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Surface singularities of ideal fluid
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We show that the equations of motion of an ideal fluid with a free surface due to inertial forces only can be effectively solved in
the approximation of small surface angles. For almost arbitrary initial conditions the system evolves to the formation of singular-
ities in a finite time. Three kinds of singularities are shown to be possible: the root ones for which the process of the singularity
formation represents some analog of the wave breaking; singularities in the form of wedges on the interface; the floating ones
associated with motion in the complex plane of the singular points of the analytical continuation of the surface shape.

1. Introduction

The formation of singularities in a wave system in
a finite time, or in other words, wave collapse, is one
of the basic phenomena in nonlinear physics. The
collapses play an essential role in various fields of
physics. In many cases the collapse is the most ef-
fective mechanism of wave energy dissipation.

From the mathematical point of view, collapse
means that the solution of the Cauchy problem for
some evolution PDE exists only for finite time until
some definite moment ¢={, and cannot be contin-
ued for > £,. At the moment f=/, the solution loses
its initial smoothness and a singularity appears. What
kind of singularities will arise depends on the phys-
ical model. For example, for the self-focusing of light
[1,2] or for the collapse of Langmuir waves [3], the
amplitude of electromagnetic waves tends to infin-
ity. In another case, that of wave breaking in gas dy-
namics described by the well-known Riemann so-
lution (see, for example, ref. [4] ), the first derivative
of the velocity becomes infinite at the moment of
breaking. For sea surface waves the analogous phe-
nomenon leads to an infinite second derivative of
the surface profile (so that angles or cones appear on
the surface). Checking analyticity violation is the
most sensitive tool for studying that set of collapses.
Loss of analyticity of vortex sheets in the nonlinear
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stage of the Kelvin-Helmholz instability [S5] is an
example of that. Various aspects of singularity for-
mation for vortex sheet motion have so far been
studied in a number of papers, both numerically and
analytically [5-8]. The recent paper [8] should be
mentioned in particular. It provides considerable
numerical evidence of the occurrence of an infinite
surface curvature in a finite time. The root (in space)
character of the arising singularity has been checked
in ref. [8] too. As for analytical considerations,
though they show the existence of singularities, in
our opinion, a demonstration of explicit collapsing
solutions is still lacking. The question also remains
open whether root singularities are generic for the
Cauchy problem in this system.

In this paper we will consider how the singularities
appear as a result of the analyticity breaking on the
interface between two ideal liquids in the absence of
both gravity and surface tension. This question is very
important, also, for understanding the evolution of
the boundary between two fluids while studying sea
surface waves and the nonlinear stage of the
Rayleigh-Taylor instability resulting in the finger
structure (see, for instance, ref. [9], and references
therein). We present the analytical solution of the
problem based both on the perturbation approach,
assuming small angles of the interface variations, and
using the Hamiltonian formalism for the description
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of the interface motion. For the case of a liquid with
a free surface, the problem was formulated [10] by
one of the authors of the present paper (V.Z.). It is
supposed that the singularity formation on a free
surface of an ideal fluid or in the more general case,
for the boundary between two ideal fluids, is mainly
connected with inertial forces, other factors giving a
minor correction. This means that if one considers,
for instance, the motion of an ideal liquid drop
{without both gravity and surface tension) then on
the surface of the drop there will appear a singularity
of the wedge type. This idea was later confirmed by
direct numerical integration of the Euler equation
for the case of deep water [11].

Adopting only the small slope approximation, we
give the solution of the Cauchy problem for the mo-
tion of the boundary between two liquids.

The main conjecture of this paper is as follows. The
formation of singularities on the interface for the
small angle approximation can be considered as wave
breaking in the complex plane to which the solution
can be extended. This results in the motion of both
branch points of the analytical continuation of the
velocity potential and singular points of the analyt-
ical extension of the surface elevation. When for the
first time the most “rapid” singular point will reach
the real axis, then the singularity will appear. Three
kinds of singularities are possible. For the first kind,
at the moment the tangent velocity touches the in-
terface, it has an infinite first derivative and simul-
taneously the second space derivative of the inter-
face coordinate z=n(x, t), i.e. 1., also turns to
infinity. These are weak singularities of root char-
acter (7~ | x| ~'/?) which can be assumed to serve
as a source of more powerful singularities, observed
in numerical experiments [11], or to represent a
separate type of singularities. This kind of singular-
ities turns out to be consistent with the assumption
of small surface angles. It is shown that the inter-
action of two movable branch points to the tangent
velocity can lead under some definite conditions to
the formation -of the second type of singularities,
wedges on the surface shape. Close to the collapse
time the self-similar solution for such singularities
happens to be compatible with the complete system
of equations describing arbitrary angle values. The
third type is caused by the initial analytical prop-
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erties of 7, (x) resulting in the formation of a strong
singular interface profile.

