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We showthattheequationsof motionof anidealfluid with a freesurfacedueto inertialforcesonly canbeeffectivelysolvedin
theapproximationof small surfaceangles.Foralmostarbitraryinitial conditionsthesystemevolvesto theformationof singular-
ities in afinite time. Threekindsof singularitiesareshownto bepossible:therootonesfor whichtheprocessof thesingularity
formationrepresentssomeanalogof thewave breaking;singularitiesin the form of wedgeson theinterface;thefloatingones
associatedwith motionin thecomplexplaneof thesingularpointsof theanalyticalcontinuationofthesurfaceshape.

1. Introduction stageof the Kelvin—Helmholz instability [51is an
exampleof that.Various aspectsof singularityfor-

The formationof singularitiesin a wave systemin mation for vortex sheetmotion haveso far been
a finite time,or in otherwords,wavecollapse,is one studiedin anumberofpapers,bothnumericallyand
of the basic phenomenain nonlinearphysics.The analytically [5—81.Therecentpaper [8] shouldbe
collapsesplay an essentialrole in variousfields of mentionedin particular. It providesconsiderable
physics.In many casesthe collapseis the mostef- numericalevidenceof the occurrenceof an infinite
fective mechanismof waveenergydissipation. surfacecurvatureina finite time. Theroot (in space)

From the mathematicalpoint of view, collapse characterof the arisingsingularityhasbeenchecked
meansthat the solution of the Cauchyproblemfor in ref. [81 too. As for analytical considerations,
someevolutionPDEexistsonly for finite time until thoughthey show the existenceof singularities,in
somedefinite moment t = t~andcannotbe contin- our opinion, a demonstrationof explicit collapsing
uedfor t> t

0. At the momentt= t0 thesolution loses solutionsis still lacking.The questionalso remains
its initial smoothnessanda singularityappears.What open whetherroot singularitiesare genericfor the
kind of singularitieswill arisedependson the phys- Cauchyproblemin this system.
icalmodel.Forexample,for the self-focusingof light In thispaperwewill considerhowthesingularities
[1,2] or for thecollapseof Langmuirwaves[31,the appearas a result of the analyticity breakingon the
amplitudeof electromagneticwavestendsto infin- interfacebetweentwo idealliquids in theabsenceof
ity. In anothercase,thatof wavebreakingin gasdy- bothgravityandsurfacetension.Thisquestionisvery
namicsdescribedby the well-known Riemann so- important,also,for understandingthe evolutionof
lution (see,forexample,ref. [4]), thefirst derivative the boundarybetweentwo fluids while studyingsea
of the velocity becomesinfinite at the momentof surface waves and the nonlinear stage of the
breaking.For seasurfacewavesthe analogousphe- Rayleigh—Taylorinstability resulting in the finger
nomenonleadsto an infinite secondderivativeof structure(see,for instance,ref. [9], andreferences
the surfaceprofile (sothatanglesor conesappearon therein).We presentthe analyticalsolution of the
the surface).Checking analyticity violation is the problembasedboth on the perturbationapproach,
mostsensitivetool for studyingthat set of collapses. assumingsmallanglesoftheinterfacevariations,and
Lossof analyticity of vortexsheetsin the nonlinear usingtheHamiltonianformalismfor the description
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of the interfacemotion.Forthe caseof a liquid with ertiesof ~o(x) resulting in the formationof a strong
a free surface,the problemwas formulated [101 by singularinterfaceprofile.
oneof the authorsof thepresentpaper(V.Z.). It is
supposedthat the singularity formation on a free
surfaceof an ideal fluid or in themoregeneralcase, 2. Model
for theboundarybetweentwo idealfluids, is mainly
connectedwith inertial forces,otherfactorsgiving a Let us considertwo ideal fluids with massdensi-
minorcorrection.This meansthat if one considers, tiesPt andP2, respectively.Let z= ~(x,y, t) be the
for instance,the motion of an ideal liquid drop coordinateoftheinterfacebetweenthesetwo liquids
(withoutbothgravity andsurfacetension) thenon so that the first liquid occupies the region
the surfaceofthe droptherewill appeara singularity — x <z~ i~(x, y, t), the second j (x, y, t) <z~
of the wedgetype.Thisideawas laterconfirmedby Implying the liquid velocitiesto be potential ones,
direct numericalintegrationof the Euler equation t~= V~P,(i = 1, 2) in the absenceof bothgravity and
for the caseof deepwater [11]. surfacetension,thepotentialcI~satisfiestheequation

Adoptingonly the small slopeapproximation,we ~

give thesolutionof theCauchyproblemfor themo- + ~(V41)
2)+P

1=0, (1)
tion of the boundarybetweentwo liquids.

