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The Hamiltonian formulation of hydrodynamics in Clebsch variables is used for construction of a statistical theory of 
turbulence. The statistics of the Clebsch field is assumed to be close to Gaussian. It is shown that the energy spectrum 
consists of two ranges with E(k) ~- k -5/3 and E(k) ~ k -1. The spectrum of the dissipation rate fluctuations has three sealing 
regimes: E'(k) ~- k-~; k -v3 and k ° at the large, intermediate and small scales, respectively. The origin of the exponential 
distribution of velocity differences is discussed. The new scaling regime corresponds to a hidden conservation law, 
discovered in the Clebsch formulation of hydrodynamics. It is shown that viscous effects are responsible for production of 
the conserved quantity. The theoretical predictions are compared with results of numerical simulations of decaying 
turbulence. 

1. Introduction 

Strong hydrodynamic turbulence is a complex 
system characterized by an intricate interplay 

between order and chaos, between local and 

non-local interactions leading to formation of 

strongly anisotropic small-scale coherent struc- 

tures resembling "spaghetti",  worms, two- 

dimensional sheets, etc. Our understanding of 
this fascinating complexity is far from complete, 

though some of the features of turbulent flows 

are quite accurately described using field- 
theoretical methods. For example, the second 

order structure function S2(x ) is represented by 
the Kolmogorov law: 

s 2  --- ( a u )  2 = [ u ( X )  - u ( X  + x ) ]  ~ = c,~g~'3x ~'3 . 

( 1 . 1 )  

However ,  the scaling behaviour of higher-order 

structure functions remains something of a mys- 

tery. Numerous experiments indicate that: 

S. = [u(X) - u ( X  + x)]" ~ x ~" , (1.2) 

where the scaling exponents ~, deviate from the 

Kolmogorov values ~, = n/3 .  Further, it was 

found that the larger the order n, the stronger 
the deviation ~ from the predictions of the 
Kolmogorov theory. 

Another  unsolved problem is the shape of the 
probability distribution function (PDF) of the 

velocity differences P(Au). It is well established 
that the single-point PDF is Gaussian. In other 
words, P ( A u )  xexp[- (Au)2/U2ms ] for x>>L,  

where L is the integral scale of turbulence. For 
separations x corresponding to the inertial range 

l d ~ x ~ L,  where l o is the dissipation scale, the 

0167-2789/93/$06.00 © 1993- Elsevier Science Publishers B.V. All rights reserved 



380 V. Yakhot,  V. Zakharov / Hidden conservation laws 

experimentally observed P(Au)  is: 

P ( A u )  oc e x p ( - a  IAul/Urms) ( 1 . 3 )  

with the dimensionless coefficient a = ~(1). The 
relation (1.3) represents the most dominant fea- 
ture of the PDF of velocity differences. The finer 
details and possible corrections to (1.3) will be 
discussed in section 5. 

No less interesting is the behaviour of the 
fluctuations of the local value of the kinetic 
energy dissipation rate E = v(aui/Oxj):.  It has 
been suggested [1] that the e-fluctuations may be 
responsible for the deviations from the Kol- 
mogorov theory, which predicts: 

s ;  = - , ( x  + x ) ]  x ° . (1.4) 

The relation (1.4) has never been observed 
either in numerical or in physical experiments. 
Instead, observations suggest 

S2 oc x -~ , (1.5) 

with the "intermittency exponent" /x ranging 
from 0.1 to - 1  depending on the experimental 
conditions, Reynolds numbers etc. The relation 
(1.5) shows that the dissipation rate of kinetic 
energy is concentrated in the localized areas of 
the space having the "spotty" nature. This is 
often interpreted as spacial intermittency of 
strong turbulence. Theoretical understanding of 
this behaviour is a major challenge. Accurate 
experimental verification of (1.5) is very difficult 
and at the present time we cannot even be sure 
that a scaling relation of the type (1.5) exists at 
all, though it is clear that experimentally ob- 
served S2(x ) decreases with x contrary to (1.4). 
Existing theories, usually based on one-loop re- 
normalized perturbation expansions, when prop- 
erly regularized, give satisfactory predictions of 
large-scale-dominated features of turbulence 
such as the Kolmogorov relation (1.1), including 
the numerical value of the Kolmogorov constant 

C K, energy transfer, turbulent transport, etc. It 
is only when we are interested in the properties 
of the high-order moments S n or statistics and 
scaling behaviour of the velocity differences and 
velocity derivatives that simple one-loop approx- 
imations fail, being unable to describe the small- 
scale strongly non-local coherent phenomena. 

The velocity and velocity derivative fields are 
extremely complex. So, it is natural to ask the 
following question: does there exist an underly- 
ing field connected to the original, Navier- 
Stokes (Euler) variables by a non-linear, maybe 
even non-local, transformation, which has rela- 
tively simple dynamical structure ("quarks of 
turbulence" according to A.A. Migdal). If this 
field does exist, then the problem of constructing 
a turbulence theory stems from an unfortunate 
choice of variables, not from the intrinsic inabili- 
ty of one-loop approximations to describe the 
small-scale intermittency manifested in the rela- 
tions (1.2) and (1.5). Thus, it is a major chal- 
lenge to find a set of variables yielding the 
experimentally observed properties of turbulence 
(1.1)-(1.3) and (1.5). 

