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Abstract 

The convective modes in shear flows are associated with the algebraic time evolution of perturbations. The sheared variables, 
corresponding to the amplitudes of the convective modes, are shown to diagonalize the quadratic Hamiltonian. In other words, 
the sheared variables are the normal variables of the Hamilton equations, and the convective modes are the normal modes in the 
Hamiltonian dynamics. 

1. Introduction 

The fundamental fact in the theory of the shear flow 
stability is that the spectral continuum is as impor- 
tant as the discrete eigenmodes and can be responsi- 
ble for the algebraic growth of perturbations. In the 
coordinate space, the continuous spectrum corre- 
sponds to a convective-type evolution of two scalar 
fields, called the sheared variables, having the form 
of a translation with the velocity of the mean flow. 
This motion is known as the convective modes or the 
ballistic waves, the latter usually in the context of 
plasma physics. Convective modes were discovered 
by Case [ 1 ] for the 2D fluid dynamics governed by 
the Euler equations. The convective modes can be 
found analytically only for a few basic flow profiles. 
Goldstein [2 ] has shown, nevertheless, that the con- 
vective modes do exist for an arbitrary transversely 
sheared parallel flow and provide a complete set of 
functions for the description of the linear dynamics 
of the perturbations. 

There is a general understanding that classical 
spectral analysis is not quite appropriate for the the- 

oretical description of the shear flow perturbations 
associated with the convective modes because the 
linear operator of the dynamical equations is not self- 
conjugated. In this Letter we will show that the con- 
vective modes appear in the most natural way in the 
framework of the Hamiltonian theory as providing 
the normal canonical variables for the Hamilton 
equations. 

2. Hamiltonian dynamics in Clebsh variables 

Our basis model will be the Euler equations for an 
incompressible inviscid fluid written in terms of the 
Clebsh variables. The Clebsh variables are conve- 
nient for our purposes because written in these vari- 
ables the Euler equations have a canonical Hamilto- 
nian structure, which is very helpful for finding the 
normal modes. The Clebsh variables for an incom- 
pressible inviscid fluid, 2 and/z, are introduced by the 
Lamb formula 

v= 2v/~ + v~ ,  ( 1 ) 
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where 

v=(u , v ,w)  (2) 

is the velocity field. The potential ¢ can be expressed 
in terms of ;t and /t using the incompressibility 
condition 

d i v v = 0 .  (3) 

The fundamental fact is that the Euler equation 

dv 
0-t + (v- V)v= - VPIp (4) 

is satisfied if), and/z obey the equations 

OF 
[O/dt+ (v.V)12= ~-~, (5) 

OF 
[O/Ot+ (v-V) ]/t= - -0-2' (6) 

where F=F( ; t , / t ,  t) is an arbitrary function of;t, It 
and t. It is remarkable that Eqs. (5), (6) are 
Hamiltonian, 

O;t 5H 
Ot - 6 / t '  (7) 

O/z 6H 
Ot - -  6;t '  (8) 

with the following Hamiltonian functional, 

H=½ f v2 dr+ f F(;t, lt, t) dr. (9) 

The Clebsh variables are defined with accuracy up to 
an arbitrary canonical transformation in the plane 
(;t, #). Time dependent transformations change the 
function F. For a reason which will be explained be- 
low we choose 

F - - - -  - -  ½; t  2 , (10) 

so that Eqs. ( 5 ), (6) now become 

[O/Ot+ (v.V) ] ; t=0,  ( 11 ) 

[O/Ot+(v.V)]p=;t.  (12) 

Considerastationaryshearflowwiththeveloeityfield 
directed along the x-axis, 

~=( f ly ,  0,0) ,  f l=const .  (13) 

We use the following representation of the shear flow 
(13), 

;t0=fly, /to=X, ~o=0 .  (14) 

In this case H =  0. One can see that Eqs. ( 11 ), (12) 
are satisfied. The motivation of the choice (10) is 
that in such a representation ;to, lto and ~o are time 
independent, which makes the formulae look more 
elegant. 

