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The kinetic equation for a set of Stewart point vortices moving on the background of a shear flow with uniform vorticity 
is derived. Besides the total number of vortices with certain amplitude values, this equation provides conservation of the 
total vorticity of vortex gas on each shear flow stream line. Such conservation laws prevent, in the general case, relaxation of 
the system to the Maxwell equilibrium distribution of vortices. In fact, the system is shown to tend to an equilibrium state, in 
which vortex gas vorticity on each stream line of shear flow is formed by vortices with equal amplitude signs, only the most 
intense vortices being concentrated in more exited regions, while less intensive vortices are concentrated at the periphery of 
perturbed domains. Applicability of the kinetic equation obtained for the description of Helmholtz vortices sets is discussed. 

1. Introduction where 

The concept of point vortices has been used for 

modeling nonlinear dynamics of 2D incompress- 
ible fluid motion since Helmholtz. In the last two 

decades the problem of description of point vor- 
tices' motion has acquired a new practical signif- 
icance. It appears that potential dynamics of 

charged particles in a strongly magnetized plasma 
can be described by equations, coinciding with 

equations for a set of point vortices in an incom- 
pressible fluid [1]. Point vortices are also used in 
the theory of superfluidity in He 4 films (see e.g. 

review [2] and references therein). 
A lot of processes in meteorology, oceanology 

[3, 4] and plasma physics [5] are governed by an 
equation more general than one describing 2D 
incompressible fluid dynamics. This equation for 

the stream function $ ( x , y , t )  in dimensionless 
form looks like 

- q , )  = O, ( ] . l )  dt  

d - 7 = ~ - 7 + ( v . V ) ,  v =  0 y '  ax " 

For small scale motions, V2~b >> ~b, eq. (1.1) turns 

into the equation of 2D dynamics of an incom- 
pressible fluid. For modeling of nonlinear dynam- 
ics governed by eq. (1.1) point vortices have been 

introduced by Stewart [3]. In spite of the differ- 
ence between the Stewart vortex and the vortex 

in an incompressible fluid (hereafter called 

Helmholtz vortex) in regions remote the from a 
center, r >> 1, there is certain similarity between 

dynamics of Stewart and Helmholtz vortex sets. 
For example, it is easy to show that a system of 
two Stewart vortices uniformly rotates around the 

"mass center"; it is similar to the well known 
behavior of two Helmholtz vortices [6]. For both 
types of vortices, equations of three-vortex mo- 
tion turn out to be integrable [7-9]. If  the num- 
ber of vortices n > 3, the equations of motion are 
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not integrable in the general case and the motion 
of such systems possesses chaotic features [10]. 

Considerable attention in literature has been 
paid to the study of ensembles consisting of a 
large number of point vortices, n >> 1, [1, 2, 7, 
11-14]. Such ensembles may be considered a 
finite-dimensional approximation of turbulent 
motions. The main progress in this area is due to 
the construction of thermodynamic theory [2, 12, 
13] and direct computer modeling [2, 14] of 
Helmholtz vortex ensembles. Thermodynamic 
consideration of point vortices has been intro- 
duced by Onsager [11], who also obtained the 
most important result of such a theory (see also 
ref. [13]): a point vortex system has been proved 
to possess negative temperature states, in which 
vortices with different vorticity signs tend to oc- 
cupy separate domains, and, hence, to create 
large scale mean field circulation. In the case of 
positive temperatures equilibrium states are spa- 
tially uniform. The result mentioned above serves 
as a good explanation [13] of "ergodic boundary" 
(separating initial conditions starting from which 
large scale circulation does appear from those 
which lead to uniform equilibrium) found by 
Deem and Zabusky [15]. Direct numerical simula- 
tions of evolution of point vortex sets are in 
rather good agreement with conclusions of ther- 
modynamic theory (see e.g. ref. [14]). 