This goal is clearly too ambitious, since finding 
a set of transformations of original velocity field 
which exactly yields the properties of turbulence 
discussed above, amounts to the solution of the 
turbulence problem. However, something more 
modest, but still producing experimentally ob- 
served features of turbulent flows (1.1)-(1.5) 
can be done: it will be shown in this work that 
the description of turbulence in terms of Clebsch 
variables leads, even in the simple one-loop ap- 
proximation, to many non-trivial results which 
cannot be derived directly from the Navier- 
Stokes equations. The most remarkable property 
of these variables, discovered in the middle of 
the last Century, is that, being canonical vari- 
ables, they enable one to represent the Euler 
equations of ideal hydrodynamics in Hamiltonian 
form. In Clebsch variables the equations of mo- 
tion become even more non-linear, which makes 
the problem less tractable. However, it will be 
clear below that these equations have the con- 
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servation laws which are hidden in the conven- 
tional Navier-Stokes hydrodynamics. We will 
show that some of the most interesting features 
of turbulence correspond to these new conserva- 
tion laws. 

The main results of this paper can be summar- 
ized as follows: the one-loop renormalized per- 
turbation expansion of the Euler equations, writ- 
ten in the Clebsch variables, gives many ex- 
perimentally observed properties of turbulence 
such as: the Kolmogorov spectrum and another 
k-l-energy range observed in several numerical 
simulations of decaying turbulence. This second 
inertial range corresponds to the inverse cascade 
of the hidden integral of motion discovered in 
the Clebsch description of hydrodynamics. We 
shall also demonstrate that the simplest assump- 
tion about the nature of statistics of the Clebsch 
fields leads to an understanding of the origin of 
the exponential distribution function of velocity 
differences. In addition, the properties of the 
dissipation rate correlation functions will be de- 
rived. All results are obtained using the ideas 
and methods of the Hamiltonian formulation of 
hydrodynamics, produced during last two de- 

\ 
cades by Zakharov and coworkers [2-5], com- 
bined with a mean field approximation and a 
new understanding of the central role of viscosity 
in the Clebsch formulation of the Navier-Stokes 
equations, developed in this work. 

2. The  m o d e l  

We consider a fluid flow driven at the very 
large scales l >> L--~ ~. Somewhere at the small- 
est scales l---~ 0 an energy sink is assumed, so that 
a statistically steady state can be achieved. It is 
customary to describe the dynamics of the inter- 
mediate scales by the Euler equation (the density 
.o = 1 ) :  

OV 
- -  + v . V v  = - V p  
Ot 

V- v = 0 .  (2 .1 )  

The Clebsch variables are defined as: 

v = hV/,  + V ~ .  (2 .2 )  

Using the incompressibility condition, the poten- 
tial ~b can be expressed through h and/z:  

= - v  -2 v .  ( h v ~ , ) ,  

and thus: 

v = - V  -~ V x ( V h  x V u , ) ,  (2.3) 

to = Vh × V/x .  (2 .4 )  

The Clebsch variables are transported by the 
flow and the Euler equation can be represented 
a s :  

~ t . =  - r  + v . V ~  = o ;  
Ot 

Oh 
~h = ~ -  + v-V,~ = O. (2.5) 

It follows from eq. (2.3) that the velocity field 
does not uniquely define the Clebsch field (h(x, 
t), /x(x, t)). In fact, a set of pairs of the Clebsch 
variables (hi(x, t), lzi(x, t)) can be used to 
express the velocity v(x, t): 

M 

v = ~ aiV/* i + V~b, (2.6) 
i=l  

and 

M 

0.~ = E V/~ i X V~.~i , ( 2 . 7 )  
i=1 

where M is the number of Clebsch pairs neces- 
sary for the complete representation of velocity 
field. The equations of motion for each pair (h i, 
/xi), given by (2.5) with the subscript i specifying 
the pair, can be written in a Hamiltonian form 
since h and /~ are canonical variables. The 
Hamiltonian and corresponding equations of mo- 
tion are given below. The minimal number of 
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canonical pairs needed to describe an arbitrary 
flow depends on the topology of the field v. It is 
a plausible conjecture that M = 2 is sufficient to 
represent a wide class of turbulent flows. Indeed, 
the velocity field in a three-dimensional incom- 
pressible flow has two independent components. 
This field, however, cannot be described by one 
pair of Clebsch variables due to the constraint 
v .o~ = 0 which tells us that, in fact, we have 
only one independent Clebsch variable. Intro- 
ducing the second Clebsch pair we create two 
independent variables, sufficient for the descrip- 
tion of the general velocity field with the non- 
zero values of the local helicity. In this paper we 
will discuss only the case of M = 1 which corre- 
sponds to zero helicity .[ v-  oJ dx -= 0 which fol- 
lows directly from the definition (2.4). This re- 
stricts applicability of the analysis to flows in 
which the vortex lines do not have any knots. 
However,  the results of this work may be readily 
generalized to the case of M = 2 corresponding 
to an arbitrary topology. 

Introducing the complex variables a(k) an0 
a*(k) 

1 
/x(k) = ~ [a(k) + a * ( - k ) ] ,  

i 
X(k) = ~ [ a ( k ) -  a* ( -k ) ]  (2.8) 

the Euler equation can be written in a Hamilto- 
nian form: 

. O a ( k )  ~ H  
1 Ot - ~a*(k-----~' ( 2 . 9 )  

where the Hamiltonian H is: 

1 f 
H =  4 J T12,34a*(kl) a*(k2) a(k3) a(k4) 

× ~ ( k  I + k 2 - k 3 - k 4 )  dkl  dk 2 d k  3 d k  4 . 

(2.10) 

The interaction potential is 

T12,34 ~ T(klk2, k 3 k 4 )  = ~13~24 "~ ~014~23 , ( 2 . 1 1 )  

where 

2 2 

~ ( k l ,  k 2 ) ~ 1 2  = k 1 + k 2 - ( k  1 - k 2 )  k l  - k 2 
Ikl - k2l 2" 

(2.12) 

In these variables: 

f 
= j  * dq .  (2.13) U ~q,k_qaqak_q 

The function q~(kl, k2) is a discontinuous func- 
tion a t  k I = k 2 since the diagonal elements of 
q~(k, k) determine an arbitrary mean velocity in 
the flow v(k = 0). So, in what follows we set ~0(k, 
k)=0. 