Now consider perturbations of the stationary shear 
flow (13), 

2=2o +Z, /~= ~ +/2, 

so that 

V=Vo +~ ,  

 =;toV/2+£Vuo +£v/2. 

0 = ~ ,  (15) 

(16) 

(17) 

The potential ~ is related to ,~/2 by virtue of conti- 
nuity equation (3). 

Hereafter, it will be convenient to work in Fourier 
space. According to ( 17 ), (14) we have the follow- 
ing expressions for the components of the velocity 
perturbations, 

uk = 2k + iPZk + (~O/2/OX)k , ( 18 ) 

1.)k = --  j~ /-Lk "~ iqzk + ( 2O /2 / O y )k , (19) 

Wk =iszk + (£O/2/OZ)k, (20) 

where 

Zk= 

and the subscript k denotes the 3D Fourier transfor- 
mation of the corresponding perturbed function, 

Uk= f ff(x, y, Z) exp(k.r) dx dydz  , 

k=(p ,q , s ) ,  etc. (21) 

Incompressibility condition (3) can be rewritten as 

k .~=0.  (22) 

Taking into account expressions ( 18 )-  ( 20 ) this con- 
dition gives 

1 
Xk = - ~  [ i p ; t k - - i f l q f l k  + k ( ~ V / 2 ) k  ] . (23) 

Substituting (23) into Eqs. (18)-(20) we get 
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q2.{_$2 . pq N 
Uk= -'~ ~k')¢ - - ~  f l~k '~  l, lk  , (24) 

2 pq k± 
I)k_.~-  - ~ 2  k -- - ' ~ f l~kJ l - I ) k  , (25) 

sp sq N 

where 

N N N N k I) k • ( U k ,  l )k ,  W k ) ..~ (2~Vfi)k--  - ~  (k ( ) . -V f i ) k )  ( 2 7 )  

is the nonlinear part of the velocity perturbation, and 

k± = (p2@$2) 1/2. 

3. Linear approximation 

Suppose that perturbation ~ is so small that in first 
approximation one can consider Eqs. ( 11 ), (12) li- 
nearized with respect to ~, ft. In terms of the Fourier 
transforms we have 

1~k2 k "~" #l) L = 0 ,  (28) 

15klZk--Ak + U L = 0 ,  (29) 

where the operator/~k is defined as 

0 0 

and u L, vI~ are the linear parts of the velocity com- 
ponents (24), (25), 

q2+s2 ~ J_ Pq 
u L= ~-  ^k+ ~-ifl#k, (30) 

pq k~ 
/ 3 L = -  ~ '~2k- -  "~-~/-~k • ( 3 1 )  

Multiplying Eq. (28) by qp/k2± and Eq. (29) by fl 
and adding the resulting equations (also, substitut- 
ing u[, v L from (30), (31) ), we get 

1)kbk=O , (32) 

where 

qP 
bk= fll.tk't - k--~x ,~k , (33) 

One can see that 

k 2 
bk = - " ~  v L • (34) 

Eq. (32) has the form of a conservation law; its gen- 
eral solution is 

bk =B (p ,  q+ flpt, s) , (35) 

where B(p,  q, s) is an arbitrary function determined 
by the initial conditions. In other words, b(p, q - f lp t ,  
s) is an integral of the linear equations (28), (29). 

To t'md the second integral of motion, let us, taking 
into account (34), rewrite the equation for 2k as 
follows, 

k2 ol. 
l~k~ k = - ~  I.#Uk. ( 3 6 )  

Eq. (36) means that 2k is an adjoint vector to the 
eigenvector bk. Taking into account that 
f ( k ~ / k  2) dq=k± arctan(kx/q), one can rewrite Eq. 
(36) in the divergent form 

D k C k - ~ O ,  (37) 

where 

I t .  
Ck "~1~ k -- ~ -  bk arctan ( k j. / q ) . (38) 

