is a decay of an electromagnetic wave into a plasmon and a strongly damped ion-sound 
wave. This process is quite similar to the induced scattering by ions, the basic nonlinear process in 
an isothermal plasma and the main object of the present survey. For T, - Ti the second-order 
decay instability, or, in other words, the aperiodic (two-stream) instability 

200 + (L)k + 0-k (8.2) 

has a growth rate which is lower only by a factor of two in the isothermal plasma. (The discussion 
of parametric instabilities and of their description one can find e.g. in [ lOC-1021). One reason to 
neglect the latter one is that a description of this process is not a trivial matter-in addition to 
induced scattering by ions, an important role is played by the phase-dependent mechanism of 
amplitude limitation. The equations describing this process turn out to be quite different from the 
equations of standard weak turbulence theory, and the solutions of these equations have several 
remarkable features. In particular, the steady-state wave distribution in the region of the positive 
growth rate of the aperiodic decay instability of second order is a standing monochromatic wave, 
so that the narrowness of the region in which the growth rate for this instability is positive does not 
lead to any decrease in the energy deposited in the plasma. Nevertheless, on the basis of analysis 
and numerical simulation we believe that its contribution is small for any amplitude of the external 
field. We emphasize that this is a numerical smallness, due to the particular coefficients in the 
equations: rather than a smallness which is immediately obvious. The amplitude of the plasma 
waves which are excited and their distribution in k-space are governed essentially by the first-order 
decay instability. 

1. Let us start with a consideration of the isotropic plasma case. An equation describing the 
excitation of Langmuir waves by a uniform high-frequency electric field E. cos mot can be easily 
obtained from (1.32) by a change of variables, 

ak + ak + (k/the) (~??ZCD,/&#~~(& V3(k))ei(“o-“~)f . (8.3) 

It means that now the electric field in the plasma consists of two parts, an electric field of Langmuir 
waves and an HF-term corresponding to an electromagnetic wave. The coefficient in (8.3) is easily 
calculated from the relation between an electric field and canonical variables which was discussed 
in Section 1. The equation for ak now takes a form 

= I/kaTkC2i(00-uP) 
+ 

s 
Tkk,k,k3d,ak,Uk,&k + kl - k2 - k3)dkl dk2 dk3 , (8.4) 
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where the uk are the normal wave amplitudes, which are related to the electric potential by 

ak = k$k/(8nW#” , 

G(w/k) = &- * 
T, 

, &ok=- 
uk Mno s 

. 
Gk = ak -I- I? + 0~ jznnoTek2 

v, = WP 3;;nE$2k 2 G (“y ) . 
0 C 

(8.5) 

Here ok - 3/2w,k2r: is the dispersion part of the frequency of the Langmuir waves, and y is their 
damping rate; WC assume this damping to be collisional. 

Eq. (8.4) holds if the external field is not too strong; the characteristic instability growth rate must 
be small in comparison with the damping rate of low-frequency beats: 

where ^J~ and o, arc the ion-sound damping and frequency, respectively. Under this condition 
Eq. (1.30) is valid (see Section 1). In an isothermal plasma we have ys - (a,. As the temperature is 

reduced, the ratio ys/~tis decreases, and when Ti 4 T, we have ySjo, - m. Linearizing (8.4) and 
assuming uk CC cxp( - &?t), we find the instability growth rate to bc 

(8.7) 

We see that if condition (8.6) holds, waves are excited in two nonintersecting regions of k-space. The 
imaginary part of the Green function G reaches a maximum at wk + kvT, - cue, and an instability 
develops with a growth rate 

l’k = o,((kEo)2j32moT,k2) ImG((oo - ak)/k) . (8.8) 

The imaginary part of G describes two processes: the conversion of the electromagnetic wave into 
Langmuir wave by ions, w. + ok + kv.,.,, and the decay of the electromagnetic wave into a plasma 
wave and a virtual ion-sound oscillation, c?)~ + ejk + kc,, c,” = (T, + 3 Ti)/‘M. Fig. 8. I shows a plot 
of the function Im G. In the case T, = Timax Im G z 1 is reached for o. - (?)L = 3/2ku,:; if 
Ti < T,, we have max Im G - (os/ys, and the maximum is reached at R)~ -- (‘_)k 2: kc,. When Ti/Tc 
decreases, the maximum of G becomes narrower, and this process becomes more “resonant”. Near 
the surface (8.2) an aperiodic decay instability of the second order develops in the narrow region 
Ia0 - Rec&I -C 2) V,(. Its growth rate, which is easily derived from (8.7), is 

y = (v,( = ((kEo)2/32 nnoT,k2)IG(0)I = q,(kEo)2/32mo(T, + Ti)k2 . (8.9) 
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Fig. 8.1. Plot of the imaginary part of Green function Im G(x) = - Im G( - x); .x = QJu_+, for different values of ratio 
Tc:‘Ti. 

The ratio of the growth rates for these processes is 

V = T,/(T, + Ti) max Im G ; 

in other words, up to Ti = T, the growth rate of the process (8.2) is numerically small in 
comparison with that for (8.1), so that it can be neglected in a qualitative analysis of the plasma 
heating. If we assume the wave phases to be random, we can simplify (8.4) considerably, converting 
to a statistical ensemble. This is done most simply for the process (8.1). Multiplying (8.4) by a:, 
averaging over phases, and neglecting the rapidly oscillating terms, we find a kinetic equation for 
the number of quasi-particles (1.41). 

2. We turn now to an analysis of process (8.2). At first, we neglect energy cascading through the 
spectrum, i.e. we assume that all waves lie near the surface (8.2). Since the initial wave is coherent, 
the sum of phases Gk for the excited waves ah and a-k is fixed; the energy flux into the plasma is 
proportional to Cp k. Accordingly, in order to describe the turbulence we need to introduce, in 
addition to the number of waves nk, the “anomalous” correlation functions (Tk = (aka_ke2iU,0r). 
Equations for nk and ck can be derived in the standard manner, by splitting the quaternary 
correlators into binary correlators [loo, 103, 1041. Since near the surface (8.2) we have 
Im G(k, ok - o,,) $ 1, we arrive at the following system of equations [lOS] 

+(dnk/dt) + ynk = Im Pk(Tz , +(dCk/dt) •t itikak = ipknk , (8.10) 
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where 

The variables @ are the normal variables of the linear problem, so that Eqs. (8.10) describe a broad 
class of physical phenomena. These equations have been studied in detail for the case of parametric 
excitation of spin waves in ferromagnets [103]; we will use those results here. We note first, that 
phase correlation in the pair ah, umk is complete: n k = 1 csk/iJ. This is true even during the transient 
stage of the process. Furthermore, all the stable steady-state solutions of (8.10) lie on the surface 
Wk = 0, i.e. waves are excited only at the surface, where the decay conditions (8.2) hold for 
frequencies rcnormalized due to the interaction. In particular, this circumstance implies that in 
a continuous medium there is no stabilization of the instability by a nonlinear frequency shift. 

Before we turn to a further description of the properties of the solutions of (8.10) we note that the 
single-frequency nature of these solutions considerably simplilies the coefficients of nonlinear 
interaction: 

2 

-?;,, = cop (kk’)2 

2n(T, + Ti)k2k’Z ’ 
SRk’ = fkkk’ ) v = Q) 

Wd2 
k 

’ 32~n(T, + Ti)k2 ’ 
(8.11) 

The simplest solution of (8.10) is the monochromatic standing wave 

nk = no(C?(k + k,) + 6(k - k”)) ; (Tk = noexp-‘@” , 

where the amplitude no and the phase Q. satisfy the conditions 

V~Osin@o=~, 4S2nf,= Vk2,-y2, S=Skok,. 

We see from the Eqs. (8.10), (8.11) that we have V, cc S k,k. It is known that in this case a monochro- 
matic wave is the only stable steady-state at any level of the pump above the threshold. This steady 
state is established over a time - (l/V,,) ln(V,JSj) as the waves grow from the thermal noise level 
J: To now take into account wave pumping through the spectrum due to induced scattering by ions, 
we write ak as the sum of a monochromatic part Ak and a stochastic part ~5~. Then singling out the 
coherent and incoherent parts of the dynamical equations we find that the appearance of waves off 
the resonant surface leads to the appearance in (8.10) of a nonlinear damping: 

ynl = 
s 

Tkkenke dk’ , (d,&,) = n&(k -k’) . 

The waves which are excited at the resonant surface constitute the stochastic part of the pump, with 
a growth rate 

I-, = T,,,n, . (8.12) 

It has been shown above that the spectrum of waves excited due to processes (8.8) consists of 
a series of sharp peaks, spaced at intervals kdifo As a result of the onset of the aperiodic decay 
instability, energy is evolved in an even more anisotropic manner, so that the wave spectrum also 
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consists of a series of peaks. 
A numerical solution of the system (8.10) with the nonlinear damping derived above due to 

induced scattering shows (see Figs. 6.2 and 6.3) that there is only a series of peaks due to process 
(8.1). This circumstance is attributed to the finite width of the peaks and the comparatively slow 
decreasing of the imaginary part of the Green function G kP. Nevertheless, the simulation demon- 
strates that a “peak-kinetics” model, discussed above, provides a good coincidence with simulation 
of the exact equations. The presence of a coherent standing wave leads to only a slight additional 
spreading of the first few peaks. As in Section 4, we neglect the finite peak width and take into 
account only the interaction between the nearest neighbours. Furthermore, in the same approxi- 
mation, we can set 0 = 0 [105]: 

1 dnO ----_ 
2 dt 

nO(VkOsin Q0 - [r + T(a)N,]) , VkO cos QO + 2Sn0 , 

dN/dt = N( - ^r’ + TN-1 - N~+I)), (8.14) 

(8.13) 

WC/W = NJ - Y + TN,- I) , 

nk = 1 Ni6( f ko q ikdif) , 

i=l 

where 

T = max T ((k - k’)/kdif) = T(S) . 