It is pointed out by Aref  [11] that the descrip- 
tion of relaxation of a system may be more im- 
portant for a theory than the description of its 
thermodynamical equilibrium states. In addition, 
in natural turbulence sources and dissipation are 
always present, while stationary states of a fluid 
medium are usually remote from thermodynamic 
equilibrium. In spite of this, few papers [1, 7] are 
devoted to kinetic theory of point vortices ensem- 
bles. Novikov [7] has shown that investigation of a 
system of n identical vortices can be carried out, 
based on analysis of Hopf  equation for a charac- 
teristic functional generating the n-particle distri- 
bution function. Vahala and Montgomery [1] have 
shown that neglecting pair correlations to reduces 
the equation for one-particle distribution func- 
tion to the one for 2D incompressible fluid. No- 

tice that, taking into account the possibility of 
approximation of fluid vorticity field by a large set 
of point vortices, this result looks natural. 

Intrinsic difficulties arise if one tries to take 
into account pair correlations of vortex coor- 
dinates [1]: for a set of Helmholtz vortices, as 
well as of Stewart vortices, there exists no pro- 
per small parameter  which would enable us to 
express pair correlation function in term of 
one-particle distribution function and so obtain 
kinetic equation for vortices of Boltzmann type. 

Constructing kinetic theory seems more simple 
for those systems, in which point vortices move 
on the background of regular flows. Such flows 
can represent global oceanic flows, zonal flows in 
atmospheres of major rotating planets of the so- 
lar system (Jupiter, Uranus, Saturn, Neptune), 
a n d - i n  the case of magnetized p l a s m a -  
azimuthal drift motions in magnetic traps driven 
by the radial component of an electric field. 

The pattern of point vortex motion on the 
background of a regular flow is most simple when 
the flow is characterized by uniform vorticity. In 
such cases the flow is steady, and its influence on 
the dynamics of vortices can be considered as the 
appearance of "kinetic energy" of vortices (see 
section 2). The problem of interaction of two 
Helmholtz vortices with uniform vorticity was 
solved by Bogomolov [16], and an analogous prob- 
lem for two Stewart vortices was considered by 
Gryanik [17]. It will be demonstrated in section 3 
that pair interaction of Stewart vortices, in con- 
trast to Helmholtz vortices, looks like collision 
which transfers vortices from one state of unper- 
turbed motion to another one (i.e. from one 
stream line of regular flow to another one). Ac- 
cordingly, the kinetic equation for the ensemble 
of Stewart vortices on the background of constant 
vorticity flow can be obtained by means of a 
standard procedure of kinetic theory of gases, 
which operates with cross-section of pair colli- 
sions. 

The derivation and analysis of such an equa- 
tion are the main purposes of the present paper 
(see sections 4-6). The results obtained are dis- 
cussed in section 7. In addition, in section 7 the 
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arguments are presented in favor of applicability 
of the kinetic equation obtained in the present 
paper, also for the description of Helmholtz vor- 
tices kinetics. 

2. Equations for motion of  Stewart vortices in a 
flow of  constant vorticity 

Let us consider dynamics of n Stewart vortices 
on the background of regular flow qJr, which is 
characterized by the spatially homogeneous value 
of potential vorticity: 

V2~Or - Or = C = const. (2.1) 

The equations for vortices' coordinates xi(t), yi(t) 
(i = 1, 2 . . . . .  n) in such a system have the Hamil- 
tonian form: 

consider for simplicity flows with stream function 

~b r = A  c h ( y )  (2.4) 

only, since the value of constant C does not 
influence the flow's velocity field, while analysis 
of the case B 4:0 can be carried out similarly to 
the consideration below, and would not lead to 
any new effects. In addition, let us assume A > 0; 
the case A < 0 comes to the case A > 0 by the 
transformation t --, - t ,  F / ~  - F /  (i --- 1, n). 

In the case of regular flow depending on coor- 
dinate y only, the Hamiltonian (2.3) is invariant 
with respect to translations along the x-axis, and 
hence the x-momentum of the system of vortices 
is conserved: 

n 

Y'. Fiy i = const. (2.5) 
i - I  

OH OH 
~'~i = ~ i '  Fipi = Oxi' (2.2) 3. Pair collisions of  vortices 

where F/ is the intensity of vortex with number i, 
and Hamiltonian H looks as follows: 

n 

H =  ~ F/~br(ri) + ~;~FiFjKo(ri-rj), 
i= 1 i<j  

(2.3) 

where Ko(z) is the modified Bessel function of 
zero order. The first term in expression (2.3) 
corresponds to transfer of vortices by velocity 
field of regular flow; it can be interpreted as 
"kinetic energy" of vortices. The second term in 
(2.3) corresponds to the sum of pair interactions 
of vortices; these interactions are small on large 
distances between vortices because of exponential 
decrease of Ko(z) for large values of the argu- 
ment z. 