2. Model

Let us consider two ideal fluids with mass densi-
ties p, and p,, respectively. Let z=7(x, y, t) be the
coordinate of the interface between these two liquids
so that the first liquid occupies the region
—co<z<n(x, y, t), the second n(x, y, t) <z<oo.
Implying the liquid velocities to be potential ones,
v;=V®, (i=1, 2) in the absence of both gravity and
surface tension, the potential @ satisfies the equation

p (22 +4v0))+n,=0, ()
which combines in a complete closed system, when
amplified with the incompressibility equation
AP;=0, the kinematic relation on the free surface

7 _(& —Vn-V<Dt) =vniy/ 1H(V0)?, (2)

at —\ az .

and the boundary conditions (p;=p;}|.p,
D| 2| ~e—0. Here vy, is the velocity component nor-
mal to the interface z=n(x, y, t) and the surface ten-
sion is neglected.

Equations (1), (2) render standard the Hamil-
tonian form with elevation # as a general coordinate
and

Y=(p1 D1 —p2DP2) 2=y 3)
as a general momentum [121],

an OH

at ~ 8¢’ (4)
¥ OH

= (3)

where the Hamiltonian

n
H=tp, [ar, | @z (Vo)

+1: [ ar, [ az (Vo) (6)
n
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coincides with the total (kinetic) energy of the lig-
uids. Such canonical variables were first introduced
in ref. [13] for the case of one liquid with a free
surface.

The potential @ (and consequently V@), being the
solution of the Laplace equation with boundary con-
ditions, represents some functional of ¥ and n and
can be determined with the help of the correspond-
ing Green function.

Assuming | V| << 1 let us find an expansion of the
Hamiltonian in a power series of canonical vari-
ables. We will restrict ourselves only to quadratic and
cubic terms in the Hamiltonian. In order to find them
it is convenient to rewrite H as an integral over the
free surface, then to find the solution of the Laplace
equations by means of the Fourier transform with
respect to r, = (x, y) and after that to perform the
needed iterations. As a result, the Hamiltonian H in
this approximation has the following form,

H=14(py+p2) ( [ wew ar,

+4] [(W)Z—(EW]ndu). (7)

Here £ is the integral operator with the difference
kernel, whose Fourier transform is the modulus of
the wave vector K, and A= (p,—p,)/ (p,+p2). It is
convenient now to renormalize Hamiltonian (7) and
variables ¥, n as follows,

Pt _ 1. _P1=P2
=" n=of H==2H,
so that our problem transforms into that for one lig-
uid with a free surface [14] (here and below we omit
tildes),
H=i [ 6w ar, +1 [ (V92— (kB 1dr, . (8)

The equations of motion (4), (5), corresponding to
Hamiltonian (8), are

% =R [R(nk®) + V- (VD) ] , (9

& p1(key- (V9. (10)

The remarkable property of these equations is the
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separation of eq. (10), which involves only the vari-
able ¥, from that of (9), which governs the behavior
of the elevation 5. Such a separation is a peculiarity
of the used perturbation order and is lost in the next
orders, when # appears in eq. (10) as well. Since we
assume |Vn| « 1, it is possible to omit the second
term on the r.hs. of eq. (9),

on

3 =k¥. (11)
To study the dynamics of this system and for the sake
of simplicity we will consider the one-dimensional
case when the functions ¥ and n depend only on x
(and ¢) and the operator K may be presented in the
form

d
E=_Eﬂ’

where
1T Ax) .
(ﬁf)(x)=EP_Lx—,_xdx

is the Hilbert transform. By introducing a new func-
tion v=3%¥/dx, which has the meaning of the tan-
gent velocity on the interface, egs. (10), (11) can be
rewritten as

dv 14

5 = 255 LAV =21, (12
on _

== —f. (13)

We exploit further the property of the Hilbert trans-
form A that two operators P*=4}(1FiH) are pro-
jection operators. Namely, they decompose a func-
tion into the sum of two, v=v*+v(~), with
v(*)=P*y 3 function analytically extendable into the
upper (lower) complex half-plane. Then, the Hilbert
transform acts as follows,