In Eqs. (8.13), (8.14) the peak positions are assumed fxcd. Generally speaking, this is not actually 
true, and their coordinates are governed by the stability condition [103]. However, as the 
numerical results show, the peak shift is slight in comparison with the peak width and can be 
neglected. 

3. Let us consider steady-state solutions of &is system. If we neglect a term T ($)n, in (8.13) due 
to the sharp dependence of the Green function G(t), the peaks with even and odd indices will turn 
out to be unrelated. The amplitude of the next-to-last peak is always y/T = NC. We see from (8.14) 
that the amplitude difference between two peaks with the same parity is NC, so that if the total 
number of peaks is 2m the amplitudes of the first is 

N, = mN, , 

The amplitude of the second peak is determined from the steady-state solution of (8.13): 

(yko - 7)/T = Nz < mN, . 
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As the pump growth is increased, the amplitude of the odd peaks remains “frozen” while that of the 
“even” ones increases: when the pump level above threshold is described by 

($f’ - q)lT = mN, , 

the first and the second peak become equal in size, while the amplitude of the last peak varies in 
correspondence with N,. Then a (2m + 1)th peak is created. In this situation, as follows from the 
considerations above, the amplitude of the second peak should be independent of the extent of the 
pump level above the threshold; it should be equal to mN,. On the other hand, we see from (8.13) 
that this amplitude increases continuously with increasing ^Jko (within small terms). This result 
means that the (2m + 2)th satellite is created immediately; etc. This result changes, of course, when 
the finite peak width is taken into account, but the results of a numerical simulation clearly show 
that the interval of pump levels above the threshold in which there exists an even number of peaks 
is much larger than that in which there is an odd number. 

We can now write the amplitude of the first peak as 

(8.15) 

where the bracket denotes the largest integer. For no we have 

no’ = (1/4S2) [V,2, - (7 + T(3/4)N,)2] , 

or, substituting the numerical values of the Green function for Ti = T,: 

no’ = (1/4T ‘) [(j&/4) - (1/ + 0.37g[-j$/y])2] . 

If we neglected the sign of the largest integer, we see that in the case 

yk < y/(0.5 - T (3/4)/T) N 7.77 

the second order decay instability is completely suppressed. When the pump is far above threshold 
we have 

no = + N, [a - (T(3/4)/T)2]‘!2 N 0.15N1 , 

i.e. in this case we can in fact neglect its effect on process (8.1). Accordingly, the amplitude of the 
monochromatic pair excited by process (8.2) turns out to be far lower than that of the first peak. 
This occurs because of the large growth rate Yk = 21/, for Ti - T, in (8.1), the greater nonlinearity 
due to the anomalous correlations, and the circumstance that the first peak causes quite nonlinear 
damping in the region CL)~ = ao. A numerical experiment [105] confirms these results well: the 
amplitude of the monochromatic standing wave is small, not only in the steady state, but also 
during the transient process. 

Is there a change in the nonlinear decay of the wave distribution at the resonant surface & = O? 
For this case we can easily find the threshold for the creation of the second group of waves [106]: 

where Yk is the total damping at point k and 

-jk=j!+(~%/2noT)cos20[ImG(3/4cos0/2)]NI, cos8=(kko)/kko. 
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Since V, GC Skku, the threshold for creation of the second group of waves is again infinite under the 
condition 

;‘k vk<, > ?ik<, vk . 

Since Im G(3/4cos 8/2) > Im G(i), this condition in fact holds. 
4. One of the most important characteristics of RF-heating is the energy flux into the plasma, Q. 

For process (8.1) we have 

Q, = 2&,WpN, = 8 5 

Omitting the symbol telling us to take the integral part, we have Q cc E4. This result can also be 
found by simple estimates; it agrees with the conclusions reached in the diffusion approximation 
and has been confirmed in several experiments. The jumps in the energy flux found above should be 
particularly noticeable when the coefficient giving the excess of the pump level above threshold is 
- 1. As the numerical simulation shows, however, the finite peak width causes a pronounced 

overlapping of the peaks, so we can hardly expect to detect this effect experimentally. From (8.8) we 
find the energy flux into the plasma due to the second-order decay instability to be 

Qz = 2c+l/k,,&,sin CD0 = 2C9,n& + T(3/4)N,) ) 

QI/Qz = Y’koNl/noo: + r(3/4)N,). 

Far above threshold we have 

Qr/Qz = *Jk0/T(3j4)no ‘u (T/T(3/4))(N,/n,) = 16.5 . 

Fig. 8.2 shows Q, and Q2 as functions of time for the case yk,,/y = 3. Although Qz dots not vanish, 
because of the finite peak width it is small, not only in the steady state but also in the transient 
process. 

Well above the threshold, ‘jk,,/y > kolkdir, with the energy absorption due to Langmuir collapse 
(see Section 6), no steady state is established. The energy evolved at k - k. is transferred by pulses 
to the long-wave region. This process was described in detail in previous sections. In this case we 
can essentially neglect the influence of the monochromatic wave. Fig. 8.3 shows Q1 and Q2 as 
functions of time. We set that here again we have Q, $ Q2. The oscillations of Qz are not as sharp, 
because of the additional phase mechanism which limits the wave amplitudes. The energy 
evolution in the plasma due to the process (8.1), on the other hand, is pulsed, and the pulses are 
separated by quite long-time intervals, ;‘kOr - ln(yk/Tf). 

5. It is worth to note that if the pump is not coherent, the process (8.1) is greatly suppressed. If 
the spectral width Aw exceeds V,n,, - to,E2/32xnoT, a growth rate for the process (8.1) drops 
VknO/Aw times. The growth rate of the instability (8.2) does not depend on the phase. It means that 
waves are excited by the different spectral components independently 

i’ = Tkk,NodU , 
s 

where N, is related to the electromagnetic wave flux I as I = I co, j No dcd. If Acr, is small in 
comparison with kuT,, the value of the growth rate practically dots not change. When Au > ko,,,, 
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Fig. 8.2. Energy lluxes into the plasma due to the decay instabilities of first (Q ,) and second (Qz) orders for the case 
‘I& = 3.2. 

Fig. 8.3. Energy fluxes due to the decay instabilities of the first and the second orders for the case of a pump infinitely far 
above threshold. 

the growth rate becomes a smooth function of k and differential approximation can be used also for 
the growth rate 

‘/ - TN,(kv,)‘/Ao . 

6. Let us discuss now an excitation of waves in a magnetized plasma. It occurs again as a result 
of two processes (see [ 1071 and references therein) (8.1) and (8.2). The same arguments as above can 
be applied here. As a result, we can discuss only the process of conversion by ions. The absorption 
rate Q is 

Q = 
s 

yp(dkNkdk - y,w . 

The energy of waves in the region of growth rate w can be estimated from the condition yP - ?“I or 
w - Ei/87~. For the most interesting case m(fln + oi, for example, 

and 
Q - (o;t/o~~)(E~/16xn,T)2noT . 

The numerical coefficient can be determined exactly only with the help of numerical simulation of 
the exact equations [lOS, 1091. In an isotropic plasma all absorbed energy is transferred to the 
electrons, and within the scope of weak turbulence there is electron heating via collisional 
absorption. In the magnetized homogeneous plasma collisions are also important, but in this 
situation the inertial interval is very long and the wave frequency can change significantly Aw - o. 
Due to the conservation of the plasmon number a part of energy AU/O can be transferred to ions 
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via scattering by ions. Detailed calculations (see [l lo]) demonstrate that the ions can absorb up to 
30% of energy. This pattern can be strongly affected by the density fluctuations. As shown in 
Section 7, even a very small fluctuation level strongly increases Landau damping. As a result, the 
interval of cascading is shortened, and the part of energy to be transferred to ions decreases. In 
Section 9 we will show that such fluctuations can arise as a result of modulational instability and all 
energy is typically transferred to a small group of accelerated particles. 