Themainconjectureof this paperis asfollows. The which combinesin a completeclosedsystem,when
formation of singularitieson the interfacefor the amplified with the incompressibility equation
smallangleapproximationcanbeconsideredaswave ~ ~,= 0, the kinematicrelationon the free surface
breakingin the complexplaneto which the solution ~
canbe extended.This resultsin the motion of both -~ =(-~~~_L_v?l.v~1) =v~1~Jl+ (V,1)

2, (2)
branchpoints of the analyticalcontinuationof the Z

velocity potentialandsingularpointsof the analyt- and the boundary conditions (Pt =P2) I
ical extensionof the surfaceelevation.Whenfor the j~ ~~ Herev,~isthe velocity componentnor-
first timethe most“rapid” singularpointwill reach malto theinterfacez= ii(x, y, t) andthesurfaceten-
the realaxis, thenthe singularitywill appear.Three sion is neglected.
kindsof singularitiesarepossible.For thefirst kind, Equations (1), (2) renderstandardthe Hamil-
at the momentthe tangentvelocity touchesthe in- tonian form withelevation j asa generalcoordinate
terface,it hasaninfinite first derivativeandsimul- and
taneouslythe secondspacederivativeof the inter- 3
face coordinatez=j(x, t), i.e. ~, also turns to ‘(p~(j~)jP2~1’2)Iz=~~
infinity. Theseare weak singularitiesof root char- as a generalmomentum[12],
acter(ti~ I x I 1/2) which canbeassumedto serve ~ 81-I
asa sourceof morepowerful singularities,observed _!i = -~, (4)
in numericalexperiments[111, or to representa t9t
separatetype of singularities.This kind of singular- 3W 6H 5
ities turnsout to be consistentwith the assumption ~7= —

of small surfaceangles. It is shown that the inter-
actionof two movablebranchpoints to the tangent wherethe Hamiltonian
velocity canleadundersomedefinite conditionsto
the formation of the secondtype of singularities, H= ~p’ J dr~j dz (Vt1~

1)2
wedgeson the surfaceshape.Closeto the collapse
time the self-similarsolution for suchsingularities
happensto be compatiblewith the completesystem + ‘~ I dr $ dz (V~’2)2 (6)
of equationsdescribingarbitrary anglevalues. The 1 2 j I

third type is causedby the initial analyticalprop-
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coincideswith the total (kinetic) energyof the liq- separationof eq. (10),which involvesonly thevan-
uids. Suchcanonicalvariableswerefirst introduced ableW, fromthatof (9), which governsthebehavior
in ref. [13] for the caseof one liquid with a free of the elevation‘~.Sucha separationis a peculiarity
surface. ofthe usedperturbationorderandis lost in thenext

Thepotential~ (andconsequentlyV~),beingthe orders,when ,~appearsin eq. (10) aswell. Sincewe
solutionof theLaplaceequationwith boundarycon- assumeI V,1 I ‘~ 1, it is possibleto omit the second
ditions, representssomefunctionalof Wand ‘i and term on the r.h.s.of eq. (9),
canbe determinedwith the help of the correspond-
ing Greenfunction. =I~W. (11)

AssumingI V,1 I ic 1 let usfind anexpansionofthe
Hamiltonian in a power seriesof canonical van- To studythedynamicsof this systemandforthesake
ables.Wewill restrictourselvesonly to quadraticand of simplicity we will considerthe one-dimensional
cubictermsin theHamiltonian.In ordertofind them casewhenthe functionsW and,1 dependonly on x
it is convenientto rewriteH as an integraloverthe (andt) andthe operator1~maybe presentedin the
freesurface,thento find the solutionof theLaplace form
equationsby meansof the Fourier transformwith
respectto r1 = (x, y) andafter that to perform the /2 — ~—

needediterations.As a result,the HamiltonianH in X

this approximationhasthe following form, where

H=~(pi+p2)(J~W dr1 (Rf)(x)= !P 5f~±c2x’

+A ~ 2 2 d is the Hilbert transform.By introducinga newfunc-[( W) — ( W) I’i r±,~. ~ tion v= OW/Ox, which hasthe meaningof the tan-

gentvelocity on theinterface,eqs.(10), (11)canbe
Here 1~is the integraloperatorwith the difference rewritten as
kernel,whoseFourier transformis the modulusof
the wave vector~, andA= (P1—p2)/Col+P2). It is Ov = [(Rv)

2—v2] (12)
convenientnowto renormalizeHamiltonian(7) and Ot 2 Ox
variablesW, ~ as follows,