Hy=i(vH =), (14)

Relation (14) should be substituted into both eq.
(13) for n and eq. (12) for v. As a result, the latter
decomposes into separate equations for the upper
(v(*)) and lower (v(~’) analytical parts of v,

6v‘i)+2v(i)av(i)
dt

=0. (15)
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Equations (15) look like those for the motion of a
free particle and can be solved by the standard
method of characteristics,

v =F ) (x,), (16)
X=X +2F ) (x)t, (17)

where the functions F (¥’ are defined from initial
conditions. On the real axis the functions v‘*’ are
complex conjugate, so it is enough to find a solution
only for v(*), for example.

3. General solution

Letin (15) F¢*)(x,) be some analytical function
in the upper half-plane of complex x, with its sin-
gularities in the lower half-plane. To find the solu-
tion of eqs. (15) one needs to resolve first eq. (17)
with respect to x,. The mapping x— x, becomes am-
biguous in the points where
%=1+2F(+)’(xo)t=0. (18)
The solution of (18) gives some trajectory on the
complex plane xo: xo=xp(¢). The roots of (18) to-
gether with (16) define the corresponding movable
branch points of the function v(*’ (x, 1),

Zo: (1) =Xo (1) +2F ) (xo(2) )2 . (19)

These points should be connected with a set of cuts,
providing for the uniqueness of the function v+’ (x,
t). The choice of these cuts has to be made in such
a way that at the moment t=0 v(*’(x, t) would have
the initial singularities. These movable branch points
originate from the singularities of the function
F ) (zp). At the moment the most “rapid” branch
touches the real axis, the analyticity of V' (*)(x, ¢)
breaks down, and, respectively, a singularity appears
in the solution of system (15).

First, define the touching time ¢, from the require-
ment that z,, is real, zy, = Xy, ASsuming 7="{y—t <K to,
and considering a small vicinity of z=X,, expansion
of (17) up to the leading order gives

F”to(&xO)z—ZFITSXO—2F0T—x’=0, (20)

where F" =F" (xo(t0)), 8xo=Xo—Xo(to), X' =X—Xpr
Fo=F ) (2o(80)). .
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From this equation we find

Fr Ft\V  2F,t+x
= +— . (21
Xo=Xo(t) 1y + \/( F lo) + Fry (21)

If F3#0 the leading term in the square root is the
linear one with respect to 7. Therefore with the
needed accuracy

xO=xO(t0)+C(x’+2FoT)l/2, (22)

where C=[F ) (xo(25)) 1~ V2

In the vicinity of x=x,, and t={,, such a general
form of x, provides self-similar singular depen-
dences for dv/dx and 7,, which follow after substi-
tution of (22) into (16) and forth integrating eq.
(13). The first step gives for the tangent velocity with
the same accuracy as for (22),

v=2Re[F,— (1/t,)C(x’ +2F,1)'/?] . (23)

Hence we get for the first derivative of v,

v 1 C
& e ZRe(————). 24
ax to e(,/X’+2FOT) ( )

So, close to the touching time ¢,, v, behaves in a self-
similar way, x’ ~ 7, increasing as t~'/2. In the limit
&=x' /1> oo this function does not depend on T,
@ oy [—1/2
I [x"| . (25)
This means this profile is formed first at the periph-
ery and then propagates to the center (x’=0), re-
sulting in a singularity at 7=0.

The curvature 7,, demonstrates the same self-sim-
ilar behavior. In fact, the elevation *, governed by
eq. (13), can be presented in the following form,

+
"()

x0(x,t)

= —i<tF(x0) -

(x _xO) ’
F () T 00 o)
where the dependence x,(Xx, t) is defined by means
of (17). Thereafter, differentiating #¢*’ with respect
to x yields an explicit expression for #,,

FH) (x)

= —_—. 2
Nx ImlogF(+)(xO) (26)
This formula together with (22) leads to the same
solution as that which we have obtained for v,, 7.,
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becomes infinite while approaching the singularity,

1
M= T h(x' /7)., (27)
where
1+/1+28\"?
h(é)——ﬁ(————lﬂéz ) .
At the critical moment 7=0, 7, looks like

r’xx"’—"xl_l/z’ (28)

which gives after integration the following behavior,
n~%1x|32+regular terms. In so doing both func-
tions n and 7, remain finite at the singular point. The
singularities, thus obtained, are the general ones for
system (12) and (13).