9. Singular spectra of Langmuir turbulence and modification of weak turbulence approach 

9. I. Introduction 

We presented above a very detailed pattern of the weak turbulence of an isothermal plasma. The 
natural questions arise: how applicable is weak turbulence theory (WT) to real experiments? Does 
it work? These “naive” questions have recently become especially urgent. The increase of computa- 
tional power makes possible a numerical simulation of the dynamic equations and direct compari- 
son with WT predictions [111--1141. On the other hand, an active development of plasma 
diagnostics permits now to measure a very fine structure of the excited turbulence and to compare 
with the theoretical results and with numerical experiments. Especially the studies of the plasma 
turbulence induced in the ionosphere F-layer by powerful HF-radars [115-1173 are well 
documented. It is accepted everywhere that the WT approximation is valid at the low turbulence 
level, precisely, typical growth rates must be smaller than the frequencies of interacting waves. The 
simulations of the dynamic equations, performed in the one-dimensional geometry [ 11 l] and in the 
two-dimensional geometry at low excesses above threshold [113], confirmed in very details WT 
results. But experiments and simulations demonstrate a lot of features inconsistent with WT 
predictions even at a low turbulence level. All simulations, cited above, dealt with the isotropic 
plasma case. For magnetized plasma turbulence, as was mentioned early, the range of the validity 
of WT must be broader. Nevertheless, experimental data, related to parametric heating, sometimes 
strongly contradict WT theory. For example, the measured width of the turbulence spectra does 
not exceed a few cascading steps in the wide range of the pump intensities for various experimental 
situations [l IS]. As we saw in the previous sections, within the WT approximation a very large 
Ao - w width of the turbulent spectra must be expected. From our point of view this contradiction 
is a consequence of the singular character of Langmuir spectra and can be explained by the 
following reasons. It was shown that WT spectra have a singular, jet-like structure, being arranged 
on the lines, surfaces in k-space or even consisting of a set of quasi-monochromatic waves. Such 
a distribution can be unstable [119, 1201 against the arising of spontaneous spatial modulations of 
the turbulence, which can lead, in principle, to a local growth of the intensity of the wave field and 
the necessity to improve the WT approach. Below we will discuss these problems in detail. 

9.2. Modulational instability of singular WT spectra 

We derived the kinetic wave equation in Section 1 using a small parameter 

~ni/Amk 4 1 . (9.1) 
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Here y;,’ is a characteristic time of nonlinear interaction and Aok is the mean difference of the 
frequences of interacting waves. Let us remind the approximations which we used to derive the 
kinetic equation 

The phases of the individual oscillations are random and arc governed by Gaussian statistics. 
This assumption makes it possible to express correlation functions of a high order in terms of the 
pair ones. Condition (9.1) guarantees the randomness of the phases. Even if they are initially 
correlated, the rotation of the individual phases due to dispersion of frequency leads to the decay 
of the correlations. 
Turbulence is assumed to be uniform. It means that the conditions 

(UkUk*.) = n&k - k’) 

are satisfied. 

(9.2) 

As was mentioned above, the development of the modulational instability of the singular spectra 
breaks the homogeneity of the turbulence. Now it becomes (ukuk,) = nkkr. If the homogeneity is 
weak, (kL b 1, L- is a typical scale of inhomogeneity), n Rli, is a very sharp function of (k - k’) and 
a smooth function of (k + k’). Hence we can introduce a density of plasmons, slowly varying in 
space: 

ni(r) = (1/(2~)~/“) [ni,x expiKr dK ; K = k - k’ , I? = (k + k’)/2 , 
J 

and, starting from (1.32), obtain the 
over k later): 

following modification of (1.41) (we shall omit the sign of - 

(9.3) 

Here Gk includes a linear dispersion CD k = o,(l + $k2ri) together with a nonlinear frequency shift 

c;)k = ctik + 2 
s 

FkkTnkfdk’ , (9.4) 

where Fkkf = Re Tkk’kk’, Fkks = Fkrk and matrix element Tkirlkzk is given by (1.33). Eq. (9.3) is closely 
connected with Vedenov-Rudakov equations (see for the corresponding discussion [121]); it was 
used also for the description of the narrow wave packet in [122, 1231. Without its right-hand part 
(9.3) describes a propagation of plasmons in inhomogeneous media (see [125]), the only difference 
is that the plasma frequency or refraction index can be spatially inhomogeneous due to the 
variation of a nonlinear frequency shift. It clarifies an action of the modulational instability: 
namely, a small disturbance of the wave field intensity change the trajcctorics of plasmons. It results 
in the additional focusing and a further local intensity growth. Of course, the presence of cascading 
can affect strongly the development of this instability. Eq. (9.3) does not include the diffraction 
effects; as a result it failed to describe the whole range of the maximal growth rate [121] and is 
useless for the description of the nonlinear stage of the modulational instability. For a singular 
jet-like spectra another approach can be used [120]. 

We restrict ourselves initially to a parametric excitation of Langmuir waves when the oscillations 
propagate in parallel to the external electric field (see Section 6), the direction of which we shall 
choose as the z-axis. Owing to the large difference between the group velocities along the z-axis 
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spatially nonuniform perturbations are suppressed in this direction and the modulational instabil- 
ity (MI) can develop only in directions perpendicular to the z-axis [120]. Therefore, we have 

We shall change to a statistical description; the breaking up of the fourfold corrclators into the pair 
correlators can be done also in a spatially nonuniform situation (the randomness of the individual 
phases is guaranteed by the large width of the packets along k,): 

Finally, we obtain 

((a/zt) + v + i(& - ok’) + i+o,&d, - d+))nk(rr’) . (9.5) 

WC change here the definition of nonlinear frequency shift by including the imaginary part of the 
matrix element in it 

&k = $mp(krn)’ + 2 
s 

(F,& + iTkk*)&*(+)dk’ , 

(9.6) 
Fkk, = Fk’k = k TI&;~=~: , Tkk’ = - T,f, = hll TkzkLkzk; . 

It is assumed that the scale of the spatial modulations is significantly larger than the wavelengths, 
therefore, we can neglect the kl dependence in the matrix elements. To simplify the notations we 
can drop in (9.6) and below the indices of k, and the index _L of Ye. We note that the kernels 
Fkkf and Tkk, depend in this quasi-one-dimensional approximation only on (~3~ - c.+)/lk - k’( 2 
(Ik - k’1)3/2co,r; and that to a good approximation they are dilference operators. One can 
simplify Eq. (9.6) by noting that it has a solution of the form 

nk(r, r’) = Ak(r)Ak(r’) . 

Here Ak satisfies the equation 

i(ZA&t) + ivAk + $q,rf, AAk + 2 
s 

(Fkkc + iTkk,)l Akrl 2 dk’ Ak = 0 . (9.7) 

In a transparent medium where Tkk,, v = 0 Eq. (9.7) transforms into a multi-component nonlinear 
Schrbdinger equation. For a spatially uniform distribution of the oscillations we arc led to the 
one-dimensional Eq. (1.41) by introducing Nk = I Akl 2. In the general case (9.7) describes both the 
spectral transfer due to induced scattering and the effects of the modulational instability. For the 
2D-jets this equation has a similar structure [120], only the integration over k must be performed 
along the two-dimensional jets and A - is a one-dimensional operator with a differentiation across 
the jet. 

As was shown in previous sections, in case of a parametric excitation the Langmuir spectrum 
consists of a set of the quasi-monochromatic peaks. It is more convenient to change the envelopes 
of these peaks directly in (1.32): 

t,bs(r) = exp-ik*’ 
s 

Uk,eXpik’dk , k, = k. = skdif , 
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here &, k a part of ak localized near k,. For $s one can easily find 

irc/ot + 3/2~+&~~ + OkolVo = icy0 - %hlWo7 

ih + 3/2e&A+, + Fl$iI% = i( --v + T(l$012 - 1$212))$1 , 
(W 

In this derivation we used the fact that Fkjkj_l = F(kj - kj+ 1) = F(kdif) is equal to zero while 
F(2kdif) is small. The number of peaks is, as for homogeneous turbulence, determined by the ratio 
yO/v. We also note that F = - (~,2/4nT) x G(0) - oi/4nT is a positive quantity. If we consider 
only one of the coupled nonlinear Schrodinger equations (9.Q the sign of F defines the possibility 
of the modulational instability. 

Eq. (9.8) can be obtained directly from (9.7) by putting 

A,‘(r) = C Ic/s61’2(k - ko + Skdif) . 

For the homogeneous case (9.8) is reduced to the satellite approximation with n, = I tj,12. 

Eq. (9.7) determines the spatially uniform stationary solutions of the form Ak = A: exp(iQ,t), 
where A,” and !& are determined from the conditions 

& = 
s 

Fkk, lA;,12dk’ , v + 
s 

Tkk,lAkq12dk’ = 0. 

We consider the instability of (9.9) under small, spatially nonuniform perturbations 

(9.9) 

Ak = (A; + &d,eXp( - &?t 

Linearizing (9.7) we obtain 

fi26Ak - 3 iC2&B,6Ak + 

+ iKr)) exp(iOk t) . 

Ak” 
s 

(Fkk’ + iT&A;@Ak, + 6A:)dk’ = 0 , 

I- 
- asA,* - jK2r~o,,6A~ + AZ 

J 
(Fkk’ - iTkk,)A;(6Ak, + 6Ac)dk’ = 0 . 

Introducing the quantities 

uk = A$Ak + dA,*), t’k = A;(&& -6A:) 

and eliminating &, we obtain 

Q 
( 

52 - 2ilAf12 ~7,~~U,~dk’) = jCl),,fC2r; (&K2r; + 2 j+F,,,u,,dk’lA,“I’) . (9.10) 

Notwithstanding the fact that Eq. (9.7) resembles the nonlinear Schrodinger equation qualitatively, 
the appearance of an MI is completely unexpected. The fact is that the spectral transfer (as we shall 
show in what follows) can effectively suppress the occurrence of local intensity maxima. It is 
impossible to study (9.10) in the general cast and we restrict ourselves to considering a simpler 
physical situations. 
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If the linear damping of the waves is small, one can assume that the stationary distribution of the 
oscillations is uniform, l,4t12 = const = No. It was noted already that it is possible to take the 
kernels Tkk, and Fkkc as difference operators for k 9 kdif 

G((o~ - Ok*)/lk - k’[cT,) z G((k - k’)/kdif) . 

