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Abstract 

A strong argument is found in support of the integrability of free-surface hydrodynamics in the one-dimensional case. It is 
shown that the first term in the perturbation series in powers of nonlinearity is identically equal to zero, the consequences 
of which are discussed as well. 

1. It is well known that the equations describing an ideal fluid with a free surface in a gravity field are 
completely integrable in several important limiting cases. Integrability occurs for long waves in shallow water 
(KdV [1 ] and KP [2] equations, the Boussinesq approximation [3], Kaup's  approximation [4], the Holm-  
Camassa approximation [5 ] ) and for spectrally narrow wave trains in a fluid of  arbitrary depth (nonlinear 
SchrSdinger equation [6]) .  The weakly nonlinear motion of  the fluid in the absence of  a gravity field is 
integrable as well [ 7 ]. 

It is very natural to formulate a conjecture that an arbitrary one-dimensional motion of  an ideal fluid in 
a gravity field is integrable. In this article we give arguments in support of  this conjecture. We will consider 
weakly nonlinear waves on the surface of  a fluid o f  infinite depth and study their simplest resonant interactions, 
and we will show that the amplitude of  this process is zero. 

Given the current stage of  mathematical physics there are no effective general methods for checking and 
proving integrability for the nonlinear wave Hamiltonian systems. Proving nonintegrability is a much easier 
problem. Following Poincarr, one can do that by analysing the perturbation series in powers of  the nonlinearity 
[8]. Terms of  this series being limited on their resonant manifolds are identified with the "amplitudes of  the 
nonlinear interactions" in the wave system. 

Nonintegrability is a quite evident fact. To have nonintegrability, it is enough to prove that at least one 
of  these amplitudes is nonzero. As the complexity o f  calculations increases significantly with the order of  
nonlinearity, much information can be extracted from the consideration of  the first (lowest order) nontrivial 
nonlinear process. For instance, nonintegrability of  the nonlinear SchrSdinger equation for d >t 2 is a trivial 
fact due to the nonzero amplitude for the process 2 --* 2 wave scattering. This scattering is trivial for the 
integrable case d = 1. One may verify (albeit with much effort) that the amplitude o f  the first nontrivial 

scattering 3 --* 3 is identically zero in this case. 
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2. A one-dimensional potential flow of an ideal incompressible fluid with a free surface in a gravity field 
fluid is described by the following set of equations, 

~xx + ~z~ = 0  (4~z ~ O,z --, - c~) ,  

1 2 ?lt d'- llxOx = ~zlz=q, ~bt "]- ~(t~x + t~ 2) "{- g~  = Olz=r/. (1)  

Here q(x, t) is the shape of the surface, ~b(x, z , t )  is the stream function and g is the gravitational constant. 
As was shown in Ref. [9 ], the variables t/(x, t) and ~/(x, t) = ~6 (x, z, t)[z=~ are canonically conjugated, and 
their Fourier transforms satisfy the equations 

O~k gH Oqk gH 
Ot ~rlT,' Ot - ~uf," 

Here H = K + U is the total energy of the fluid with the following kinetic and potential energy terms, 

,/ 

K= f f 
-- 00 

A Hamiltonian can be expanded in an infinite series in powers of the characteristic wave steepness ktlk <<  1 
(see Refs. [9,10]), 

H = Ho + H1+ H2 + . . . .  

It is convenient to introduce a normal complex variable ak, 

~lk = X / ~ / 2 g  (ak + aLk), ~k = --iv/-~g/mk (ak -- aLk). 

Here COk = V ~  is the dispersion law for the gravity waves. This variable satisfies the equation 

Oak . 8 H  
0-'-7- "~ 1--~--~-~.tJak = O, 

where 

(2) 

(4) 

f 
1110 = /tOkaka~ dk, 

I-Ii = Vkk~k2 (akak~ ak2 + akak~ ak2 )~k-k~-k2dk dkl dk2 + ~ Ukk~k2 (atak, ak2 + atak~ ak2 )~k+k~ +kEdk dkl dk2, 

(5) 

Vkk,k2- Lk, 2- L_k,  , 

Lkk, = k "  k l  "4" Ikllk~l. 