Now, let us show how the general formulas work
for a simple example when F(*)(x,) is a rational
function with one simple pole in the lower half-plane,

FH) = —,
(%o) Xot+1a

where Re a>0. Then the dependence xq=X,(x, ¢)

can be readily found by means of (17),

Xo+ia=4(x+ia)+./§(x+ia)?=24t. (29)

Thus, instead of the initial pole at the point x= —ia
there appears a cut, connecting two moving branch
points x; = —ia+2,/241.

The points x,,(¢) move (except for positive A4)
under some angle to the real axis. If, for instance,
A=~} and a=1, the cut spreads in the vertical di-
rection axis and reaches the real axis at the moment
of breaking t=1t,=1 at the point x,,=0. In the vi-
cinity of =0 and x=0 expressions for dv/dx and 7,
can be represented in the form

dv

z—ﬁ#[é(r+,/4x2+rz)]”2. (30)

Thus, at the critical moment 7=0 the velocity de-
rivative looks like
v

az—ﬂxr”z. (31)
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Evidently, formulas (30), (31) fully correspond to
the general ones, (24), (27).

4. Wedges

Let us show that system (12), (13) has a special
solution which describes another type of singularity.
This solution arises if F,=0. For this particular case
formula (21) transforms into

F't FrY X'
xO=ZO(IO)+F//t0 + (F"to) +F"t0

and, as a sequence, v can be approximately written
in the form

v [Xo—2o (L) 1F . (32)

Such dependence gives a new kind of self-similar be-
havior, x~ 72, which provides a surface singularity
of wedge type. Indeed, when substituting (26) into
(32) and considering the asymptotics of 5, for
x' /12> 00, one gets

Nx——4msgn(x’),

which corresponds to a wedge surface profile with an
angle a=2arctan(4/n)~103.7°. This angle is far
from r and our assumption about small surface an-
gles breaks down close to the singularity. However,
the solution obtained above appears to be meaning-
ful, because, first, the angle « is close to that cal-
culated by Stokes for a critical stationary gravity sur-
face wave on deep water and, second, self-similarity
of the type x~ 12 is retained even by the complete
system of equations (4), (5). It is worth noting that
F,=0 can be got from the initial conditions with two
poles,

() oy a a*
Fi(z)=ip (z+ia h z+ia"‘) ’
where Rea<0, Im u=0.

The dynamics of the branch points generated by
these two poles is also interesting: at the initial mo-
ment of time the poles produce two pairs of branch
points, two of which move towards the imaginary axis
and collide; after collision the points move along the
imaginary axis in opposite directions; the touching
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of the real axis by one of them produces the ap-
pearance of the singularity.

5. Floating singularities

A new type of singularities is associated with the
possibility of exact integration of eq. (9) taking into
account the second term on its r.h.s. With this aim
let us separate from (9) the equation for n¢* (x, 1),

(+)
a"T+2P‘+)(v(‘)n‘+))x=—i¥’§+). (33)
Introducing instead of #¢*’ a new function &(+) by
means of #¢*)=9&+) /dx and integrating (33) once
one can get
. dE & .
p+r (2 ) e

(at + 2v 6x> i¥ (34)
Here € is a function for which P(+*)¢=¢+). Omit-
ting then on both sides of (34) the operator P(*),
we arrive at the equation for &

9 - 9¢ L (+) (-)

Y +2v ax_——lg’ +P=, (35)
where @ ¢-) is some lower analytical function (for
which P(*)®(-)=0). This equation can be inte-
grated along the characteristics defined by (17). The
general solution to (35) consists of two parts,
¢=¢£+¢&, where

1

&=—i [ YO xC, 1), 1) dr

0
t
+J<D(-)(x(x0, ), t)de (36)
1]

is the solution of the inhomogeneous equation with
zero initial condition, and & =1 (x,) is that of the
homogeneous one, presenting simply the initial shape
of £ The effect of &, is defined by the analytical prop-
erties of the tangent velocity only, while that of &,
results from the interference of the tangent velocity
effect and the intrinsic peculiarities of the initial el-
evation ng(x).