Substituting (2.10)-(2.12) into (2.9) the equa- 
tion of motion for the "creation-annihilation" 
operators a(k) is readily derived: 

Oa(k) 1 f B 

J T(kk2, k3k4) a*(k2) a(k3) a(k4) 1 O---~ - 2 

x 6(k + k 2 - k 3 - k 4 )  d k  2 d k  3 d k  4 . 

(2.14) 

Eq. (2.14) conserves total energy, since it is a 
Hamiltonian equation of motion. In addition, 
they conserve an infinite number of integrals of 
motion J" F(A, / z )dr  = constant. These integrals 
do not have simple interpretation in terms of the 
velocity field. In the present paper we concen- 
trate only on one of the integral of motion: 

if N = ~  (A 2 + / z  2)dx 

= f a*(k) a(k) dk = constant.  (2.15) 

The parameter N has the dimensionality of ac- 
tion and can be called the "hydrodynamic 
action" or number of quasi-particles (elementary 
excitations) describing turbulent flow. The rela- 
tion (2.15) has the most important impact on 
what follows, so the elucidation of the physical 
meaning of the "quasi-particles" or waves and of 
the topological consequences of this conservation 
law remains a very important task. 
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3. One-loop approximation; kinetic equation 

Let us single out the diagonal contributions to 
the equation of motion (2.14): 

what follows. The statistical ensemble can be 
constructed by introducing an infinite set of reali- 
zations differing in the values of the initial 
phases ~o(k) in (3.5): 

• Oa(k) 
l 0-------7- ~(k)  a(k) 

= f T ( k ,  k 2, k 3, k4) a*(k2) a(k3) a(k4) 

× 8 (k+  k 2 -  k 3 - k 4 ) d k 2 d k a d k 4 ,  (3.1) 

where 

to(k) = f T(kk 2, kk2) a*(k2) a(k2) dk 2 , (3.2) 

and the symbol ' in the integral in (3.1) means 
that the diagonal contributions with k = k 3, k 2 = 

k 4 are not included. It will be shown in what 
follows that the integral 

~(k)  = f T(k, k 2, k, k2) n(k2) dk 2 , (3.3) 

with 

n(k) = (a*(k) a(k)) (3.4) 

converges when calculated on the solutions n(k) 
of the kinetic equation derived below. This 
means that the main contribution to (3.3) comes 
from the region k = k 2. In this work we are 
interested in statistically steady solutions n(k), so 
to(k)--constant  is time-independent. Thus, we 
introduce the mean-field approximation [6]: 

• Oa(k) ~ (k )  a(k) = S (3.5) 
1 0 - 7 -  

where the collision integral S(k) is defined by the 
right side of eq. (3.1). In the zeroth order of the 
expansion in powers of the non-linear interaction 
S we have: 

a°(k, t) = a(k) e -i~(k)' . (3.6) 

The bar over a3(k) defined by (3.3) is omitted in 

a°(k, t) = la(k)l e ioJ(k)t+i'p(k) • (3.7) 

We assume further that all phases ~(k) uncorre- 
lated, i.e.: 

(a(k))  = (la(k)l ei~(k)) = O, 

<a(k) a(k ' )  ) 

-- (la(tOI la(k')l exp[i(q~(k) + q~(k')]) = O, 

(a(k) a*(k '))  

= (I a(k) l I a(k')l exp[i(q~(k) - tp(k')] ) 

= n(k) 8(k - k ' ) ,  

All odd-order correlation functions of the fields 
a(k) are equal to zero in this random phase 
approximation (RPA). As was mentioned above 
the averaging is performed over the ensemble of 
initial phases q~(k). 

The RPA, introduced above, assumes gaussian 
statistics for the zero-order solution (3.7)• This 
does not mean that the solution of the full 
non-linear problem (3.5) is a Gaussian random 
field. In what follows we assume that the non- 
linear interaction is weak and consider the one- 
loop approximation only, which is the simplest 
possible case• Still, it will be shown that, despite 
the simplicity of the assumed dynamics of the 
Clebsch fields, the dynamical picture correspond- 
ing to the velocity field is extremely complex. 

To derive equations of motion for the "occu- 
pation numbers" n(k), let us multiply (3.4) and 
the corresponding equation for a*(k) by a*(k) 
and by a(k), respectively• Then, the equation of 
motion for n(k) reads: 

On(k, t) f 
Ot = I m  Tkk2,k3k4J~k2,k3~4 

X 8(k + k 1, - k  2 - k3) dk 2 dk 3 dk 4 , 
(3.8) 
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where 

J4 = Jkk2,kak 4 = ( a * ( k )  a*(k2) a(k3) a(k4) ) . (3.9) 

Writing the equation of motion for J4 as: 

ot = ~ (a*(k) a*(k2) a(k3) a(k4) , (3.10) 

and expressing the time-derivatives in (3.10) 
using (3.4) we obtain in the random-phase ap- 
proximation: 

On(k, t) rr ( 
Ot - 2 _ I Tk~2"k3k412 14 ~ ( k  q- k 2 - k 3 - k4) 

x ~( to (k )  + to(k~) - to(k3) 

- -  to(k4) ) dk 2 dk 3 dk4, (3.11) 

with: 

thermodynamic equilibrium, while the relations 
(3.15), (3.16) describe a non-equilibrium flow. 
From the definition of to(k) given by (3.3) we 
find readily: 

a = - x + d + 2 = - x + 5  ( d = 3 ) ,  (3.17) 

and the expressions for n(k)  can be obtained in a 
closed form: 

n oc k -13/3 

a = 2 / 3 ,  
(3.18) 

and 

n o o k  - 4  , 

o ~ = 1 .  