The general solution of eq. (2.1) for the case of 
shear flows has the following form: 

~br = A  c h ( y  ) + B s h ( y )  + C, 

where A, B, C are constants. However, we shall 

The interaction of Stewart vortices on the 
background of constant vorticity flow [17] bears 
some resemblance to the interaction of two 
Helmholtz vortices in a constant shear flow [16]. 
We shall demonstrate below, however, that there 
are some essential differences between these two 
cases, which allow us to consider directly kinetics 
of a rare enough gas of Stewart vortices as a 
sequence of pair collisions (contrary to a gas of 
Helmholtz vortices). 

Using the conservation law (2.5) it is not hard 
to reduce eqs. (2.2) in the case n = 2 to a set of 
1D Hamilton equations. Let us consider for sim- 
plicity the case of strong enough flow: 

A ch(yl ,2)  >> F i. (3.1) 

Under this condition, as will be demonstrated 
below, only collisions of vortices having close 
values of coordinates yi and Y2 should be consid- 
ered: 

[Yl -Y2[ << 1. (3.2) 
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So, the motion of a two-vortex system on the 
background of a flow of type (2.4) is described by 
the following equations: 

a H  12 0Hi2 
F12x12 = i)Yl2 , F12 )) 12 = OXl2 , (3.3) 

where 

rt2 = (x,2, Yt2) = (Xl--X2, Yl--Y2)' (3.4) 

F i r 2  
F'2 = F, + / 2 '  (3.5) 

and Hamiltonian H 12 under condition (3.2) has 
the following form: 

H'2 = _F12A ch(y )  y22/2 + rlr2ro(  r,2), 
(3.6) 

where y is the constant corresponding to coordi- 
nate of the "mass center" of the vortices: 

( F ,  -FC2)Y = F , y ,  + F 2 y  2. 

Notice that the expression (3.6) is similar to the 
expression for relative motion energy of two ordi- 
nary particles having velocities Yl, Y2 and masses 
- F ,  A ch(y) and -F2A ch(y); the first term in 
(3.6) corresponds to the kinetic energy of such 
particles, while the second corresponds to the 
energy of their interaction. 

The system dynamics described by Hamiltonian 
(3.6) is essentially different in the following two 
cases (cf. refs. [16, 17]): 

Fig. 1. The phase curves for two vortex system in the case 
F 1 + F2 > O, 

are closed, is false.) Therefore, the motion of two 
vortices lying far enough from each other along 
the x-axis may be considered independent and 
defined by shear flow only, i.e. by "kinetic energy" 
of vortices. Hence, the process of two-vortex in- 
teraction in this situation can be considered as 
collision; it is the process of pair collisions that 
governs the kinetics of rarified gas of such vor- 
tices. 

An essentially different situation occurs when 
two Helmholtz vortices interact with each other 
on the background of a shear flow with constant 
vorticity [16] (this situation corresponds to the 
limit rl, 2 ~ 0 in the expression (3.6)). In this case 
under the condition (3.7) all phase trajectories 
are closed, while under the condition (3.8) they 
move away logarithmically from the x~2-axis. So, 
the motions of Helmholtz vortices are not inde- 

F t +/ '2  > 0, (3.7) 

r 1 + F 2 < 0. (3.8) 

(We shall not consider the case F, = - / 2  be- 
cause the fraction of such pairs in general situa- 
tion is negligible.) The phase plots for eqs. (3.3) 
in cases (3.7), (3.8) are shown in figs. 1, 2, respec- 
tively. In both cases Hamiltonian H12 tends to a 
function independent of x when x--, +oo, and 
phase trajectories tend to asymptotes parallel to 
the xt2-axis. (Notice that the assertion of paper 
[17], that in the case (3.7) all phase trajectories 

-¢ 

7 _ _ - - - : -  . 