The general solution of Eq. (37) is 

Ck=C(p, q+ flpt, S) , (39) 

where C(p, q, s) is an arbitrary function. Therefore, 
c(p, q-flpt, s) is an integral of motion. 
Using (33), (38), one can write the expressions for 
A/o ~k in terms Ofbk, Ck, 

Ak -~Ck "~- bk k ±  arctan(k±/q), (40) 
P 

qP q a r c t a n ( k ± / q ) )  bk. 
/ 

(41) 

Further, using (24)- (26), one can express the veloc- 
ity components in terms of bk and Ck, 

Pq arc tan(kx /q )  bk+ Ck (42) u k =  , 
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Vk = - ~-f bk, (43) 

( ) ,s sq s arctan(k±/q) b k -  - ~ c k .  (44) wk= -~ k.  

Substitution of ( 35 ), ( 39 ) into ( 42 )-  (44) gives the 
linear solution in terms of the velocity components 
for the inviscid case, 

S 2 
U k = ( ~ 2 + ~ p a r c t a n ( k i / q ) ) B ( p , q + f l p t ,  s) 

s 2 
+ ~ C(p; q+flpt; s ) ,  (45) 

k~ 
vk= - ---~ B(p, q+ ppt, s) , (46) 

(Sq S arctan(k~_/q))B(p,q+#pt, s) wk= -~ k± 

_ ps C(p; q+flpt; s) (47) k~ 
If  we assume B (k) = 0 in (45 ) -  (47 ), then we will get 
Vk=O, while u(p, q- f lp t )  and w(p, q- f lp t )  will be- 
come integrals of motion (dependent). This means 
that there is no motion in the y direction in the ballis- 
tic wave associated with the eigenvector Ck: the veloc- 
ity perturbation lies in the x - z  plane and remains 
constant in the frame moving with the speed of the 
background shear flow. 

In the case s=  0 all the terms containing C(k) van- 
ish, which means that in the 2D case the ballistic wave 
associated with Ck is fietive. This can be explained by 
the fact that the 2D dynamics can be expressed in 
terms of only the vorticity, which is related to bk. 

Taking the inverse Fourier transform of (35), (39) 
we have 

b(r, t) =B(x - f l y t ,  y, z) , (48) 

c(r, t )= C(x- f ly t ,  y, z ) .  (49) 

As we see, in the coordinate space the solutions have 
the form of the convective modes. Correspondingly, 
we will call b and c sheared variables. 

4. Normal variables of the Hamilton equations 

The sheared variables (33), (38) could be ob- 
tained without using the Clebsh variables from the 

Rayleigh equation and the equation and the equation 
for the y-component of the vorticity, 

l~k(k2Vk) = 0 ,  (50) 

l~k ( SUk --pwk ) = -- flSV k . (51 ) 

In fact, Eqs. (50), ( 51 ) are just another form of Eqs. 
(32) and (36) respectively. Also, to solve the linear 
problem we can simply work with velocity variables 
and do not need to calculate the sheared variables; 
the corresponding technique is known as rapid dis- 
tortion theory [3,4]. Using the Clebsh variables is 
important in our case because we can show now that 
the sheared variables (33), (38) play the role of the 
normal variables in the Hamiltonian theory. 

First, we note that the transformation 2 k, #k--' bk, Ck 
is canonical because, by virtue of (33), (38), the fol- 
lowing commutation relation holds, 

~Ck ~bk t~C k t~bk 

~ k  ¢~]'/k ~t[/k ~ k  m~.fl. (52) 

The Hamilton equationsintermsofbk, ckare 

Obk ~ 
dt - ~C_k' (53) 

dCk ~ 
Ot -- ~ b _ k '  ( 5 4 )  

where 

-~=#n. (55) 

The new Hamiltonian N differs from the old one H 
only by a constant due to the property (52). 