In this case we easily get from (9.10) the dispersion equation 

Q 1,2= - iT,NO f ((T,N,)’ + 3/2~,rc~r~(3/2q,~~r~ - ~F,No))“~ 

= - iTqN,, + ((3/2~‘ri - F,No)’ + N,(JT,I’ - lFq12))“2 . (9.11) 

Here we have 

T, = (1/(27t) ‘j2) 
s 

T(x)expiq”dx , F, = (1/(27~)‘/‘) 
s 

F(x)expiq”dx , 

T(x) = T(k - k’) , F(x) = F(k - k’) . 

The function Tq is a purely imaginary one due to its symmetry, Tq = if(q). Similarly, Fq is purely 
real function. It is also clear that as 4 + 0 T, cc q. We have from (9.11) for the uniform perturbations 
two branches of neutral-stable perturbations 0 = 0 and Q = 2f(q) N,, . In the long-wavelength limit 
one of them changes into second sound. It is evident that the spatially nonuniform perturbations 
are unstable for ) Tq I < I Fq I. A simple calculation gives for the Green function in the hydrodynami- 
cal approximation 

Tq = inTo exp( - (YslQq)lqlkw)Sin qkw , 

Fq = - ~hev( - (Ys/~q)lqlkdif)sin lqikm, T,, = oi/4nT . 

It is clear that I Tql = I Fql and there is no instability, it is stabilized by the induced scattering. We 
shall show that this fact is not accidental and is not connected with any actual approximation of the 
kernels. In the general case the function G in the matrix elements can be expressed in terms of the 
electron purmuttivity and therefore it is analytical in the upper half plane. Hence we have 

s 

a, 
G(x)expiqXdx = 0, q > 0, 

-Co 

whence also follows the relation 1 Tql = I Fql. An instability appears if we take into account the 
modulation which is always present, of the intensity of the turbulence along the jet. One can show it 
for a spectrum consisting of a set of identical satellites. We consider now perturbations which 
involve only even or only odd peaks. It is clear from the system (9.8) that then there is no 
interaction between the neighboring perturbed peaks and there appears separately a modulation 
instability of each excited peak. 

9.3. Nonlinear stage of modulational instability 

We start from the consideration of the parametric excitation of waves, more precisely, from the 
investigation of the nonlinear evolution of one quasi-monochromatic peak. It is described by the 
nonlinear Schrodinger equation, intensively studied recently. This evolution is strongly dependent 
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on the dimension of the problem. In the one-dimensional case MI results in a deep modulation and 
formation of a stable soliton with an amplitude comparable with the initial turbulence level. In 2-D 
and 3-D cases Ml results in the formation of regions with an enhanced concentration of wave field 
and their collapse in a finite time. In fact, we must change to Langmuir collapse at large amplitudes. 
Independent of the dimension of the problem the characteristic evolution time is (FN)) ‘. As was 
shown in Section 4-6, within the homogeneous model the energy is transferred from the excitation 
region by pulses, evolving at every instant of time only a few peaks. The velocity of such a pulse 
does not depend strongly on the noise level t’ - TNkdir. A modulational instability with a charac- 
teristic growth rate FN must develop more quickly than the pulse is travelling a distance k,ir. So, 
the condition FN < kdif/ti, or F -=c T is necessary for the MI to be suppressed. It is evident that the 
possibility of MI and the subsequent collapse depends on the ratio F/T, i.e. on the ratio of the 
electron temperature to the ion one. An elucidation of the actual value of this ratio, a detailed study 
of the development of MI, can be given by numerical simulations. It was carried out in [126] by 
using a system (9.8) written in dimensionless variables: 

(9.12) 

i~j~+~~j+l~j12~j=i~j(-~+~(l~j-~12-141/j+~12)). (9.12) 

Here T = T/F = Q/2-~,. It will be shown in what follows that this ratio determines whether it is 
possible that a MI can develop. 

Under actual physical conditions the region of cascading is small (not more than 10 steps of 
spectral transfer) and in the small k-range there exists an energy sink caused by Langmuir collapse. 
One used a “running” boundary conditions bounded two last peaks 

to simulate the finite size of the region in k-space and the energy absorption via collapse. The 
number of peaks was varied up to ten; axially symmetrical distributions were considered and 
a boundary condition a$/ar = 0 was used. The size of the computing region over r was L = 10, 
much larger than the typical size of MI, L - 1 for 111/l 2 - yol F. 

Of most interest are the cases where one is well above threshold; therefore, one started from 
calculations for v = 0. The evolution of the oscillations depended strongly on the parameter T. We 
show in Fig. 9.1 the evolution in time of the maximum amplitude of the separate peaks. The 
appearance of MI and then of Langmuir collapse is clear and it occurs typically not in the directly 
excited peak, but in the scattered ones. The first scattered peak collapses at T = 1. When 
T increases, the oscillations arc transferred along the spectrum and the collapse occurs after 
multiple scattering. Fig. 9.1 corresponds to T = 1.4. The spatial distribution of the intensities of the 
oscillations in the various satellites is shown in Fig. 9.2. When the intensity of the collapsing 
satellite starts to exceed the intensity of the neighboring ones significantly, one can neglect the 
interaction with them and the growth of the electric field is described by the well-studied nonlinear 
Schrodinger equation. It means that in the collapse a linite energy is absorbed and it serves as an 

efficient dissipation mechanism [124]. The number of spectral transfer steps krDm can in 
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Fig. 9.1. Temporal evolution of the amplitudes of the different modes in the center of the packets for 7 = 1.4. One can 
xc a stage-by-stage energy transfer along the modes corresponding to the weak-turbulence description. A field 
singularity develops in the fourth peak after a finite time. 

Fig. 9.2. Spatial distribution of the amplitudes of the different modes at the moment immediately before the collapse for 
the calculations represented in Fig. 9. I. 

practice not be larger than ten. This means that already for T - 3, which corresponds to T, = 3Ti, 
calculations show that the modulational instability does not manage to develop and the transfer to 
the small k region, the collapse region, is described by the weak turbulence theory. It has the nature 
of a periodic splitting of the oscillation pulses (solitons), as is very clearly seen in numerical 
experiments. If the initial stationary uniform distribution of peaks is considered, the calculations 
show it to be stable for T > 3 in the range of about 10 peaks. In that case the perturbations manage 
to be carried to the boundary of the interval before the collapse manages to occur. 

At finite excesses above threshold the spectra consist of n - y,,/v satellites. Numerical calcu- 
lations show that if the peak with number n, in which the collapse develops is closer than (yO/V)kdir 
to the excitation source, the process looks the same as for v = 0. If, on the other hand, ~1, 2 ;J~/v, the 
collapse does not occur. The dynamics of the peaks is nonstationary, in agreement with Sections 
5 and 6, and changes from being periodic just above threshold to be rather entangled. As was told 
above, the self-focussing and the collapse are very efficient dissipation mechanisms and it means 
that cascading practically terminates at n = n,. For an isothermal plasma one can conclude 
therefore that for an isothermal plasma not more than a few cascadings can occur. 

Even in the situation when collapses are absent, modulational instability is able to change the 
dynamics of turbulence. In the paper [113], mentioned above, it was shown that the results of the 
two-dimensional dynamical simulations were the same as WT predictions. Unfortunately, the 
authors of Cl131 were restricted by the limited computational resources to obtain a long-time 
detailed study. It is easy to perform it within the system (9.12) [126]. In Fig. 9.3 comparative results 
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Fig. 9.3. (a) Evolution of the integral intensity 1 I$i12dx for two-dimensional turbulence when one is well above 
threshold. We show in the figure the intensities of the first four peaks; T = 3.7, y,-,/v = 13. (b) Evolution of the peak 
intensities in the satellite approximation [Eqs. (4.4)] for the parameters corresponding to Fig. 9.3(a). 

are shown for the temporal evolution of the oscillations in the framework of (4.4) and (9.12). In the 
first curve we show the evolution of the intensity of the peaks in (4.4) and in the second one - the 
evolution of the integral intensity s l$jl ‘dx. It is clear that when the first few pulses split, the results 
of the calculations are practically the same. However, when time goes on the gaps between the 
temporal maxima start to become less distinct and a stationary solution is reached. This is not 
surprising since the system (9.12) is not Hamiltonian. Eqs. (9.12) are local and the transfer rates in 
different points along the x-axis are different. The nonlinear interaction correlates x but since the 
growth rates of the spectral transfer and of the MI are comparable, the total intensity of the peaks 
does not drop to zero and stationarity is reached. There occurs then an appreciable deformation of 
the spatial distribution of the waves as compared to the initial stage of the process. We see that the 
development of MI can greatly accelerate the onset of the steady state, and the stationary intensity 
and, hence, the absorption rate well correspond to WT results. Let us discuss in more details 
simulation results within the dynamical equations (see e.g. Figs. 9.4 and 9.5 taken from [113]). In 
Fig. 9.4 time-averaged spectral distributions are presented and in Fig. 9.5 - a few “snap-shots” of 
the spectral evolution. One can see that turbulence really takes a peak-like structure, justifying 
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Fig. 9.4. Langmuir spectra averaged over time excited by a monochromatic driver at the point labeled by D, obtained by 
a numerical simulation of Eqs. (1.1 l), (1.25). Three steps of cascading are clearly demonstrated. 
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Fig. 9.5. Instantaneous wave number spectra for the simulations presented in the Fig. 9.4. A nonstationary cascading - 
splitting of pulses from the pump region (described above) is sharply pronounced. 