(3.19) 

J4 = n3n4(n 2 + nk)  - n2nk(n 3 + n4) (3.12) 

Here n(k i )  = n i. 
The kinetic equation (3.10)-(3.11) has been 

analyzed and solved by Zakharov [4]. It has been 
shown that if 

t o ( k ) ~ k  ~ , (3.13) 

there exist four scaling solutions: 

1 
n(k )  = constant, n(k )  ~ to(k) ' (3.14) 

and 

It can be checked easily that the total energy can 
be evaluated from the following relation: 

xf 
E = ~ to(k) n (k )  d k ,  (3.20) 

which defines the energy spectra in terms of the 
Clebsch variables: 

e(k) =2~k2~(k) n ( k ) .  

The relations (3.18) and (3.19) generate two 
solutions: 

E( k ) oc ~ 2 / 3 k -  5/3 ' (3.21) 

n(k )  oc k-X , 

with 

(3.15) and 

e.(k)~ Pk ' ,  (3.22) 

4 
x , = ~ + d ,  

4mO~ 
- - - + d .  x 2 -  3 

(3.16) 

The solutions (3.14) correspond to a fluid in 

where P denotes the "particle" flux in the wave- 
number space. It has also been shown [2] that, 
while the energy flux is positive, i.e., the energy 
is cascading from the largest to the smallest 
scales, the flux of particles is in the opposite 
direction: from small to large scales (inverse 
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cascade). The importance of this fact will be 
discussed below. Thus, as follows from (3.21) 
and (3.22), the small- and large-scale dynamics 
in turbulent flows are characterized by two dif- 
ferent energy spectra. This is a completely new 
development which is discovered due to our use 
of the Clebsch variables. It is clear that the 
energy spectrum (3.22) can readily be obtained 
from dimensional considerations which do not 
require one-loop approximation and kinetic 
equation (3.10)-(3.11). However, in this case we 
have to postulate existence of the scaling regimes 
corresponding to constant fluxes in wave-number 
space of each conserved quantity. Then, the 
particle and energy conservation laws lead imme- 
diately to (3.21) and (3.22). To conclude this 
section we would like to reiterate that the as- 
sumption about close-to-Gaussian statistics of 
the Clebsch variables cannot be easily justified. 
It is interesting, however, that such an assump- 
tion leads to so many experimentally observed 
facts. It has to be stressed that the gaussianity of 
the Clebsch field does not imply the gaussianity 
of the velocity field which is known to be grossly 
incorrect. Moreover, it will be shown below that 
this assumption leads to the experimentally ob- 
served exponential distribution of the velocity 
differences. 

4. Energy spectra in turbulent flow 

The energy spectrum (3.22) corresponds to the 
flux in wave-number space of the integral of 
motion (2.13) resembling the total number of 
quasi-particles or elementary excitations in con- 
densed matter physics. The physical meaning of 
these particles or waves is not clear since we do 
not have a representation of (2.13) in terms of 
observables. Moreover, we even dO not have 
conclusive ideas about the source and dissipation 
mechanisms contributing to the dynamics of 
these excitations. However, knowing the direc- 
tion of the flux in wave-number space, we can 
assume that the particles are created at the 

smallest scales l---~ 0. By the construction of the 
model, the range of scales l---~ 0 corresponds to 
the energy sink, necessary for maintenance of a 
statistically steady state. Thus, the particle pro- 
duction in the Navier-Stokes hydrodynamics is 
dominated by molecular viscosity z,. The only 
additional parameter of the problem is the power 
of the external source which in the statistically 
steady state is equal to the dissipation rate E. On 
the basis of these considerations we come to an 
assumption that the energy sink is the source 
where the particles are born. This statement will 
be verified below. In the Navier-Stokes descrip- 
tion the small-scale viscous effects leading to the 
energy dissipation, simultaneously generate and 
"emit" these particles (waves). Then, the non- 
linear interaction leads to the formation of the 
large-scale excitations a(k )  by an inverse cascade 
mechanism. 

From dimensional considerations we have: 

E , , ( k )  = c . ( ~ v ) ' / 2 k  - '  , (4.1) 

where c, is the second Kolmogorov constant. 
To verify the qualitative reasoning leading to 

(4.1) let us represent the Navier-Stokes dy- 
namics in the Clebsch variables. We consider the 
equations of motion 

Ov 
- -  + v .Vv  = - V p  + v VZv + F 
Ot 

where the large-scale stirring force IF(k,  012 = 0 
for all k > 1/L--~ O. The vorticity equation is: 

ato 
O'-'-t- + V x (v x oa) = v &~o, (4.2) 

where (V x F)2---> 0 has been neglected as small. 
Recalling the definition of vorticity in terms of 
the Clebsch variables (2.4) we have: 

c3to 

~t 
- -  + V x (v x ~ )  = VA x V g ~  + VgA x V / z ,  

(4.3) 

where ~A and ~/z are defined in (2.5). Compar- 
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ing (4.3) with (4.2) leads to: 

VA x V@/x + V@A x Vp, = It A¢o. (4.4) 

Calculating the scalar product  of (4.4) with V/x 
gives: 

(V~ x V,~) - V ~  = -~o  - V ~  = It V ~ .  a a , .  
(4.5) 

This relation can be simplified since: 

O 
¢o .V~/z = ro ~ ~ / x ,  (4.6) 

where the derivative 0/01 is taken along the 
vortex line. This leads to: 

where the random function ~ = ~(1) comes from 
the ratio AoMoo. This relation tells us that the 
viscous term in the Navier-Stokes  equation cor- 
responds to a random source driving the Clebsch 
field. Then: 

2 ( f ( k )  f * ( k ' ) )  2 4 It k n~ , (4.11) F(k )  = It 3 ( k -  k ' )  

where F(k)  is the source correlation function 
which generates the corresponding production 
term in the kinetic equation: 

2 On It F k v 2 
0 t =  oJ k = ~ "  (4.12) 

The relation 

~ = 0__~ + v.Vlz 
dt 

f VA.A¢o 
: - - I t  

60 
- -oo  

and 

0A 
~ x  = ~ -  + v.V;~ 

/ V ~ . A o ,  
- - i t  

O) 
- - o o  

- - d l ,  (4.7) 

- -  d l .  ( 4 . 8 )  

5 ogk~k n k , 

following from (3.3) was used in derivation of 
(4.12). 