Further, substituting (10) in (9) and using the 
spectral representation we obtain 

S= ½# y (Vk'V_k --;tkX-k) ~ .  (56) 

Expressing the integrand in (56) in terms of bk and 
Ck after a straightforward algebra we get 

~ = ~ ( 2 )  .~_ .~(3) ..[_I~(4) , (57) 

where ~2) ,  3~3) and .~4) are the quadratic, cubic and 
fourth order terms in the Hamiltonian, 

OCk Obk~ 
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( V~C3c~c2c3 + V~f3clc2b3 + Vl~23bmb2c3 S~3)= 

+ vfb2~blb2b3)J(kl +k2 +k3) dkz dk2 clk3, 
(59) 

CCCC ~'(4) -- ( g 1234c I c 2 c 3 c 4  ~u cccb _ V I 2 3 4 C 1 C 2 c 3 b  4 

+ V~b3b4clc2b3b4+ cbbb V~234Cl b2b3b4 

bbbb + V1234bl b2b3b4) 

X~(kl +k2 q-k3 -I-k4) dkl dk2 dk3 dk4. (60) 

ccc Lrccb bbc ITbbb and l'he matrix elements V~23, r 1 2 3 ,  V123, r123 
cccc I /cccb I7 ccbb Lr cbbb I7 bbbb V]234, -t234, -~234, -~234, -~234 are functions of 

three and four wave numbers correspondingly. They 
are given by some lengthy though simple-structured 
expressions which we do not present in this Letter. 

More importantly, the quadratic Hamiltonian (58) 
is diagonal in variables bk, Ck. This condition may be 
considered a definition of the normal variables. So- 
lutions (35), (39) of the linear approximation can 
be easily obtained after its substitution into the equa- 
tions of motion (53), (54). Quadratic Hamiltonian 
(58) can be also written in the form 

o9 aa* dk ± dy , 3(2)= 

where 09 = pyp is the frequency of the ballistic waves, 
and 

j" dq 
a ~ a ( k ± , y ) =  (Ck+ibk) exp(iqy) 2g" 

This expression bears a resemblance to the standard 
form of the quadratic Hamiltonians in the theory of 
dispersive waves, 

f COkaka~ dk,  E(2~= 

where ogk is the wave frequency, ak is the normal vari- 
able. However, the differentiation in the integrand of 
the quadratic Hamiltonian (58) makes the non-lin- 
ear behavior of the system under consideration very 
different from the Hamiltonian dynamics of the non- 
linear waves in continuous dispersive media. For ex- 
ample, in linear approximation the Fourier harmon- 
ics of the dispersive waves are constant, whereas the 
Fourier amplitudes of the convective modes, (35), 
(39) translate in the spectral space. The latter results 
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in the algebraic growth of the total energy of pertur- 
bations and condensation of the spectrum in the 
streamwise elongated structures known as "streaks" 
[3]. 

5. Conclusion 

Above, we calculated the sheared variables, (33), 
(38 ), and proved that they are the normal variables 
of the Hamilton equations. Thence, the convective 
modes (48), (49) may be regarded as the normal 
modes of the Hamiltonian dynamics of the uniform- 
shear-flow perturbations. 

The normal variables found in this Letter are also 
most natural variables for the nonlinear theory. Al- 
though the detailed discussion of the nonlinear the- 
ory is beyond the objectives of this Letter, we will 
outline briefly how to construct such a theory. For 
this one has to introduce an explicit time dependence 
of the amplitudes B and C, 

bk =B(p, q+ ~pt, s, t) , (61) 

Ck=C(p, q+ flpt, S, t ) .  (62) 

Observe that in the weakly nonlinear regime the ex- 
plicit time dependence in B and C is much slower than 
the implicit one. Therefore, by making the change of 
variables (61), (62) we can eliminate the fast dy- 
namics associated with the linear mechanisms. The 
corresponding approach in quantum field theory is 
known as the interaction representation. We would 
like to emphasize that the weakly nonlinear theories 
of the convective and dispersive waves are also very 
different. The implicit time dependence in (61 ), (62) 
will not disappear for large times and will result in 
the algebraic growth of the nonlinear interaction, 
whereas the time dependence of the nonlinear inter- 
action of the dispersive waves disappears after aver- 
aging over many periods. The nonlinear theory of the 
uniform-shear-flow perturbations will be reported 
elsewhere. 
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