results of the previous sections. Nonstationary behavior also corresponds to the pattern outlined 
above For the results presented in Figs. 9.4 and 9.5 excitation was performed in one mode; three 
consequent cascadings are clearly pronounced. The spectrum consists of counter-propagating 
waves and the modulation instability along the longitudinal direction is suppressed. The matrix 
elements describing the induced scattering are smooth functions in the perpendicular direction and 
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sharp ones - along the jets. As a result an arising modulational instability is one-dimensional and 
the collapse is absent. Two-dimensional simulations, described early, enlightened another prob- 
lems of utilization of WT results. When the ion-sound damping is small, a build-up of powerful 
ion-sound waves takes place, especially in the small k region. It turns out the conversion on 
ion-sounc plasmons to become an important process [ 127,128] and to lead to the necessity to take 
into account the sound nonlinearities. An even larger amount of cascades can be seen in Fig. 9.6, 
taken from the paper [129]. This figure presents an averaged spectrum of parametrically excited 
Langmuir turbulence. Let us underline that in [ 1291 two-dimensional simulations were performed 
and real number of cascades can be smaller. 

We see that Langmuir spectra with multiple cascading can be observed only in a plasma with 
very weak ion-sound damping. Such a situation can be realized in the powerful laser inter- 

action with high-Z targets. In this case C, = Jm might be substantially larger than the ion 
thermal velocity even for T, - Ti and only weak Landau damping on the electrons is important. 
Recently anomalously high “red-shifted” spectra were observed in experiments with gold foils 
[130]. 

Let us discuss briefly an excitation of Langmuir waves by electron or ion beams. As WC saw, 
turbulence spectra represents a two-dimensional jet (see Section 6). An arising modulational 
instability in the transverse direction is one-dimensional and results only in the broadening of 
spectra along the line of the maximal growth rate. For the quasi-monochromatic beams this 
spreading can be comparable with the size of the growth rate region and can lead to a drop in the 
energy deposition [ 131,132], therefore a modification of WT considered in this section is desirable. 
For the “wide” beams, when the broadening is small in comparison with the size of growth rate, the 
WT approximation is valid, at least, for the calculation of the deposition rate and an evaluation of 
the relaxation length. 
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Fig. 9.6. Spectra averaged over time of parametrically excited Langmuir turbulence obtained during a simulation of 

two-dimensional dynamic equations in Ref. [ 1291. 
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9.4. Turbulence of mugnetized plasmas 

A weak magnetic field ((tin 6 <tip) affects the turbulence spectra qualitatively little. The situation 
changes drastically for CL)~[ > oP when the dispersion law of magnetized Langmuir oscillations has 
the form ok = o,cos 101, where 8 is the angle between the wave vector and the magnetic field. In 
this case, as it was shown in Section 7, the spectra are axially isotropic and take the form of jet 
nk = n(@fi(k - k,). An energy transfer along the jet leads to the condensation of the oscillations in 
the large k region which is stopped only by Landau damping, while kO is determined by the 
condition y,,(k,) ‘v (kor,) 2V,i (v,i is the collisional damping rate). The modulational instability of 
this singular spectra can develop only across the jet; i.e. it is essentially one-dimensional. As was 
mentioned already, one-dimensional MI does not lead to the collapse but only to a broadening of 
the jet. However, even a small broadening of the spectrum, Ak/k - (k,,rD)2, leads to a steep increase 
of Landau damping (in the same way, as density fluctuations do), so that MI can lead also to 
a significant growth of the absorption in this case. An analytical description of the problem is quite 
difhcult and to elucidate the general physical picture one has to use a numerical simulation. In 
[126] a numerical calculation was performed within the one-dimensional system (9.12) with 
V2$j = rl/xxj and with adding a term *Tktij simulating Landau damping. In the k-representation the 
operator 7, is equal to 

7, = 
i 

CU.k2 , k>O, 

0. 

The magnitude of CI was chosen such that for a modulation broadening Ak corresponding to being 
above threshold by an amount of order unity, a(Ak)2 was of order v. Numerical experiments 
showed that the nature of the evolution of the system and its integral characteristics were not 
sensitive to the value of 2. Before going over to a description of the numerical calculations we 
discuss what information we hope to get from them. The assumption of strong dissipation 
occurring thanks to the simultaneous action of the MI and of the damping Tli is not obvious. It is 
possible, in principle, that there are situations when together with a broadening there is a 
significant shift to the region of negative k and the effective absorption is small. The calcu- 
lations [126] showed that although such a shift does occur, a significant part of energy is contained 
in “Landau damping” region and that its role increases when the pumping growth rate increases. 
The width of the spectrum ACU can be used as a good indicator of the efficiency of the damping. 
In the discrete numerical 
peaks, 

model its role is played by the effective number iz of excited 

(9.13) 

In the framework of the uniform “peak-kinetics” model fi increases when the damping v decreases, 
on average as fi - l/v. In Fig. 9.7 WC show the results of evaluating n for the model (4.4). Including 
the damping 7, leads to the fact that the magnitude of ti ceases to increase and reaches saturation. 
The effective decrease in the width of the spectrum is very clear in Fig. 9.3, where the spectral 



256 XL. Musher et al. JPhysics Reports 252 (1995) 177-274 

0 

Fig. 9.7. Width of the spectrum (the number of satellites) as a function of the damping for the turbulence model of 
a magnetized plasma. The results of the calculations carried out using Eq. (9.13) are indicated by crosses. The asterisks 
show the results when Landau damping is included. 

densities of the intensity of the different satellites, averaged over time, are shown. This result is 
reasonable. As to order of magnitude, the effective damping must be equal to the growth rate of the 
modulational instability, y,,,od - FI \c/ I2 - FN. Since WC have for the number of peaks 

it is clear that when the growth rate increases, fi reaches a constant value. More precisely, we can 
write for the steady state 

T(Nk_l - Nk+l) = FNI, . 

Assuming the change in intensity from the peak to the peak to be small, 

Nkml - Nk+, = - 2dN,Jdk, 

we get Nk = N,,e-(F/2T)k, NO = yp/T, i.e. the width of the spectrum is c - 2T/F, or, in dimensional 
variables, A.cc, = (2T/F)kc,, and is independent of the magnitude of the growth rate. Let us 
emphasize that similar to the case of an isotropic plasma, the absorption rate, defined by the first 
peak, can be described by WT formulas. 

We have thus shown that the WT description of Langmuir turbulence of isothermal plasma 
is valid when it is not too far above the threshold of pumping. The main reason is that the 
jet-like spectra are unstable under the development of the modulational instability. It was shown 
also that a constructive modification of the WT approach by the introduction of an effective 
damping can be done. This modification provides an adequate description of the experimental 
situations. 
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PART II. LANGMUIR TURBULENCE OF NONISOTHERMAL PLASMA 

257 

10. Introduction 

In a plasma with different electron and ion temperatures T, $ Ti - a so called nonisothermal 
plasma, there occurs a modification of the mechanism defining the turbulence spectra. In 
a nonisothermal plasma the decay interaction involving ion-sound waves is the main nonlinear 
process 

&c& +1;2i2, k=ki +kJ: (10.1) 

where co: = o,(l + jk’ri), 52: = c,k are the frequencies of Langmuir and ion-sound oscillations; 

c, = ,/s is the ion-sound velocity. In contrast to the case of isothermal plasmas, discussed in 
part I, low-frequency motions are not forced, there are an additional degrees of freedom. The 
frequencies of the Langmuir waves are higher than sZk and the decay process (10.1) is a variant of 
the classical problem of the interaction of high- and low-frequency collective motions of the 
continuous media. The appearance of additional degrees of freedom associated with ion-sound 
substantially complicates the picture of the nonlinear interaction and makes it essentially imposs- 
ible to carry out anything approaching a thorough analysis of the corresponding kinetic equations. 
In this situation it is important to combine analytic methods with numerical simulations in order to 
develop relatively simple models for the plasma description in particular cases. 

It would seem that the scattering Langmuir waves by ion-sound can smooth a turbulence spectra 
in comparison with the one arising due to induced scattering (described in Part I). A qualitative 
analysis of the decay kinetic equations shows, however, that Langmuir waves with near colinear 
wave vectors are interacting more strongly. It gives rise to the appearance of anisotropic spectra 
and we start with an investigation of the main characteristics and conditions of the onset ofjet-like 
spectra, which can be established under the anisotropic excitation of waves. Section 11 is devoted 
to the isotropic spectra corresponding to the wide over angle excitation of Langmuir waves. At the 
end of this part it will be shown that Kolmogorov-Richardson ideas can be used in the problem of 
I’s interaction and that Kolmogorov spectra will be obtained. 