The relation (4.12) is defined on the interval 
k < k ,  where k.  is the dissipation cut-off of the 
k-Cspect rum.  The production rate of the quasi- 
particles is: 

a f  22 1, k,  (4.13) P ~- -~ n d k  ~ . 

The  energy spectrum at the scales larger than the 
dissipation scale is: 

In the a-variables we thus have 

Oa(k) + i OH 
O-----~ Oa*(k----~- v f ( k ) ,  (4.9) 

where f ( k ) ,  the Fourier transform of the function 

f ( r )  = ~ Va._A¢o dl (4.10) 
d 60 

- -oo  

describes the source of the particles (waves). 
Simple power counting gives for f ( k )  

f (k)  ~ k2~a(k), 

E k = C K e 2 / 3 k  - 5 / 3  q- cnPk  -1 . (4.14) 

Here  c~: and c~ are the Kolmogorov constants. 
The value of k ,  can be found from the energy 
balance equation 

f vk2Ek dk = E . (4.15) 

If c K ~ c n ~ 1 both terms in (4.14) have the same 
order  at k - - k , -  k d. Here  k d ~ •1/4/1- '3/4 is the 

Kolmogorov scale. In this case the Kolmogorov 
spectrum ~2/3k-5/3 prevails over the entire iner- 

tial range k < k d. But if for some reason c, >> c K, 
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k, . -~  c~l/4kd and P ~ -  Cnl/2(t[ll) 1/2. In this case in 
the region c~-3/4 < k/k  d < c, -1/4 the inverse cas- 
cade k-l-spectrum dominates. 

Now we can make the following prediction. 
Consider stationary Kolmogorov turbulence 
driven by a large-scale force. This flow is domi- 
nated by the 5/3-spectrum (3.20). At time t = 0 
let us turn off the energy source and follow the 
process of turbulence decay. In this case the 
energy is transferred to the small scales and is 
dissipated there into heat. At the same time the 
source of waves (viscosity) keeps supporting the 
k-l-spectrum. As a result the spectrum (4.1) 
must dominate the later stages of turbulence 
decay. 

Analyzing the existing literature on high- 
resolution direct numerical simulations (DNS) of 
isotropic homogeneous turbulence we were able 
to find ample evidence of the existence of the 
k-l-energy spectrum at the later stages of turbu- 
lence decay. Fig. 1 shows the results of simula- 
tions performed by Panda and coworkers [7]. 
The microscale Reynolds number in these simu- 
lations was R~ ~ 60 and 2563 Fourier modes were 
accurately resolved. The wide range of E(k)~- 
k -~ is clearly seen at the later stages (1.6 < t < 4) 
of the decay process. The Kolmogorov range is 
hardly noticeable in fig. 1. The k-l-spectrum was 
also observed by Jackson and She [8] who 
studied turbulence decay. The theoretical pos- 
sibility of a k-l-spectrum was discussed by Or- 
szag [9], who analyzed the one-loop Dyson equa- 
tions for the propagator G and the velocity 
correlation function U. The spectrum is obtained 
if it is assumed that the response function G is 
dominated by viscous effects (negligibly small 
non-linearity) while the equation for the correla- 
tion function is governed exclusively by non- 
linear effects. However, examining the Dyson 
equations leads to the conclusion that these as- 
sumptions yielding the k-Lenergy spectrum ap- 
pear to be dynamically inconsistent and this is 
the reason why this range was never found in 
numerical solutions of the regularized one-loop 
Dyson equations. 
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Fig. 1. The energy spectra in decaying turbulences [7]. a, b, 
c, d correspond to dimensionless times t=0.08;  1.6; 3; 4 
respectively. 

5. Probability distribution of the velocity 
differences 

Let us consider the probability density of the 
velocity difference 

V(x,  r) = u(x) - u(x + r ) ,  
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where u is the x-component  of the velocity field 
and r is the displacement from the point x. If r 
denotes displacement in the x-direction, then it is 
well known the odd moments U are not equal to 
zero and the PDF P(U) ~ P(-  U). However  this 
asymmetry is not very strong and it is absent 
when r denotes displacement in the direction 
perpendicular  to the axis x. In this section we 
shall discuss the origins of the exponentially 
observed exponential PDF of the velocity differ- 
ences, leaving more accurate theory to future 
publications. It is clear that in the random phase 
approximation: 

U 2 f 2 = ~ k l , k 2 n ( k l )  n ( k 2 )  

× { 2 -  2 cos[(k 1 - -  k2)r]} dk 1 dk 2 . (5.1) 

If k I >~" k 2 then 

2 2 
~P~,k2 ~ k2 , (5.2) 

which makes the ultra-violet convergence of the 
integral (5.1) obvious. To consider the infra-red 
propert ies of the integral let us set /3k I = k 2 with 

2 2 /3 ~ 1. In this case ~o 12 ~ k2 and the contribution 
to the integral from the interval 0 < k 2 < flk 1 is 
estimated readily: 

/3k 1 

J n(k l ) (2-  2cos  klr ) dk, J n(k2) k~ dk 2 
0 0 

_/32/3 f k111/3(2 _ 2 cos klx ) d3kl . 