Analyzing the first term, &;, we first stress that the
integration of the function @’ along characteris-

392

PHYSICS LETTERS A

22 November 1993

tics (17) with forthcoming application of the oper-
ator P(*) gives zero. It is enough, therefore, to in-
tegrate only @(*’ in (35). In fact, the situation is
even simpler, because we are interested in the be-
havior of the solution only close to the moment ¢,.
Omitting details, we note only that taking into ac-
count the convective term in (33), as compared with
the simplified equation (11), though giving rise to
some additional motion, does not change, in fact, the
character of singularity in the elevation (7~
Ix | =12).

It is very important that the singularities obtained
belong to the weak ones (see (28)), which do not
destroy our basic assumption about small values of
angles, |Vn| <« 1. Note also that self-similar asymp-
totics of form (27) is admitted by the complete set
of equations (4) and (5).

Of greater interest now is the homogeneous part of
the solution &=f(x,) (not considered in the pre-
vious sections at all). The corresponding upper an-
alytical part of the elevation n‘*’ is defined as

o5 91

(+) = (+)_p+

Since at the initial moment =0, x=x,, dx,/0x=1,
the function df/dx, coincides with 75 (x,), where
no(x) is the initial form of the interface. The exact
form of #{*’ may be written as
1 T dr dx(x, 1)
(+) -
7 (% 1) 2m J o x'—x—i0  9x’

— o

n(()+)(xo)-

Passing to x, as a new variable of integration, this
integral reduces to the form

dx o
x'(Xo, t)—x—i0 18" (%o) »

=)
(+) —_
n2 (x’t)_Znic

(37)

with x’ and the contour C both defined from (17).
The contour C initially coincides with the real axis,
then, in time, it is deformed in such a way that it is
partially in the lower half-plane. The motion of the
contour C towards singular points of n(*? (x,) will
define obviously the behavior and the singularity
formation of the function n(x, t) for real x. To clar-
ify this situation let us assume that #*’ (x;) has one
pole in the lower half-plane,
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iB
(+) -2
'7 (xo) = Xo _b ’
where B is real, and Im b<0. Then integral (37) is
found explicitly,
iB _ iB
x=x"tb,t) ~ x=b=2F(b)t"

it (x )=

It is clear from this expression that the pole of ¢+’
is movable with “velocity” 2F (=) (b), which is some
regular function. Therefore if F,=ImF(—’(b)>0
then there exists a moment in time . at which 7, (x,
t) becomes infinite. Evidently f.=—b,/2F,(b),
where b,=Imb. Close to this time n(x, ) has a
Lorentz form,

B(b,+2F;¢1)
T [x=b, =2F,(b)t}*+ (b, + 2F,1)?’

”(xy l)=

which transforms at t=t¢_ into the J-function,
n(x, t)=Brnd(x—b, +b,F,/F,) .

Thus, the proper singularities of the analytical func-
tion 7, not generated by the velocity field and ex-
isting initially, remain during the time evolution and
are movable. This statement can be readily checked
for an arbitrary case, not only for poles. It gives a
new type of singularities of the free surface, generally
speaking, of an arbitrary kind, appearing due to the
proper analytical properties of the initial profile of
the elevation. What kinds of singularities will appear
first depends on the initial conditions. If, for in-
stance, the initial elevation is equal to zero then we
get the first kind of singularities with a root char-
acter. One should pay attention to the fact that for
the second kind of singularities, our assumption
about small surface angles breaks down. Close to the
time f=t, one should use the complete system (4),
(5) rather than the reduced equations (9), (10).

6. Conclusion

In this paper we did not touch the question of the
stability problem of the collapsing regimes. Accord-
ing to the analysis performed in section 4, the first
regime of root character is obviously stable in the
framework of the truncated system (12), (13). For
the complete system, however, this is an open ques-
tion, as well as for two other regimes. It should be
emphasized again, that from the very beginning we
assumed the angle of the surface (|Vn]) to be small,
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and therefore, we cannot pretend to the full descrip-
tion of all types of possible singularities, as described
by the complete system of equations (4), (5). How-
ever, the solutions corresponding to the weak sin-
gularity regime turn out to be consistent with the ap-
plicability condition of the truncated equations (10),
(11).

In our opinion, there exist two possibilities for the
role the root singularities may play in the general dy-
namics; either the singularities serve as the origin of
more powerful ones observed in numerical experi-
ments or they represent a new type of singularities.
One should note also that the self-similar asymptot-
ics for the wedge type of singularities are allowed by
the exact system of equations. We believe therefore
that just this type of singularity was observed in nu-
merical experiments [11] (see also ref. [10]).
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