Among the various components of 1112 only one is important, 

H2 = ½ [ Wkklk2k3a~a~lak2ak3,~k +kl_k2_k3dkdkldk2dk3, 
J 

(6) 

(7) 

(8) 

(3) 



146 A.I. Dyachenko, V.E. Zakharov / Physics Letters A 190 (1994) 144-148 

1 
Wklk2k3k 4 = -- ~ (M-kl-k2k3k3 + Mk3k4-k l  -k2 -- M - k l k 3 - k 2 k  4 

-- M_klk4_k2k3 -- M_k2k3_klk4 -- M_k2k4_k t  h ), 

(k3k4 "~ 1/4 
Mk'k2k3k4 = Iklk21 ~ kl k2 J ~kl + ka[ + [kl q-k4l  + [k2 q-ka[ + [k2-I-k41-21k~ I- :~k21 ). (9) 

The variable ak is not appropriate for gravity waves because the Hamiltonian contains cubic terms, while there 
are no three-wave frequency resonances. The following canonical (up to O(a  5 ) ) transformation from ak tO bk 
(see Refs. [9,11]) (note: in Ref. [9] there is a misprint - the negative sign is missing for Wkkl,k2k3 ), 

/ F ( I )  1. / (I) • 
ak = bk @ kklk2Oklbk2(~k_kl_k2 - 2  I'k2kklbklbk2(~k+kt_k2 

-I- f l~k(k21)k2b~l b~2 t~k +kl +k2 "+" f Bkklk2k3b~l bk2bk3t~k +k l -k2-k3  , 

= F(I)  ]-~(I ) F(I) r,(l) r,(l) r,(l) 
Bkklk2k3 ktk2kl_k 2 k3kk3_ k "t- klk3kl_k3, k2kk2_ k - - ,  kk2k_k2, k3klk3_k 1 

_ F,(1) /-,(1) /-,(1) r , ( t )  F(2)  F(2)  
klk3k l-k3* k2klk2-k I -- . k+klkkl* k2+k3k2k 3 ~ - k _ k l k k  I -k2-k3k2k3 ~ 

/~(I) Vkklk2 /-~ (2) Ukklk2 
= , kklk 2 = , (10) kklk2 (,Ok -- O)kl -- O)k2 (,Ok ~ O.)k I .-1- O)k2 

transforms the Hamiltonian to a form not containing cubic terms, 

H = ftOkbkbT, dk + ½ fTkkl,k2k3bT, b;,bk2bkdSk,k,-k2-k3dkdkldk2dk3 + . . . .  ( l l )  

Here Ttkt,k2k3 satisfies the symmetry conditions TakI,k2k3 = Ta, k,k2k3 = Tkk,,k3a2 = Tk2k3kk, and has the form 

( 1 • 1 ) 
Tkk~'k2k3 = N"klk't2k3 -- gkkEk-k2 gk3klk3-kt O)k2 -I- O~k-k2 -- 0 ~  (-Ok1 + O)k3-kl -- O)k3' 

( l + 1 ) 
-- Vklk2kt-k2 Vk3kk3-k 'O)k 2 ~ (-Ok I - k  2 -- O.)k I (.Ok "1- O)k3-k -- (-Ok 3 

-- Vkk3k_k3 gk2klk2-k I 'O.)k 3 + O.)k-k3 -- (.O k (.Okl dr- (.Ok2_kl -- O.)k2 

( l + , ) 
-- Vklk3kl-k3 Vk2kk2-k (.Ok 3 "l" (,Ok I - k  3 -- O.)k I (,Ok "1- O.)k2-k -- (,Ok 2 