-~=—Rv. (13)

W=.°172 !P, ,1=~, HP1P20
Weexploit furtherthe propertyof theHuberttrans-

sothatourproblemtransformsinto thatfor oneliq- form R that two operatorsj5 ±= ~(1~ ill) arepro-
uidwitha freesurface[14] (hereandbelowweomit jectionoperators.Namely, they decomposea func-
tildes), tion into the sum of two, ~ with

r r ± =P±va functionanalyticallyextendableintothe
H=~J W/~Wdr

1+~J[(V~)2_(I~W)2],1dr±. (8) upper(lower) complexhalf-plane.Then,theHilbert
transformactsas follows,

Theequationsofmotion(4), (5),correspondingto ~ . ~

Hamiltonian (8), are rzv=i(v — V ) . (14)
Relation (14) shouldbe substitutedinto both eq.

(9) (13) for,1andeq.(12) forv.Asaresult,thelatter
decomposesinto separateequationsfor the upper

(10) (v~~)andlower (v
t~) analyticalpartsof v,

Ot Ov~~ Ov~~
+2v~~ =0. (15)

The remarkablepropertyof theseequationsis the Ot Ox
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Equations(15) look like thosefor the motion of a From thisequationwe find
free particle and can be solved by the standard __________________

methodof characteristics, ~ =x0(t0) + + ~J(F~r)
2 + 2F

0t+x’ . (21)

(16) F 10 F t0 F t0

x=x0 +2F ( ± (x~) t, (17) If F0 ~ 0 the leadingterm in the squareroot is the
linear one with respect to T. Therefore with the

where the functionsF (±) are definedfrom initial neededaccuracy
conditions.On the realaxis the functions v are
complexconjugate,so it is enoughto find a solution x0 =xo(to) +C(x’ +2F0t)”

2, (22)
only for ~ for example. whereC=[F(~”(xo(to))]—U2.

In the vicinity of X Xbr andt = t
0, sucha general

form of x0 provides self-similar singular depen-
3. Generalsolution dencesfor Ov/Oxand ,1~which follow after substi-

tution of (22) into (16) andforth integratingeq.
Let in (15)F ~ (x0) besomeanalyticalfunction (13).Thefirst stepgivesfor thetangentvelocity with

in the upperhalf-planeof complexx0 with its sin- the sameaccuracyas for (22),
gularitiesin the lower half-plane.To find the solu- ~= 2 Re[F0— (lIt0) C(x’ + 2P’~r)”

2] . (23)
tion of eqs.(15) oneneedsto resolvefirst eq. (17)
with respectto x

0. Themappingx—~x0becomesam- Hencewe get for the first derivativeof v,
biguousin the pointswhere Ov 1 / C “

—=——Re( 1. (24)

=l+2F
t~~’(xo)t=0. (18) Ox t

0 \~x’+2F0TJ
X0 So,closeto the touchingtimet~,v~behavesin a self-

The solution of (18) gives some trajectory on the similarway, x’ x, increasingas~ t/2~In the limit
complex planex0: x0 = x0( t). The roots of (18) to- ~= x’ /r—~::this function doesnot dependon ~r,
getherwith (16) definethe correspondingmovable
branchpointsof the function v~’(x,t), Ix’ L”

2. (25)
Zbr(t)XO(t)+2F~~(XO(t))t. (19) . .

Thismeansthisprofile is formedfirst at theperiph-
Thesepointsshouldbeconnectedwith a set of cuts, ery andthenpropagatesto the center(x’ = 0), re-
providingfor theuniquenessofthefunctionvt +) (x, sulting in a singularityat r=0.
t). The choiceof thesecuts hasto be madein such Thecurvature,1~demonstratesthesameself-sim-
a waythatat themomentt= 0 v~~ (x, t) would have ilar behavior.In fact, the elevation,f’, governedby
theinitial singularities.Thesemovablebranchpoints eq. (13), canbe presentedin the following form,
originate from the singularities of the function
F ~ (z

0). At the momentthe most“rapid” branch xO(x,t)

touchesthe realaxis, the analyticity of V~~(x,t) — .( ~. .~ f (x—xo) ‘+~‘ -~.~

— —il tF~x0,— F ~,x0,U~4Øbreaksdown,and,respectively,a singularityappears J 2F~ (xe)
in the solution of system(15).