0 

This integral converges in both limits. Thus, the 
main contribution to (5.1) comes from the inter- 
val where k I = k 2. The probability distribution 
function P(U) is defined as: 

P(U)oc f 6 [U-  u(x) + u(x + r)] d x ,  or 

oo 

Introducing the ensemble of fluctuating Clebsch 
fields and assuming that the space and ensemble 
averaging procedures are equivalent we have: 

cc 

P(U) = J d a  ei~U(e -i~U(°'O) . (5.3) 

Assuming further the Gaussian statistics of the 
Clebsch field: 

I =  (e -i'~ U(°'r) ) 

= dak~da22 7r n(ki) 

x exp dkl dk 2 --laq~kl,kate - -  

~ ( k  1 - 

The integral can be formally evaluated with the 
result: 

1 
I =  

Det  A kl,k 2 ' 

where the matrix 

A k I ,k2 

/ 
= ~ - - i o t t P l , 2 ( e  i ( k l - k 2 ) r  - -  1) 

t $ ( k  I - -  k2) 
-~((~ ) l-[ n(k,i). 

The determinant  is equal to: 

Det  Akl,k 2 = tr(ln e Akl 'k2)  . 

The diagonal elements A k,, = n(k)-1. Expanding 
the expression for the Det  Akl,~ 2 in powers of 
k 1 - k  2 we derive in the first non-vanishing 
order: 

( e _ i ~ v ( r ) )  _ 1 _ _  
1 + o g 2 U  2 ' (5.4) 

with U 2 given by (5.1). Substituting (5.4) into 
(5.3) and evaluating simple integral we have: 
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P(U)  ~ exp( -  U/Urms) (5.5) 

where root-mean-square U~m s = (U2) 1/2 This re- 
sult does not take into account the higher order 
in powers of k 1 - k 2 terms. The same answer is 
obtained if the contribution to the matrix ele- 
ment akl,k 2 = tP1,2(2 -- 2 c o s [ k  1 - kE]r ) only weak- 
ly depends on the wave-vectors k 1, k 2 .  In this 
case the result (5.4) is exact to all orders of the 
perturbation expansion. The approximate ex- 
pressions (5.4) and (5.5) demonstrate the origin 
of the exponential probability distributions in 
turbulence. Rigorous proof and evaluation of the 
corrections to (5.4) is a very interesting and 
important problem. 

The result (5.4) is obtained under the assump- 
tion of Gaussian statistics of the Clebsch field, 
which naturally leads to the exponential dis- 
tribution function P(U),  since U- (~(aa*) .  Two 
kinds of corrections to (5.4) are expected. First 
of all, more accurate treatment of the integrals 
involved in the derivation of (5.4) might lead to 
modifications of P(U)  in the region U--~ 0. It is 
not impossible to assume that the exact expres- 
sion for the PDF does not scale with U/Urm s, but 
in addition has some r-dependent contributions. 
In this case, all high-order moments will also 
depend on the separation r. The second reason 
for corrections to (5.4) has a much deeper phys- 
ical basis. The weak interaction approximation 
used in this work is an assumption yielding quite 
interesting results. However, the deviations from 
the Gaussian statistics of the Clebsch variables 
might lead to substantial changes in the shape of 
PDF's of different structure functions, especially 
of those dominated by small-scale processes. At 
the present time we do not have any idea about 
the nature of the deviations of statistics of the 
Clebsch variables from Gaussian. Still, some 
speculations about their consequences are pos- 
sible. For example, exponential tails in the dis- 
tribution function of the Clebsch variables corre- 
sponds to 

P(A) -- e -~a/arms)l'z 

where A = A ( x ) -  A(x+ r) the difference of 
some, as yet unspecified physical property of 
turbulent flow (vorticity, vorticity derivatives, 
etc . . . .  ). 

6. Spectra of the dissipation rate fluctuations 

In this section we will evaluate the dissipation 
rate structure functions S 2 defined by the relation 
(1.4). To begin the discussion, let us first recall 
the derivation of the Kolmogorov result S 2 
k -1. The dissipation fluctuation spectrum is: 

E ' (k )  ~ 4~rk 2 ~(k)~(k')  
6(k + k ')  " (6.1) 

Substituting the relation 

E(k) = 2v f qi(k - q)i v~(q) v~(k - q) d3q 
0 

(6.2) 

into (6.1) we obtain: 

E' (k )  ~ vEk 2 f [qi(k - q)i]EU(q) U(k - q) d3q, 

0 
(6.3) 

where U(k )=  E(k)/4~rk 2. It is easy to see that 
the integral converges in both limits, yielding 
E ' (k )  ~ k 5/3, which is grossly incorrect. The mis- 
take can be traced to the assumption of Gaussian 
statistics of the velocity field involved in the 
derivation of this relation. However, this as- 
sumption is plausible in the renormalization 
group sense, i.e., the deviations from Gaussian 
statistics can be treated as small, provided the 
effective (renormalized) transport coefficients 
are used in the evaluation of the corresponding 
flow features. This statement is rather clear since 
in the inertial range of fully developed turbulent 
flow the characteristic time-scale of the velocity 
fluctuations at the scale l ~ 1/k is dominated by 
the non-linear interactions and can be repre- 
sented using effective (turbulent) viscosity v K. 
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The e-spectrum is given by: 

E ' ( k )  = v2(k)k 2 f [q,(k - q) i l2U(q)  
0 

× U ( k  - q) d3q, (6.4) 

w i t h  ~'K--"-el/3k -4/3 in accord with the Kol- 
mogorov theory. The integral (6.4) converges 
and (6.4) and (6.1) give the dissipation fluctua- 
tion spectrum in Kolmogorov turbulence: 