( , + l ) 
-- gk +klkk I gk2+k3k2k 3 O.)k +k I -- 0.) k -- O.)kl  f.Ok2+k 3 -- O.)k2 -- O)k3 

( 1 + 1 ) .  
- U-k-~jkkiU-k2-t3k2k3 COk+kl + ~Ok + O~kl COt2+k3 + O~t2 + O~k3 (12) 

The first nontrivial process is four-wave scattering, which is governed by the following resonant conditions (ki 
are one-dimensional), 

k + kl = k2 + k3, O)k + O)k~ = O)k2 + ~Ok3, (13) 

and all frequencies ~k, are positive here. The system (13) describes a certain two-dimensional manifold in 
four-dimensional space (k, kt, k2, k3). This manifold has a trivial component, 

k2 = k l ,  k3 = k, or k2 = k ,  k3 = k l ,  (14) 
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but it has also a nontrivial part. Let k, kl, k3 > 0, k2 < 0. Now (13) describes the rational manifold, which can 
be parameterized in the following way, 

k = a ( l + O  2, k l = a ( l + ( ) 2 (  2, k 2 = - a (  2, k 3 = a ( l + ( + ( ~  2 (15) 

Here 0 < ( < 1 and a > 0. It is easy to see that these two manifolds, (14) and (15), represent the general 
solution for resonant interaction (except trivial permutations). 

The main result of this article can be summed up as follows: the amplitude Tkk,,k2k3 is identically equal to zero 
on the resonant surface (15). This fact can be checked by direct calculation of Tkk,,k2k3 using expression (12) 
(we did it with the help of "Mathematica" [ 12 ] ). The cancellation of dozens of terms in Tkkt,k2k3 apparently 
is not accidental; the cancellation would take place naturally if the system (1) were integrable, or had at least 
an additional integral of motion [8]. Of course, this is not a strict proof of integrability (we have no way 
of checking all higher order amplitudes in ( 11 ) ), but there are other evidences, mentioned above, supporting 
our conjecture. Additionally, the integrability of gravity waves in the fluid of a finite depth can be checked by 
calculation of the appropriate Tkkl,k2k3 a s  well. Also, the recently published numerical simulation [ 13] of the 
evolution of a set of  waves has shown that the wave number frequency spectrum is concentrated in discrete 
points near the curves o.) k = V/'~, n : 1, 2, 3 . . . . .  In addition, the discrete spectrum is the direct consequence 
of the integrability of the system (1). 

However, we can o~a in  the full proof of integrability by developing a new method of integration (e.g., 
inverse scattering method), or by finding an L - A  pair, etc. 

The vanishing Tkk~,k2k3 on the resonant surface leaves in effect only the trivial interaction (14), which 
corresponds to the nonlinear frequency shift of separate modes, 

Oak = COk + . f  Tkkl [bkl lE dkl, 

where Tkk  I -~ (1/4~Z 2 ) (k "k l) min (I k l, I kl]), and the Hamiltonian can be written (using new canonical variables 
Ck ) as 

H= f ,ockck'dk + ½ f Tkk, lckl21C~ll~dkdk, + O(ck'). 

Therefore, integrability occurs at least up to the fifth order of Ck (or steepness k~lk). Furthermore, any quantity 
of the form 

14 = f f(k)lckl~dk 
is also an integral of motion up to the fifth order. 

3. The integrability of the one-dimensional free-surface hydrodynamics results in a rather different view of 
the problem of sea waves. It is well known that the well-developed surface wave turbulent spectrum is very 
narrow in an angle (indeed, it is almost one-dimensional). Thus, there is a natural small parameter k±/kll 
permitting the development of  a perturbation theory for sea waves. Wave breaking, which is also a nearly 
one-dimensional phenomenon, can be described by an integrable set of equations as well. 

This work is supported by the ONR Grant N00 14-92-J-1343 and the Russian Basic Research Foundation 
Grant N00 94-01-00898. 
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