First,definethetouchingtime t0 fromtherequire- wherethedependencex0(x, t) is definedby means
mentthatZbr isreal,Zbr = Xbf. AssumingT= t0 — t~ t0, of (17).Thereafter,differentiating,1(+) with respect
andconsideringa smallvicinity OfZ=Xbr, expansion to x yields an explicit expressionfor ~

of (17)up to the leadingordergives F~~~(x)

F”t0(öx0)
2—2F’t6x

0—2F0~—x’=0, (20) ~Iml0~~(+)(~0). (26)

whereF” =F” (x0(t0)), 8x0=xo—x0(t0),X’ =X~Xbr, Thisformula togetherwith (22) leadsto the same
F0 = F ~ (z0(t0)). solutionas that which we haveobtainedfor v~,~
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becomesinfinite while approachingthe singularity, Evidently, formulas (30), (31) fully correspondto
the generalones,(24), (27).

(27)

where 4. Wedges

~ (1+~l+2~2)h/2. Let us show thatsystem(12), (13) hasa special
—— ~.. 1+2~~

solutionwhich describesanothertype of singularity.
At thecritical moment-r= 0, ,1~looks like Thissolutionarisesif F0 = 0. Forthisparticularcase

— lxi —1/2 (28) formula (21) transformsinto

which gives after integrationthefollowing behavior, x0 = z0(to) + F’ T II F’r

,1~~ixI
312+regularterms. In so doing both func- + ~ +

tions ,1 and‘~ remainfiniteat thesingularpoint. The
singularities,thusobtained,are thegeneralonesfor and,as a sequence,v canbe approximatelywritten
system(12) and (13). in the form

Now, let us showhow the generalformulaswork v~[.~ —z
0(t0)]F’ . (32)

for a simple examplewhenF ~ (x0) is a rational
functionwith onesimplepole in thelowerhalf-plane, Suchdependencegivesa newkind of self-similarbe-

havior, x r
2, which providesa surfacesingularity

A
F ~ (x

0) = ______ of wedgetype. Indeed,when substituting(26) into
x0 +ia’ (32) and consideringthe asymptoticsof i~ for

where Rea>0. Then the dependencex0 = x0 (x, 1) x /r
2—~cc~onegets

canbe readilyfoundby meansof(l7),

x
0 +ia= ~(x+ia)+..,/~(x+ia)

2—2At. (29) which correspondstoa wedgesurfaceprofile withan

Thus, insteadof theinitial poleat thepoint x= —ia anglea=2arctan(4ht)~ 103.7°.This angle is far
thereappearsa cut, connectingtwo movingbranch from 7t andour assumptionaboutsmallsurfacean-
pointsx

1,2= — ia±2~/i~i. glesbreaksdown closeto the singularity.However,
The pointsx1,2(t) move (exceptfor positive A) the solutionobtainedaboveappearsto be meaning-

undersomeangle to the real axis. If, for instance, ful, because,first, the anglea is closeto that cal-
A= — ~ anda = 1, the cut spreadsin the vertical di- culatedby Stokesfora critical stationarygravity sur-
rectionaxis andreachesthe realaxisat the moment facewave on deepwaterand,second,self-similarity
of breakingt= t0 = 1 at the point xbr= 0. In the vi- of the type x t

2 is retainedevenby the complete
cinityof r=0 andx= 0 expressionsfor 8 v/Oxand,1 systemof equations(4), (5). It is worthnotingthat
canbe representedin the form F

0 = 0 canbegot fromthe initial conditionswith two
poles,

Ov2,1xx / a a* )
Ox F~(z)=iu(,,—__-—_

z+ia z+ia~
1

— ~J4x2+r2 N(T+%J4x2+~r2)]1/2. (30) whereRea<0,Imu=0.
The dynamicsof the branchpoints generatedby

Thus, at the critical momenti= 0 the velocity de- thesetwo poles is also interesting:at the initial mo-
rivative looks like

ment of time the polesproducetwo pairsof branch
Ov points,two of whichmovetowardstheimaginaryaxis

— Ix I —1/2• (31) andcollide; aftercollision thepointsmovealongthe
imaginaryaxis in oppositedirections;the touching
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of the real axis by one of them producesthe ap- tics (17) with forthcomingapplicationof the oper-
pearanceof the singularity. atorP~~) gives zero.It is enough,therefore,to in-

tegrateonly cP~~ in (35). In fact, the situationis
evensimpler, becausewe are interestedin the be-

5. FloatIngsingularities havior of the solutiononly closeto the momentt~.
Omitting details,we note only that taking into ac-

A new type of singularitiesis associatedwith the counttheconvectivetermin (33), as comparedwith
possibilityof exactintegrationof eq. (9) taking into the simplified equation (11), thoughgiving rise to
accountthe secondterm on its r.h.s.With this aim someadditionalmotion,doesnotchange,in fact, the
let usseparatefrom (9) theequationfor ,~(~) (x, t), characterof singularity in the elevation ~