E K ( k  ) ~ e2k - '  . (6.5) 

Using the same procedure we can calculate 
E'n(k) corresponding to the k-a-spectrum. The 
only fundamental difference between this case 
and the one considered above is that the integral 
(6.3) calculated for the k-a-spectrum is ultra- 
violet divergent and, thus, is equal to a constant 
which strongly depends on the value of k d. Then, 
it is easy to find the dissipation rate spectrum in 
the gaussian random field: E ' ~  k z. In a turbul- 
ent flow dominated by a k-l-spectrum, a differ- 
ent procedure should be used. It follows from 
the relation (3.19) and the energy spectrum (4.1) 
that the effective viscosity v n in this case is: 

vn(k  ) = (el.,)l/4k-a , (6.6)  

and we derive readily: 

E' . ( k )  ~. k ° . (6.7) 

In the general case of high Reynolds number 
statistically stationary turbulence the largest frac- 
tion of energy is contained in the 5/3- 
Kolmogorov range dominating the large-scale 
velocity fluctuations. Indeed, in this case EK/ 
E,  ~ Re/In  Re---~oo when the Reynolds number 
Re = UrrnsL/v----~ oo. The subscripts n and K here- 
after denote parameters of the flow correspond- 
ing to the k-a and Kolmogorov spectra, respec- 
tively. It is easy to see that eK/e . = 6(1) and 

thus, the energy dissipation is more or less equal- 
ly distributed between two spectra. To estimate 
the e-correlation function let us assume that the 
total dissipation rate E--ei~ + en. This assump- 
tion is plausible within the framework of our 
weakly non-linear theory. Then we have: 

E t o t a  I = E K + E n + EKn , (6.8) 

where in the three-dimensional case: 

e K .  = k2,,K(k) ,,o(k) 

x f [q~(k - q)~]2UK(k ) U~(k) d3q 

0 

,.~ k - 1 / 3  (6.9) 

Statistical independence of the velocity fields 
described by the two spectra was assumed in the 
derivation of this relation. Thus, the Kol- 
mogorov scaling (1.4) is "contaminated" by con- 
tributions coming from the second solution of 
the kinetic equation. This is a manifestation of 
small-scale intermittency. The predicted spec- 
trum of the dissipation rate fluctuations consists 
of three ranges, characterized by the k-l-spec - 
trum at the largest scales and k°-spectrum in the 
vicinity of the dissipation cut-off. The inter- 
mediate k-1/3-range might be too narrow to be 
found in the available experimental data. It 
should be mentioned that the simple linear 
superposition of the dissipation rates correspond- 
ing to different spectral ranges introduced above 
is an approximation which can be rather crude. 
In a non-linear system a weighted superposition 
can modify the relative importance of different 
spectral contributions to the total dissipation 
fluctuation spectrum. 

To test our predictions E. Jackson and Z.S. 
She [8] have generated a Gaussian random field 
having a k-a-spectrum and used it as an initial 
condition to simulate the process of turbulence 
decay. The results of this remarkable experiment 
are presented in fig. 2. One can see that, while 
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Fig. 2. Evolution of the k-l-spectrum from the Gaussian 
initial conditions [8]. For the explanation see text. 

the energy spectrum remained unchanged during 
the entire experiment, the dissipation fluctuation 
spectrum demonstrated a dramatic transition 
from E'(k) ~ k 2 to E'(k) -- k ° in accord with the 
theory developed in this paper. 

7. Summary and discussion 

The first serious attempt to attack the turbu- 
lence problem using a field-theoretical approach 
was made by Kraichnan [10], who introduced the 
direct interaction approximation (DIA), a one 
loop renormalized perturbation expansion of the 
Navier-Stokes equations. It became clear soon 
after Kraichnan's first publication on the subject 
[11] that the DIA, combined with a proper regu- 
larization prescription, gives quite accurate pre- 
dictions of a wide variety of the features of 
turbulence, such as energy spectra, turbulent 
transport, etc. However, despite the substantial 
successes of statistical theories in the description 
of the large-scale-dominated properties of the 
turbulent flows, their failure to explain the small- 
scale phenomena or the deviations from the 
Kolmogorov theory has led in recent years to a 
pessimistic assessment of the feasibility of field- 
theoretical methods in the development of the 
future theory of turbulence. 

The reasons for the inability of one-loop per- 
turbation expansions of the Navier-Stokes equa- 
tions to describe the small-scale properties of 
turbulent flows can be easily understood in terms 
of the results of this work. The Clebsch vari- 
ables, used for formulation of the theory, corre- 
spond to an extremely complicated non-linear 
transformation of the original velocity field. 
Thus, the one loop approximation in the Clebsch 
description is equivalent to an infinite resumma- 
tion of the renormalized perturbation expansion 
of the Navier-Stokes theory. The fact that the 
hidden conservation law discovered in the 
Clebsch formulation of hydrodynamics leads to a 
new inertial range is not surprising if we recall 
the reasoning behind the well-known algebraic 
ranges in two and three-dimensional turbulent 
flows. Indeed, it is widely accepted that energy 
conservation is responsible for the 5/3- 
Kolmogorov range, while enstrophy conserva- 
tion in 2D-hydrodynamics results in the k -3- 
energy spectrum, observed in different situa- 
tions. However, not all conservation laws are 
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dynamically relevant. It is a plausible conjecture, 
adopted in this work, that in order to be dy- 
namically significant, the conserved quantity 
must have an external source or production 
mechanism. In other words the integral of mo- 
tion has to be affected by some external mecha- 
nisms. The relevance of the particle conservation 
law has been demonstrated in this paper where 
we have identified viscous mechanisms (the ener- 
gy sink) with quasi-particle production. Thus, we 
believe, the k-l-spectrum is dynamically jus- 
tified. The existence of this new range is respon- 
sible for the strong deviations of the small-scale 
dynamics from the Kolmogorov description. 