Fig. 2. The phase curves for two vortex system in the case 
Fi +F2 <0.  
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pendent even for large distance between vortices, 
and the interaction of such vortices has collective 
character. Nevertheless, in some systems with col- 
lective interactions (e.g. in a gas of particles with 
Coulomb interactions) the particles' collisions can 
be considered as pair collisions of dynamically 
shielded particles. The consequence of such an 
approach for the case of Helmholtz vortices en- 
semble in a constant shear flow is presented in 
section 7. 

x-momentum: 

Fly' I - F l y  I =F2y2-F2y'2= .2Fi2y12.  (4.3) 

Under the condition F l * F 2 such collisions will 
provide finite transport of vortices across the 
regular flow. 

Therefore, the cross-section of pair collisions tr 
is equal to unity if the conditions (3.8), (4.1) are 
satisfied and is equal to zero if these conditions 
are violated: 

4. Derivation of the kinetic equation 

We shall start the derivation of the kinetic 
equation for point vortices from finding of a 
cross-section of the pair collisions considered in 
section 3. According to fig. 1, in the case (3.7), 
whatever the value of Y12 before the collision (i.e. 
the value of Y12 for x~2--> +oo or xj2 ~ -ao), it 
will restore its initial value after the collision 
(when xl2 ~ - ~  or xl2 --* +0% respectively). So, 
taking into account (2.5), the values of the x- 
momenta of each of colliding vortices will not be 
changed as a result of the collision. In other 
words, vortices' collisions in the case (3.7) do not 
lead to their transfer along the y-axis. A similar 
situation occurs in soliton turbulence governed by 
the KdV-equation [18]: after the collision solitons 
restore the initial values of their velocities. 

The same situation takes place in the case 
(3.8), if initial values of Y12 lie out of the region 
(see fig. 2) 

]Y,21 < y~o, (4.1) 

where 

r+ )]J2 ,42, 
Y ® = [ A c h ( y )  1 - 1 n A c h ( y  ) 

If the initial value of Y12 hits the region (4.1), 
then, according to fig. 2, after collision its value 
will be y'12 = -Yl2, i.e. according to formula 
(2.5), vortices will exchange some finite value of 

-- 0( - r ,  - r2) 0(y  - l y12  I), (4.4) 

where O(z) is the theta-function. If condition 
(3.1) is satisfied, the quantity y® (which restricts 
the region of values Yl2 leading to a transversal 
transport) is small, y~ << 1; the latter proves the 
statement about the importance of small values 
Yl2 only (3.2). 

Consider now a system with a large number of 
vortices. Let us take the vortices' distribution to 
be statistically homogeneous along the x-axis and 
be described by some distribution function 
f (y ,  F, t), so that the number of vortices in the 
phase volume d y d F  at a moment t is 
f ( y , F , t ) d y d F .  Following the standard proce- 
dure of the derivation of kinetic equations by 
means of a cross-section of pair collisions, it is 
easy to obtain the equation for evolution of the 
distribution function f(y,  F, t): 

~-tf( Yl, Fl, t) = S t [ f ] ,  (4.5) 

where the integral of collisions St is defined by 
the following relation: 

S t [ f ]  = f ( f~ f~v ' t r ' - f ,  f2vcr)dy2dF2, (4.6) 

where 

f l ,2=f(Y, ,2,F, ,2, t) ,  f~,2=f(Y'l,2,F~,2,t), 

v, tr and v', tr' are the initial values of relative 
vortices' velocity and cross-section of their colli- 
sions, when initial positions of these vortices are 
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Yl, Y2 and y'~, y~, respectively. Velocity v is de- 
fined only by the difference of shear flow vel- 
ocities on the stream lines Y~,Y2; taking into 
account (2.4), (3.2), we have for this velocity the 
following formula: 

Substituting the quantities Y'L2, v', v, ~, ~' ob- 
tained from the relations (4.3), (4.4), (4.7) in 
formula (4.6) and taking into account that the 
value y~ is small, let us expand the expression 
(4.6) over the value Y12. As a result of integration 
over Y2 in the expression obtained we shall have 
the following final relation for the collision inte- 
gral St of the kinetic equation (4.5): 