In a nonisothermal plasma there appear two new parameters -- the ratio of the ion-sound 

damping iIs = dmkc, t o the collisional Langmuir damping ‘/s/V,i and the ratio yJQ2,. 
A change of various turbulence regimes is defined by these parameters. In particular, ion-sound 
oscillations are “induced” under the condition 

vei < Ynl < 7s (10.2) 

and it is possible to use again an induced scattering approximation. A limiting case of the strong 
damping of Langmuir waves 

occurs at the narrow parameter range and it will not be considered. It is worth to note that such 
a situation can be realized in laser plasmas (see for example [ 1331). 
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11. Jet-like spectra 

The system of kinetic equations (1.50). (1.52) describing the decay processes, in the absence of 
excitation and damping r, = V,i - yk = 0, I/~ 5 0 conserves the total energy 

(11.1) 

and the total number of plasma-wave quanta 

N= Nkdk, 
r (11.2) 

but it generally leaves the number of ion-sound waves arbitrary. 
An important feature of (1.50-(1.52) is that the kernels of the integral equations are not 

homogeneous functions of the moduli of the wave vectors k, k 1, k2. The reason for this situation lies 
in the different ways in which the frequencies cok and QR vary with the wave vector. As a result, 
a characteristic scale arises in k-space: 

kdif = : t-6 ’ J(m/M) . (11.3) 

The quantity kdir represents the maximum change in the wave vector of a plasma-wave quantum in 
a single interaction event. Generally speaking, the existence of this characteristic interaction size 
should have the consequence that the spectra lack scale invariance. In other words, the turbulence 
spectra would be “cut up” as functions of k analogously to the induced scattering case (see Part I). 
Another important circumstance is the strong angular dependence of the matrix element 1 Vk,k,kl 2. 
It can be seen from (1.50).-(1.52) that Langmuir waves with parallel k interact more efficiently (it 
corresponds to the maximum of the impulse received by ion-sound quanta for each I’s interaction 
event). It is natural that there occur one-dimensional jet-like spectra under the anisotropic source 
of waves yk. The onset problem, however, is a rather more difficult task than in the isothermal 
plasma due to the appearance of new intcgrand terms like - j Nk,nk,dkl dk2, j Nk, Nk,dkl dk2 in 
the kinetic equations. These terms look like “own noise” and, in principle, could lead to the 
smoothing of the singular distributions and to the isotropization of spectra. A more detailed 
investigation shows (see below) that Langmuir spectra remain jet-like ones, at least, under the 
anisotropic excitation of waves. 

Let us derive the equations describing the distribution of oscillations along one-dimensional jets 
[134]. Setting Nk = N,6(k.L) and nk = n,d(k, ) in (1.50)-(1.52), we find the differential-difference 
equations 

(2 N,/i: t) + 21; N, 

= 4CI[T12K-1(!-K+1 - N, -- NKN_K+l + n. 2K_-I(N_,_1 - NK) + n_,_,N,] , 

(En 2,-1lfit) + 2yL-ln2K-1 = 2r[n2K-1(NK - N-K+l) + NKN-.+~l, (11.4) 

(?n_2K._l/St) + 2;S2K_,n_.2K_1 = 2sl[n_2K_,(N-_K_1 - NK) + N,N_,_l] . 



S.L. Musher et al. /Physics Reports 252 (1995) I77 274 259 

It follows immediately from (11.4) that the interaction couples plasma waves whose wave vectors 
differ by kdir. For simplicity we set N, = N_, and nK = nmK. When r, = 7: = 0, there is a 
continuum set of integrals of motion: 

N, - 2&K+ 1 - nzK- I) =f‘h) , (11.5) 

where the function f(x) is defined by the initial conditions. The existence of an infinite set of 
integrals of motion for different wave vectors make the dynamics of Langmuir-sound waves highly 
nontrivial. In particular, there is no energy pumping to large k. Infact, let us assume that at t = 0 
Langmuir oscillations are excited for K < ICY and ion-sound ones - for K < 2~~, thereforef(rc) = 0 
for K > K~. Then it follows from (11.5) that Langmuir waves with K > tco cannot appear during the 
further evolution in time. It is evident that these considerations are valid also if one include 
damping and excitation of waves. A remarkable feature of (11.4) takes place: thermodynamic 
equilibrium cannot be reached due to the one-dimensional character of the I’s interaction (although 
a relaxation to a Rayleigh-Jeans distribution is possible within the initial system (1.50)-(1.52)). 

If the characteristic length for changes in NK,nK is much larger that kdir, it can be converted to the 
differential approximation in (1.4) analogously to Section 3 of 

(11.6) 

(11.7) 

I I, 1. Steady-state spectra 

The simplest way to analyst steady-state solutions of (11.4) is to adopt the differential approxi- 
mation, according to which (11.6), (11.7) become 

(11.8, 11.9) 

In solving (11.8), (11.9) it will be assumed that the width of the growth rate Yk is small, Ak < ko, so 
one can distinguish an excitation region (k - k,) and an inertial interval, in which Yk 4 V,i. In this 
case, even if the excitation level is above the threshold by an amount corresponding to ‘lko/v,i 9 1, 
the properties of the solutions of (11.8), (11.9) do not depend on the structural details of the growth 
rate and are governed by its integral characteristics. Eqs. (11.8), (11.9) can be integrated most simply 
in the limiting cases v,i $ yi and V,i 4 7:. In the first of these cases, Eq. (11.9) can be simplified as 
follows for the inertial interval: 

JJ~I = akdif (dNk/dk) (n2k # 0) . (11.10) 

integrating (11.10) over the inertial range (k > ko, Yk - 0) and taking into account the finite size of 
the jet, we obtain 

Nk = Jm c,/akdif(k’ - R2) . (11.11) 
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Substituting (11.11) into (11.Q (11.9), we obtain in the inertial interval 

n2k = (v,$/l2rkzir) ((k - i)2/k)(k + 2K) , (11.12) 

and for k > kO, where ^/k ‘v 0, we find n2k = Nk = 0. It follows from (11.12) that the spectral 
distributions of n2k and Nk are nonzero in the respective intervals 

k”<k<k,, 2&k<2k0. (11.13) 

As was noted above, there is no pumping of energy toward high frequencies. It will be shown below, 
that the “violet shift” is due exclusively to the fact that the spectra are not one dimensional. 

Let us calculate the value of Icorresponding to the end of the interval filled by Langmuir waves. 
For this purpose we can use an equation of Langmuir quanta, which follows from (11.8), (11.9): 

s k o 

fkNkdk = 0. 
E 

Finding the width of the growth rate yk from 

s 7/kdk N jJkoAk, 

(11.14) 

(11.15) 

the length of the jet turns out to be 

ko - k’ ” 3(yko/V,i) Ak . (11.16) 

According to (11.13), the spectrum reaches “zero” when the excitation level is 

YkolVci 5 kolAk * (11.17) 

Eqs. (11.1 l), (11 .13) completely determine the one-dimensional spectrum. Let us calculate the total 
energy densities of Langmuir and ion-sound waves from these equations: 

s 

ko 

w, = 

% 

UpNkdk * no T, ((m/M) AklkdifJ2 (*lko/vei12korD 3 

w, = 

s 

ko 

n2kn2kdk z noT,(V,i/Opi)(Ak/kdif)2(Yk,,/V,i)2kOrD(m/M)”2 . (11.18) 
t 

Eqs. (11.8), (11.9) thus lead to an extremely high ion-sound level: 

W~IWI ‘V (vei/o,i)(Ak/kdif)(rk,/vei) * (11.19) 

The physical meaning of this result is quite simple. The number of Langmuir quanta does not 
change in a decay event, and number of ion-sound quanta increases by one. Therefore, 

n,/N, = W,o,/W,Q, ‘V (k - tC)/kdif . (11.20) 

For large excesses above threshold, 

n,lNi - klkdir . (11.21) 
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Finally, the energy flux into the plasma is 

Q’= k” 

s P 

veiN/smpdk z v,inoT,(mjM)(Ak/kdir)2(y,“/v,i)2kol.~ 9 

I 

k” QS = ;);knzkfi2kdk N V,inoT,(n~/M)~‘~(Ak/kdir)~(;lk,,/t~,i)~(k~rn)~ , 
c 
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(11.22) 

Q”/Q’ z J(~z/M) korn(Ak/kdif) (yko/v,i) . (11.23) 

We turn now to the opposite limiting case 7: 9 v,i. It is easy to see that this case corresponds to the 
approximation of induced scattering for Langmuir waves (see Part I). Eliminating the ion-sound 
oscillations from (11.Q (11.9) by means of 

i’;knzk = ,xN; , (11.24) 

we find 

fk = 4akdir(dNkjdk) . (11.25) 

Working by analogy with the procedure above, we can easily find from (11.25) the densities of the 
Langmuir and ion-sound waves and also the energy flux into the plasma. For the spectral density 
Nkr e.g. we have 

Nk = (v,i/4akdif)(k - k) 2 ko - IT= Ak(sk,,/\‘ci) . (11.26) 

The energy flux is correspondingly 

Q’ ‘V (rkZ,,lo,)noT,(Ak!lkdir)’ . (11.27) 

The relative contribution of the ion-sound waves is also determined by (11.19) and (11.23). At 
a sufficiently high excitation level above the threshold, 

Yko/vei 2 kojAk 3 (I 1.28) 

in both cases (V,i + $, Vri < y;), jets reach the region k = 0. In this case the effect of collapse must 
be taken into account by introducing an effective damping at small k. Even further above the 
threshold, at which the collapse occurs directly in the excitation region (k - k,), the effect of the 
collapse is much more complicated, and the effect of the intense sound must be taken into account. 