—1/2

x
+2P~(v~ ,1+)~ = —i ~ (33) It is veryimportantthatthesingularitiesobtained

Ot belongto the weak ones (see (28)), which do not

Introducinginsteadof ,1 a newfunction ~°( ~ by destroyour basicassumptionaboutsmall valuesof
meansof ,1( = O~(+ /Ox andintegrating(33) once angles, I V,i I ~ 1. Note also that self-similarasymp-
onecanget toticsof form (27) is admittedby the completeset

/ of equations(4) and(5).
~(~) + 2v~-~)= —i ~ (34) Ofgreaterinterestnowis thehomogeneouspartof

\Ot Ox the solution c~2=f(x0) (not consideredin the pre-
Here~ is a function for which ~ + c~=~ 4)~Omit- vious sectionsat all). The correspondingupperan-
ting then on both sidesof (34) the operator~( ~ alytical part of the elevation,1(~ is definedas
we arriveat the equationfor ~, Ox df

~ t)=(O~2/Ox) )=~+ (-~_~~_).
(35)

ut (IX Sinceat theinitial momentt=0, x=x0, 0x0/Ox= I,
where ~ ~ is somelower analytical function (for the function df/dxo coincideswith ,1~) (xo), where
which P(~)cP()=O).This equationcan be inte- ,10(x) is the initial form of the interface.The exact
gratedalongthecharacteristicsdefinedby (17). The form of ,1~ may be written as
general solution to (35) consists of two parts,

where ,1~~(x,t)=—$ c~x Oxo(x~t),1~+(xo)
2E1 x’—x—iO Ox’

= —i $ ~~~(x(xo, 1’), 1’) dt’ Passingto x0 asanewvariableof integration,this
0 integral reducesto the form

+ $ ~x(x0, 1’), t’) dt’ (36) ,1~(x,t)= ~ $ x’ (x0, t)—x—iO

is the solutionof the inhomogeneousequationwith
zero initial condition, and ~2 =f(xo) is that of the with x’ andthe contourC bothdefinedfrom (17).
homogeneousone,presentingsimply theinitial shape The contourC initially coincideswith the realaxis,
of ~. Theeffectof c~is definedby theanalyticalprop- then,in time, it is deformedin sucha waythat it is
ertiesof the tangentvelocity only, while that of ~2 partially in the lower half-plane.The motion of the
resultsfrom the interferenceof the tangentvelocity contourC towardssingularpointsof ,1~~~(X0)will
effect andthe intrinsicpeculiaritiesof the initial el- define obviously the behaviorand the singularity
evation,~0(x). formationof the function ,1(x, 1) for realx. To clar-

Analyzingthefirst term,~, we first stressthat the ify thissituationlet usassumethat ,1(+) (x0) hasone
integrationof the function ~ —) along characteris- pole in the lower half-plane,
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(~) (xc,) — _____ andtherefore,wecannotpretendto thefull descrip-
— — b’ tion ofall typesof possiblesingularities,asdescribed

by the completesystemof equations(4), (5). How-whereB is real, andImb<0. Thenintegral (37) is
ever, the solutions correspondingto the weak sin-

found explicitly,
gularityregimeturn outto beconsistentwith theap-

(x 1) iB iB plicabiityconditionofthetruncatedequations(10),
= x—x’(b,t) = x—b—2F~(b)t~ (11).

In our opinion,thereexisttwo possibilitiesfor the
It is clearfrom this expressionthat the poleof ,1 role therootsingularitiesmayplay in thegeneraldy-
is movablewith “velocity” 2F~ (b), which is some namics;eitherthe singularitiesserveasthe origin of
regularfunction. Thereforeif F2 = Im F ~ (b) >0

morepowerful onesobservedin numericalexperi-
thenthereexistsa momentin time I,, at which ~ (x, mentsor they representa newtype of singularities.
t) becomesinfinite. Evidently t,, = — b~/2F2(b), Oneshouldnote also that the self-similarasymptot-
where b2 = Im b. Close to this time ,1 (x, t) has a ics for the wedgetype of singularitiesareallowedby
Lorentz form,

the exact systemof equations.We believetherefore
B( b2 + 2F2 t) thatjust this typeof singularitywasobservedin nu-

~ t) = — [x—b1—2F1(b)t]
2+ (b

2 +2F2t)
2’ mericalexperiments[11] (seealso ref. [10]).

which transformsat 1= 1,, into the d-function,

,1(x, t)=B~tö(x—b
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