A ch(Yl) 

×fr ( F2f (y l '  r2) 0 f ( y ' '  Fl) 
~+r:>0 OYl 

- F l f (  Yl, F,) Of( ~y' F2) ) 

x 1 - In A - - - ~ )  /'2 dFa . (4.8) 

5. Conservation laws 

It is obvious that the kinetic equation (4.5) with 
the collision integral (4.8) provides conservation 
of the total number of vortices having definite 
intensity of vorticity F: 

f_~o~f( Y, F, t) dy = N ( F ) ,  (5.1) 

where N(F) is a function independent of time. In 
addition, it is not difficult to see that the medium 
vorticity is conserved at each point y: 

f + ~ f ( y , F , t ) d F = R ( y ) ,  (5.2) 

where R(y) is a function independent of t. 

The kinetic equation (4.5) has a stationary solu- 
tion in the form of a Maxwell distribution: 

f ( y ,  F, t) = g ( F )  e x p ( - F y 2 / T ) ,  (5.3) 

where g(F) is an arbitrary function, T is a con- 
stant which can be interpreted as temperature (it 
will be recalled that the quantities F and y are 
the analogs for mass and velocity of particles). 
However (as distinct from a gas of particles), an 
arbitrary initial distribution of vortices does not 
relax to a Maxwell distribution (5.3) because of 
the infinite number of integrals of motion (5.2). 
What are the stationary states to which the sys- 
tem does relax? We will answer this question in 
the next section in the particular case of a set of 
vortices having only two vorticity values. 

6. Set of vortices with two values of vorticity 

Let us consider a vortex ensemble having dis- 
tribution function of the following type: 

f ( y , F , t )  =nl( y , t )  8 ( F - F , )  

+ n2( y, t) ~ ( F - / " 2 ) -  (6.1) 

In other words, some vortices in such a system 
have intensities F z, while other vortices are char- 
acterized by the intensity F 2. Substituting this 
distribution function in the expression for the 
collision integral (4.8) and carrying out the inte- 
gration in this expression, in place of kinetic 
equation (4.5) we shall obtain the following set of 
equations for the vortices' densities n 1, n 2: 

Onl ~y [  ( Onl On2)] 
0t =/'2 S r 2 n 2 T ~ - - r l n ~ T f  , 

b-~y[ ( On2 °n t ) ]  0rt2 = .F' 1 S Fin 1 ot -~- - r2n2-fff- (6.2) 

where 

1 ( F 1 + F 2 )  2. (6.3) 
S A ch(y)  1 - In A c h ( y )  
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The vorticity conservation laws (5.2) now take the 
form: 

Flnl + F 2 n 2 = R ( Y ) ,  (6.4) 

where R ( y )  is the function of variable y being 
defined by the initial data of the problem. If the 
mean vorticity of a vortex system at any point is 
equal to zero, R ( y )  = 0, then the set of equations 
(6.2) comes to the following nonlinear diffusion 
equation: 

On, = r i l l ( r ,  - r:) o ( On, I Ot - ~  Sn, - -~-] .  

For any initial distribution of vortices in this case 
the system evolves to the equilibrium state n~ = 
n2 - 0 (all the vortices move to infinity). 

It is not hard to find an equilibrium state also 
in case of an arbitrary vorticity distribution R(y);  
such a state is defined by the condition 

0n 1 On 2 
F2n2- ~ -  - rin~-@- = o .  (6 .5 )  

(If a source and dissipation of vortices are pres- 
ent in the system, then the stationary state be- 
tween the source and dissipation will correspond 
to a constant flux of vortices P across the shear 

flow: F2n 2 Oni/Oy - Fin I On2/Oy = P = const.) In- 
tegration of eq. (6.5) leads to the following rela- 
tionship of quantities 'nl,  n2: 

n2n? FIlF2 = C, (6.6) 

Z 

Z 

Fig. 3. Vorticity distribution in a system with two vortex 
species. The bold line is the total vorticity curve z = R(y). 
The shadings///i/and \ \ \ \  are the contributions to the total 
vorticity of vortices having intensities F 1 and /'2, respectively: 
(a) the case sgn(FlF 2) > 0, (b) the case sgn(F1F 2) < 0. 

vortices with greater amplitudes. In the other 
words, in the case F 1F 2 > 0 scales of turbulence 
in most excited regions tend to enlarge, while in 
outlying regions (where the total vorticity of point 
vortices is small) scales of turbulence tend to 
diminish; see fig. 3a. 