To conclude this section, it should be noted that steady-state solutions of kinetic equations can 
be found not only in the differential approximation but also in the opposite one the satellite 
approximation. It corresponds to the excitation of waves by a “narrow” growth rate with the 
characteristic size less than kdif. The corresponding distributions Nk and & are a set of d-function 
peaks, which fall off away from the growth-rate region corresponding to k - k. (it is assumed that 
Ak 4 kdir) into the region of small values of k and are separated from each other by distances 
of kdif and 2kdify respectively. The envelope of these peaks is described by the differential 
approximation. 
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11.2. Time-dependent spectra and the validity qf’the one-dimensional description 

The steady-state distributions of Langmuir and ion-sound oscillations were derived above. 
There appears the problem of their onset and dynamics. It is impossible to obtain an analytical 
solution of this problem and one has to use numerical simulations. It was shown in [134] that 
within the one-dimensional model at sufhciently low excesses above threshold ‘/k,,/Vei + k,,/Ak, in 
which case the waves are damped before they reach the region k - 0, the steady-state distributions 

are in fact established in a time of the order of (20 -40)7i01. Fig. 11.1 (a, b) show a typical steady- 
state spectrum for V,i 5i 7’ Zk. As expected, in the case of “narrow” excitation Ak I kdif the densities 
Nk, izk consist of a sequence of decreasing peaks spaced at intervals of kdif for Langmuir waves and 
2kdif for the ion-sound waves. In the case Ak 2 kdif the Nk, nk are smooth functions modulated with 
+ kdif. In the case ~~ko/v,i % k0/kdif no steady-state spectra are established. The behavior of Nk and 

nk is essentially nonstationary and it varies depending on the ratio of damping rates V,i/si. In all 
these cases there occurs a wave accumulation at k - 0 - the formation of a condensate. 

We turn now to the two most interesting cases. 
1. With a “doubly infinite” excitation level, Yku $ &, jlka 9 V,i, we can neglect by the wave 

damping. Converting to the differential approximation, WC obtain 

a 
I 

“k 

A!!4 
k 

n(k) =J-L&J 
Zk 

k 

AL 
Zk 

(I 1.29, 11.30) 

Fig. 11.1. (a) Steady-state one-dimensional distributions of N, and n, for Ak ‘v 2kdir; yk,/vci = 2.7; &, _ vCi; (b) the same, 
for Ak cz 0.8 kdif; j.kJv,i = 2.7; ~4~ Y 11,~; (c) average characteristics of the two-dimensional spectra N(k) = j NkdO. 

n(k) = J‘ nkd8 for the case of a “narrow beam”, with Y,,&v.~ = 2.7; & _ v,~. 
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where z = Yko t, k’ = k/kdif, d = cc”y’k-;‘. We now seek solutions which satisfy the initial condition 
N, = nzK = 0 at t = 0. Then from (I 1.29), (11.30) we find 

anzK _~~ = 4a’ 2 an2K 
[( > 

2 
a2nzK - 

I a/c 
+nzK ?K2 3 1 A+2$. (11.31, 11.32) 

Eq. (11.31) can be rewritten in the form 

Cjn;,/Cz = (8cx’/3)(a2n~,/i5K2) . (11.33) 

An equation of this type arises, for example, in the study of the nonlinear filtering of a liquid or gas. 
Strictly speaking, Eq. (11.31) holds only for 0 < K < K 0. We will formally construct its solution for 
an arbitrary K < K ,, and the condition will be imposed 

n2K=OKC-m. 

Eq. (11.33) is satisfied by the family of self-similar solutions 

nzK = (T 2p-1/c(')@(K/ZB), 

where Q(c) is a smooth function of the dimensionless variable t = K/TO, and the self-similarity 
exponent ,G is determined from the boundary condition. It should be naturally to assume that for 
excitation of plasma waves in the inertial interval a solution with a constant flux of Langmuir 
quanta will be established. The value of this flux is determined at the boundary of the interval. 
According to (11.32) it corresponds to the condition 

(i2n2KfiK)IK=Ko = const > 0. (11.34) 

Precisely, this solution was realized during the numerical simulation of the exact equations 
(1 SO)-( 1.52) (see Fig. 11.2). It follows from condition (11.34) that self-similarity exponent p = 1 and 
the solutions of Eqs. (I 1.3 1) and (11.32) under these conditions arc 

2tyk,, + 
(K - Ko) 

2 
1 

, Kg - 4tyk,, < K 5 Ko , 

0, K < Kg - dtl;,, , 

0 - dty,, < K 5 Kg, 

K < Kg -+Ko. 

(11.35) 

(11.36) 

Fig. 11.2 shows the numerical solution of (11.4) for the case V,i G & z 0 at three successive times. 
The plot of the Nk envelope is reminiscent of the propagation of a shock wave at a constant 

velocity 

zjo = kjk,,kdif . (11.37) 

(see (11.35), (11.36)) into the region of small wave numbers. The exact solution differs from (11.36) 
only in a small region. The n 2k envelope is also essentially the same as the line segment in (11.35) 
everywhere; it moves parallel to itself at the same velocity uo. The ratio of the integral intensities of 
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‘k 

t=r2=r, _a t=r, 

zk, Zk 

Fig. 11.2. Time-dependent one-dimensional spectra for a “double-infinite” excitation level (Ye, >> vCi: yk, + 7;) at three 
successive times. 

the ion-sound and Langmuir waves increases linearly with the time in this case. For the parameter 
regions ~~,/‘y;~ 9 1, yk,/V,i %- 1, the self-similar solutions in (11.35), (11.36) thus give a good 
description of the behavior of the envelopes of the Nk and n2k spectral distributions. 

2. Lf “&k % ykO and Yko 9 Veiy we can ignore the damping of the plasma waves and the terms 
containing flk. Then Eq. (11.4) for Nk is the same as the kinetic equation describing the evolution of 
Langmuir waves due to induced scattering by the strongly damped ion-sound. The time-dependent 
solutions of this equation were studied in detail in Sections 336, where it was shown that these 
solutions correspond to a sequence of solitons with an amplitude ?/k - (&,/x)ln[yk,/(xN”)] which 
arc travelling along a chain of peaks at a constant velocity co - j!k,kdrf (cf. (11.37)) toward small 
values of k. The results of a numerical simulation of (11.4) for these parameters show that the 
hrk spectrum is approximately the same as that found in part 1, while the level of the ion-sound is 

n2k - yk,,,$;kNk, as follows from (1 1.4). 
After investigation of the one-dimensional spectra it is necessary to examine their stability with 

respect to three-dimensional perturbations, i.e. the excitation of waves outside the jets (external 
stability). According to [ 1343, the waves lying within the cone 0 < O. are unstable. The cone angle 
O. depends on the excess above threshold of the wave pumping. At V,i % y;k there is 

00 2: (Y~/V,i)(Akjkdif)2(~k,/V,i)2 2 (11.38) 

and in the opposite case 7: + v,i: 

00 ‘V 14(V,i/^/~)(Akik‘~ir)2(~ko/V,i)2 . (11.39) 

The jets arc thus unstable with respect to three-dimensional perturbations, but if the excitation 
level is only slightly above threshold the instability region in the inertial interval is extremely 
narrow and is localized near the jets. On this basis one can expect a stabilization of an external 
instability of the one-dimensional jets by a small angular broadening, as it was in the case of 
induced scattering. These qualitative considerations were tested Cl343 in a series of numerical 
simulations of the exact equations (lSO)-(1.52) in the case of excitation of waves by a relativistic 
electron beam with the angular spreading AU (for the corresponding dependcnces of the growth 
rate yb see Section 6). 
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According to the numerical simulations, the wave spectra are anisotropic in all cases. In the 
region where the energy is concentrated (yb # 0), the Nk and nk distributions correspond to a single 
two-dimensional jet, whose position is essentially the same as the line of the maximum beam 
growth rate. In the inertial region, the waves are concentrated in rather narrow angular intervals 
near 0 = 0 and 0 = rc. The width of jets is governed by the properties of the kinetic equations and 
the parameters of the problem, $, v,i and ymax. The width remains, however, much smaller than 7r/2 
at Ati < 1. A slight broadening with respect to the angle 8 is thus sufficient to keep the solutions 
corresponding to narrow jets. The wave distribution along these jets can take quite different forms, 
depending on #ymax and v,Jymax. The results of the numerical simulations for several typical cases 
are represented in Figs. 11.3311.5. In the first series of calculations A0 was taken to be 10” (a 
“narrow” beam). At this case in the inertial interval waves are concentrated in the narrow regions 
near 0 = 0 and 6, = rr, and they take the form of a sequence of decreasing peaks (see Fig. 11.3). 
Comparison of the numerical solution of (11.4) reveals good agreement with the one-dimensional 
model (Fig. 11.1) Increasing of A8 up to 20-25” (a “broad” beam) we find that quasi-one- 
dimensional jets were spread out (both for steady-state cases Ymax/v,i = 2 5, v,i Y Y& and for 
double-inlinitc cases ymax $ v,i; ymaX % &J forming a complex relief which approached a 
quasi-isotropic distribution (Fig. 11.4). Nevertheless, even for an instability-cone angle of order 
unity, the ratio of the wave intensities of 0 = 0 and 0 = n/2 was two or three orders of magni- 
tude, as can be seen from Fig. 11.5, which shows the Nk and nk distributions for several fixed 
values of k. 

a 

kdif k 
I 

3kdif zk 

Fig. 11.3. Lines of constant value of the function: (a) In(NJN,,), (b) In(nk/no), for the case of a “narrow beam” and for an 
excitation level far above the threshold y,,,,.: vCi = 15; y;,,/vci = 0.1 with f N ~OJJ,$~. 

b 
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kdif k 
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jkdif 
Ik 

Fig. 11.4. Lines of constant level of the function (a) ln(N~/Pi,) and (b) ln(nt/no) for a “broad beam” and for a “double- 
infinite” excitation level. 
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ln(fiko/NO) c ln(ii 
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Fig. 11.5. Angular variation of spectral distributions for several fixed values of the modulus of the wave vector. 
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It follows from these results that for an excitation of waves uniform over angle (or close to 
uniform) an isotropic approximation must be used. It occurs, for example, at the decay of an 
electromagnetic wave into two Langmuir oscillations [135]. The anomalous absorption of laser 
radiation in a plasma corona is determined mainly by this nonlinear process. 