Comparison of our predictions with ex- 
perimental data has to be regarded as prelimi- 
nary. The results of the low Reynolds number 
numerical simulations supporting the k-l-energy 
spectrum are most gratifying, although more nu- 
merical and experimental work is needed to 
understand the role of the new range in high- 
Reynolds number turbulent flows. Analysis of 
experimental data on the spectra of the dissipa- 
tion rate fluctuations in atmospheric and labora- 
tory boundary layers give rather strong indica- 
tions in favor of the predictions of this paper, 
although more careful data processing is neces- 
sary to make more definitive statements. 

To try to understand the reasons of apparent 
success of the Clebsch variables in describing 
both large and small-scale properties of turbulent 
flows, we would like to discuss the role of vari- 
ous dynamical constraints, following Euler equa- 
tions of ideal fluid. First of all, the solutions must 
be Galileo invariant. The inability of the one- 
loop approximations to satisfy this important 
constraint resulted in the well-known infra-red 
divergencies which can be removed by the 
Lagrange transformations, the E-expansion, 
infrared cut-offs etc. However, this is not suffi- 
cient for the development of the successfull 
theory of small-scale behaviour of the velocity 
fluctuations. The reason of this failure will be 
discussed below. 

The velocity field must satisfy the Kelvin 
theorem or the law of conservation of circula- 
tion, which can be regarded as an infinite num- 
ber of geometrical constraints on possible solu- 
tions of the problem. This basic property of the 
inviscid hydrodynamics must be preserved in the 
statistical theory. The low order renormalized 
perturbation expansions of the Navier-Stokes 
equations, though corresponding to an infinite 
subset of the diagrams, violate the Kelvin 
theorem. It is easy to speculate that the geomet- 
ric constraints may be responsible for strong 
deviations from the gaussian statistics, which 
cannot be taken into account by one-loop ap- 
proximations based on the velocity field. To 
illustrate this point, let us consider a spherical 
pendulum in the gaussian field. This system has 
an obvious geometric constraint: the fixed pen- 
dulum length. The trajectories of the pendullum 
can cover only the limited part of the space, 
sphere of a given radius, which results in the 
strong deviations from the Gaussian statistics. 
We believe that similar situation occurs in hydro- 
dynamics: The evolution of any initial condition, 
obeying the Euler equation, does not cover all 
possible trajectories, but only those conserving 
the volume of the fluid element in accord with 
the Kelvin theorem. Thus, it is clear that this 
restricted random walk is not a Gaussian pro- 
cess. We speculate that this is the basic physical 
reason for the strong deviations of velocity dif- 
ference distribution functions from Gaussian, ob- 
served in various experiments. 

Another possibility, suggested by A. Newell, 
is that the quasiparticle source, derived in this 
paper is dominated by the viscous effects which 
tend to weaken the build up of coherence due to 
the non-linear interactions, thus leading to close- 
to-Gaussian statistics of the Clebsch field. 

The advantage of the Clebsch variables is that 
they, by construction, automatically satisfy the 
Kelvin theorem of conservation of circulation 
and, as a consequence, must not obey the 
geometric constraints. Thus, their trajectories 
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can cover much larger fraction of the phase 
space, allowing the close-to-Gaussian statistical 
behaviour. 

The particle conservation responsible for the 
k-X-range, leads to the inverse cascade in the 
wave-number space which resembles the similar 
process in 2D-turbulence due to the energy con- 
servation. There exist still unanswered question 
about the fate of the energy, accumulated at the 
large scales as a result of this process. The 
existing experiments do not show any large 
peaks in the energy spectra at k = 0, so we would 
like to understand the details of the energy 
balance. We suspect that the inverse cascade 
leads to the formation of the large scale struc- 
tures which are unstable. This instability acts as 
the large-scale energy source. The generated 
energy is then cascaded to the small scales and 
dissipated into heat. Similar mechanism has been 
discussed in ref. [12]. 

Now we can reassess the notion of "correc- 
tions to the Kolmogorov theory" which has been 
an elusive goal of turbulence theory. It is clear 
from the results of this work that renormalized 
perturbation expansions based on the Navier- 
Stokes equations are unable to describe the 
small-scale behaviour of the flow. The deviations 
from the Kolmogorov theory are not corrections 
at all: they correspond to a completely different 
physical reality governed by a conservation law 
hidden from the conventional hydrodynamics. 
Both k -5/3 and k-l-spectra have "equal rights" 
being manifestations of two different, but equal- 
ly important, symmetries of the problem. It is an 
accident, though understandable, that the 
Navier-Stokes equations were the ones used for 
the description of all, including strongly turbul- 
ent, fluid flows. If the Clebsch variables were the 
only ones known to us, then the turbulence 
problem might have been much simpler than the 
problem of laminar flows, for which these vari- 
ables are very incovenient. In this case, both 
spectra derived in this paper would have been 
discovered simultaneously since they appear as 

two different solutions of the same nonlinear 
equation. 

The results obtained in this paper are derived 
in the mean field approximation, introduced in 
section 3. Investigation of the corrections to this 
approximation is a most interesting problem 
which is beyond the scope of this work. At the 
present time we can only hope that these correc- 
tions can be analyzed using field-theoretical 
methods. This is possible only if the theory 
presented here is indeed the mean field theory of 
turbulence. If there exist some yet unknown 
conservation laws or hidden symmetries, then we 
will again face an intrinsic inability of the famil- 
iar variables, this time the Clebsch variables, to 
describe some experimental data. 
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