If the amplitudes F~,/'2 have different signs, 
F1F 2 < 0, then the constant C is equal to zero, 
since (according to the expression (6.6)) only un- 
der this constant it is possible for the values nl 
and n 2 to be small simultaneously in equilibrium 
state. This fact and the equality (6.4) lead to the 
following equilibrium state in the case F~F 2 < 0: 

n i = 0 ,  n 2 = R ( y  ) i f F 1 R ( y ) > O ,  

n 2 = 0 ,  n l = R ( y  ) i f F 2 R ( y ) > 0 .  (6.7) 

where C is some positive constant. 
Let the system possess a finite number of vor- 

tices, i.e. the values nl, n 2 are decreasing rapidly 
enough while y---) ~. In this case, if the ampli- 
tudes F l, F 2 are of the same sign, F 1/'2 > 0, then, 
due to the equality (6.4), the values of quantities 
n l , n  2 are small in those places where the total 
vorticity value is small; in such places, according 
to relation (6.6), the density of vortices with less 
amplitudes is much higher than the density of 

Expressions (6.7) signify, t ha t  in equilibrium state 
the vorticity at each space point (the latter, ac- 
cording to the expression (6.4) is conserved in the 
process of evolution) is created only by vortices 
with equal signs, see fig. 3b; i.e. vorticity is formed 
by the minimal possible number of vortices (the 
superfluous vortices pass away to infinity). One 
may interpret the process of evolution of the 
system to such a state as an enlargement of the 
turbulence scales. 
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7. Summary and discussion 

Dynamics of a rare Stewart vortex gas on the 
background of shear flow with constant vorticity 
may be considered as a sequence of pair colli- 
sions. Only collisions with small enough aiming 
parameter (4.1) lead to momentum exchange be- 
tween vortices. To describe evolution of such a 
system, kinetic equation (4.8) was derived in the 
present paper. Kinetic equation (4.8) conserves 
not only the full number of vortices of definite 
species (5.1), but also the mean vorticity of the 
vortex gas on each shear flow stream line (5.2). 
This equation has the equilibrium solution of 
Maxwell distribution form (5.3), but due to vortic- 
ity conservation law (5.2), this distribution can be 
reached by the system only for a very narrow class 
of initial conditions. 

On the basis of results obtained by the study of 
a set of vortices with two vorticity values (6.1), 
one can draw some general conclusions concern- 
ing the equilibrium state: the system evolves to 
the equilibrium state in which total vorticity of 
the vortex gas on each shear flow stream line is 
constituted by vortices with one sign of vorticity 
only, the most intensive vortices being concen- 
trated in the regions of large total vorticity, while 
less intensive vortices are in small vorticity re- 
gions (i.e. at the periphery of perturbed regions). 

As we have shown in section 3, the interaction 
of two Helmholtz vortices on the background of a 
constant vorticity flow cannot be considered a 
collision because of the increase of vortices' inter- 
action energy with the distance between vortices. 
Therefore  the interaction of Helmholtz vortices 
has collective nature. Such interaction seems to 
lead to dynamic shielding of each  vortex field by 
the mean field created by the rest of vortices [1]; 
this is similar to the situation for a gas of parti- 

cles with Coulomb interaction. The kinetics of 
the vortices ensemble in this case can be consid- 
ered as pair collisions of dynamically shielded 
particles. It is not hard to make sure that, inde- 
pendently of the particular form of dynamic 
shielding, the asymptotic behavior of such a sys- 
tem for large values of variable x coincides with 
the asymptotic behavior of a system of Stewart 
vortices (since the value y~ depends only on 
vortex field in the unshielded region, r ~ 0). 
Hence such an approach will also lead to the 
kinetic equation (4.8); the only difference is that 
the values ch(y) ,ch(y  l) in this equation should 
be replaced by unity. 
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