12. Isotropic approximation 

Taking the average of (lSO)-(1.52) over angles it can be found that 

(12.1) 

X CN(JkZ f kkdif) (nk -I- Nkl) - Nk,nkl dk2 ; 

(12.2) 

Let us first consider the case of strong ion-sound damping 7; %= V,i (induced-scattering approxima- 
tion) when it is possible to neglect terms proportional to nk (Fig. 12.1). Shortened equations 

?Nk k + kc,,, 
-= 
at Nk s Tkk’Nk* dk’ 

k - kdll 

differ from their analog (1.41) at first by the bounded 
determined on the decay conditions and also by the 
comparison of the kernels see Fig. 12.2), for example, 1 T(k, k + kdif)l # 1 T (k, k - kdif)l. Further- 
more, in a nonisothermal plasma T kk’ iS a nonanalytic function and the problem of the existence of 
a steady-state solution is not a trivial one. It is not difficult to show that, in contrast to the 
isothermal plasma case, a solution corresponding to a set of infinitely narrow peaks Nj6(k -jkdif) 
is unstable. It is natural to apply numerical simulations of Eqs. (12. l), (12.2) in this unclear situation 
[135]; some typical results of these calculations are shown in Fig. 11.2. The spectral distribution is 
a set of narrow peaks, as in an isothermal plasma. In precisely the same way, the relaxation to the 
steady-state requires a very long time, much longer than the reciprocal growth rates involved. It 
occurs also that at the reducing of the damping rate within a broad interval (from unity to hundred) 

(12.3) 

integration region (k f kdif) which is 
qualitatively different kernel Tkk’ (for 
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f 2 “““““““““““““““““““” d- 
7 k 

ii-___Ju vl t? f 2 k/kdif Zk~-kdif Zk-k~if 

Fig. 12.1. The induced-scattering matrix clement 1 Tkk.l/Tnlaxr avcragcd over angles. Curve 1, isothermal plasma; curve 2, 
nonisothermal plasma. 

Fig. 12.2. Steady-state wave distribution for three-times excess above threshold. The initial value no = 2 x 1W3. 

the Langmuir spectrum remains essentially the same; there is only an increase in the sound level (nk 
is also a set of a sharp peaks). Another characteristics of these results, which confirms the validity of 
the induced-scattering approximation, is the lack of pumping toward large k. 

12.1. Transition to Kolmogorov situation 

Let us consider the situation well above threshold, in which one can ignore the damping of both 
Langmuir and ion-sound oscillations everywhere except for very small values of k. In the long-wave 
part of the spectrum, a strong nonlinear dissipation due to Langmuir collapse comes into play. For 
acoustic waves, on the other hand, the inhomogeneity of the plasma and collisional damping 
becomes important. The regions of damping and pumping are thus separated in k-space, and we 
find the ordinary Kolmogorov problem of the turbulence spectra in the inertial interval. The 
spectra of the isotropic turbulence of a nonisothermal plasma were found in [ 137, 1381 (see below) 
under the assumption that these are smooth distributions. If the wave excitation occurs in a narrow 
region in k-space, we cannot expect on the fact of it that WC will find a continuous wave 
distribution. Furthermore, one can see that Eqs. (12.1), (12.2) have satellite solutions. To determine 
the structure of the turbulence, a numerical simulation was carried out in [135]. As WC can 
see in Fig. 12.3, there is a good coincidence between the results of these numerical simula- 
tions at the infinite cxccss above threshold r = 7” = 0 and analytic dcpcndences derived in 
Section 13. 

The cast of strong damping of Langmuir waves, in the approximation opposite to the 
induced-scattering approximation, is intermediate between the two discussed above. Fig. 12.4 
shows the results of numerical calculations for this situation. The spectrum is seen to take the form 
of a smoothy varying pedestal with sharp peaks. As the growth rate is increased and the damping 
rate of the ion-sound decreased, the peaks become blurred, and a transition to the Kolmogorov 
situation takes place. 
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2kO 2k 

Fig. 12.3. Distribution of Langmuir and ion-sound waves for an infinite excess above the threshold, r = ^J = 0. The 
dashed curves show spectra derived analytically by means of conformal mapping. The deviation from Kolmogorov 
spectra at k > k. results from Landau damping introduced in the numerical simulations and from the slower relaxation 
of the spectra at k > ko. 

Fig. 12.4. Steady-state wave distributions for five-times excess above threshold, r = 10@tzt,, no = 2 x 10e3. 

13. Kolmogorov spectra in nonisothermal plasmas 

Tn nonisothermal plasmas the situation differs from the usual Kolmogorov case [136] by the 
absence of scale invariance and the presence of a characteristic length of the decay interaction kdir. 
But for smooth spectra, as we know already, it is possible to change to the differential approxima- 
tion and obtain scale invariant isotropic equations [137]. For this purpose it is necessary to expand 
the b-functions of the frequencies in (lSO)-(1.52) as a series in Q2k and to assume that Nk, nk are 
isotropic: 

(13.1,13.2) 

(13.3) 

R klktkz = 2W’kk,k212W;, + nk52k(aNk,la(“)k,)bk-kl+k,d(Cok, - cokl) : 

and 

PX = (k/k) 

s 

nk,/mk Rkzlkk, dk, dkz 
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is the density of Langmuir quanta flux, E = akNk + n&J k. Eqs. (13.1)-(13.3) have solutions in the 
form of Rayleigh-Jeans distributions which cause the fluxes of quanta PN = 0 and energy P, = 0 to 
vanish (Rklk,k, = 0). We shall consider solutions with constant fluxes PN and P,. The constancy of 
these fluxes corresponds to the power-law solutions: 

Nk = Ak” , nk = BkXco,JQk . (13.4) 

The turbulence spectra corresponding to a constant flux of the number of Langmuir waves are 
realised in the range k -c ko, whereas the spectra corresponding to P, = const are realised in the 
range k > k o; these fluxes are directed in opposite ways: P,,, to the long-wavelength oscillations, 
where Langmuir waves are dissipated by collapse, and P, to the range of short waves, where the 
dissipation of ion-sound due to Landau damping by electrons is important. These spectra have the 
following form in the above-mentioned regions: 

E: = o,AJk , r-1: = 3/2q,r~B, , k <k. , 

E: = cs,AJk3, t;;3/2co,r;BJk , 
(13.5) 

k > k. , 

where the constants A,, B 1 and AZ, Bz are deduced from the constancy of the fluxes PLv and P, and 
from the condition of their matching with the growth region. The condition for P,\; can be written in 
the form: 

P&T - $kki Nk<, 

and hence it follows from (13.2) that 

AI - B1 - no r(YlcDp)(Aklkd2ir) . 

The quantities AZ and B2 are determined from the continuity of the energy flux of the ion-sound 
waves P, at k = ko. We can easily see why such a flux appears for k -c ko. This is due to the fact that 
as a result of the transfer of Langmuir waves to the region k z 0 and their dissipation in this region, 

ion-sound is generated and accumulated. We recall that for k < ko, where P,I’ = const, 

P, = 3/2m,(krD)2PH + P, = 0, 

i.e. 

P, = - 3/2q,(krD)2P,v , 

and is directed toward higher values of k. For a similar reason in the region k > ko, where 
P, = const and PN = 0, the energy flux of the ion-sound waves is identical with P,. Hence, it follows 
from the condition of continuity of I’, at k = k. that 

AZ - B2 - no T(“Jlop)(AkkolkL) * 

In conclusion we have to say that all spectra (I 3.5) are local. 
We see that in the most interesting three-dimensional case those occurs a degenerate situation, 

namely, the coincidence of Kolmogorov and thermodynamic spectra. As a result, there is no 
plasmon cascading over k-space. This problem was investigated in [138]. It was shown that in such 
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a degenerate situation the Kolmogorov spectra are slightly different from the power ones. For 
example, for k < k. they are (in dimensional variables): 

Nk = y/k&‘- ; nk = Z/kkdir Jm . (13.6) 

Asymptotically, y 1: (In k “) 1/2, z 2: y + 4/y; y 9 1. Since z,y vary logarithmically, the spectra differ 
little in a form from (13.5), although, unlike the latter, they ensurc a nonzero flux into the small 
k region. 
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