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For thetheoryof drift plasmaandfl-planegeophysicaldynamicsbothlarge-scalevortexandsmall-scalewavecomponentsare
important:linear excitationanddissipationoccurmainlyat smallscales,whileconcentrationof theenergyspectrumtakesplace
(throughtheinversecascade)at largevortices.Basedon thetimeandspaceseparationof thesescalesaveragedevolutionequa-
tionsarederived.Theequationfor thesmall scalesdescribesthepropagationof high-frequencyquantaon thebackgroundof a
flow producedby large-scalevortices;this equationprovidestheconservationof thespectraldensityof thepotentialenstrophyof
smallscales.Theequationfor thelarge-scalecomponentis theCharney—Hasegawa—Mimaequationwith a sourcetermhavingthe
form of the ponderomotiveforce andproviding the inverse energycascadefrom small to large scales.A new computational
approachfor themodelingof drift andfl-planeturbulenceis proposedon thebasisoftheequationsobtained— thequantumin the
cell method.

1. Oneof the mostwidely usedmodelsfor the de- portancefor the drift andRossbywave turbulence
scription of drift turbulencein an inhomogeneous theory:boththeexcitationandthedissipationoftur-
magnetizedplasmaas well as Rossbywave turbu- bulentmotionaremost importantat smallscales,not
lenceon the fl-plane in geophysicalhydrodynamics at largescales.Therefore,small-scalewavesprovide
isbasedon the Charney—Hasegawa—Mimaequation (throughthe inverseenergycascade)the sourcefor

large-scalemotions,and,thus,determinetheir level.
a, ( ~ !P— ~P)— &~!t’+ (a~~ ~1’)ôy ~‘ A selfconsistenttheoryof the nonlinearevolution

— (ô,L~!P)8.~P=0. (1) of drift andRossbywave systemshasbeendevel-
opedin the weakturbulencelimit, whenthelevelof

Hereweusethedimensionlesstime t, coordinatesx, excitationis sosmallthat large-scalemotionsappear
y andthestreamfunctionY’= Y’(x, y, t); their mean- to be a set of dispersivewavesinsteadof vortices
ingina widevarietyofparticularsituationsinplasma [1,21. In particular,the following saturationmech-
physicsandhydrodynamicsis explained,e.g.,in ref. anismof the level of turbulenceat large scaleshas
[1]. been found: when reaching some threshold level

At presentit is well recognizedthatlarge-scalevor- large-scaleturbulenceforcessmall-scalemotionsto
tex motions play a veryimportant role in physical disappear(throughthe enhancingof the coefficient
processesof practical significance,e.g.,in anoma- of their diffusion in k-spacefrom the sourceto the
bus plasmatransport acrossa magneticfield, in domain of dissipation)and, hence,turns off the
globalatmosphericandoceaniccirculation.Concen- sourceof large-scalemotions.
tration of the turbulentspectrumat large scalesis Thegenericsituationin experimentsandnatureis
usuallyattributedto the existenceof an inverseen- that the width of the frequencyspectraof drift and
ergy cascadein 2D turbulentmedia. On the other Rossbywave turbulenceis as largeas the eigenfre-
hand,the small-scalemotionsare also of greatim- quencyof the linear waves.Then, large-scaletur-
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bulence is related with vortex motions of the me- 
dium, not with dispersive waves, and weak 
turbulence theory is not applicable. To consider the 
problem of the formation of large-scale vortices from 
a small-scale background, we can still use the time 
and space separation between large and small scales. 

The idea is that the small-scale turbulence may be 
considered to consist of a number of high-frequency 
quanta moving on the background of a mean flow 
formed by the large-scale motions and acting on the 
large scales by some pondermotive force. 

In some sense, such an approach is analogous to 
the description of superfluid 4He as a mixture of two 
liquids (superfluid and normal components), which 
is possible due to the presence in the spectrum of ex- 
citations of two distinct parts - large-scale phonon 
and small-scale roton components [ 3 1. 

2. To obtain the equation for the evolution of the 
large-scale component, let us Fourier transform eq. 
( 1) and average over the characteristic times of small 
scales: 

=o, (2) 

where the Fourier images YPi, !& are the functions 
of 2D wave vectors pi= (pi,, pi,), ki= (k,, k,) cor- 
responding to the large and small scales; lpi 1 e 1 ki 1, 
i,j= (0, 1,2). The bracket ( ) means averaging over 
the fast time of small scales, while the bracket [ ] 
means the z-component of vector multiplication 
[a, 61 =hL$-a$x. 

Taking into account that the second integral in eq. 
(2) can be rewritten in the form 

I [k,Pl(k+~~~2(~~,2_,~~,2,,) dk 

= s [kpl Wp)2< ~p,2_-kYp,2+~) dk, 

where k= f (k2 - k, ), and performing an inverse 
Fourier transformation on eq. (2) we get the follow- 
ing equation for the evolution of large scales, 

a,(Ay~-y=)-a,s+ca,ay=u,>a,lv, 

-(a,Aq)a,y~=-aZA-a:,B+a:~, (3) 

where 

A=A(r, t)=2 j k2(t:k2) nkdk, 

BcB(r, t)=2 J k’:/liT2) nkdk, 

x (%/2-k%/Z+k) exp(br) (2:)2, s 
(4) 

and ‘y,= YL( r, t) is the stream function of large-scale 
motions. Notice that eq. (3) involves only slow time 
and space variations, the action of the small-scale 
motions having the form of a pondermotive force 
proportional to the density of high-frequency quanta 
n(k). 

3. To derive the evolution equation for the density 
of high-frequency quanta, n(k), let us add the evo- 
lution equation for the Fourier image Yk multiplied 
by Yk, to the equation for Yk, multiplied by ‘u,; as 
a result we get 

a,( YkYk,)+i(wZ+ot,)YkYk’+R=O, 

where 

(5) 

R= [kpl W-PI2 yk_,y 
l+k2 k' 

+ [k’,pl W-PI2 yk _,yk 
1+kf2 ’ 

and 

o:=k,/( 1 +k2) (6) 

is the eigenfrequency of the linear waves. 
Let us suppose that the concentration of the tur- 

bulence spectrum at large scales is high enough to 
neglect the interactions of small scales among them- 
selves in comparison with their interaction with large 
scales. Then we can expand the expression under the 
integral R in small IpI, IpI -e Ikl. 

Notice that in this case the small-scale motions can 
be considered to be linear waves propagating on the 
background of a weakly inhomogeneous flow pro- 
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ducedby thelarge-scalemotions.Therefore,thecor- For sufficiently small levels of large-scaleturbu-
relatorof the small-scalefield <!Pk~I-’k,> is of anap- lence,~I”Lpk

2 << 1, the set of equations(3), (7) can
preciablevalueonly for thethe smallvaluesofk+k’ bereducedto thenonlocalevolutionequationfor the
which arecomparableto or lessthan the character- spectrumof weakturbulencederivedin refs. [1,21.
istic wave vectorof large-scalemotions.Takinginto In thiscasethe quantamove in k-spacealongone-
accountthesearguments,letusexpandtheintegrand dimensionalcurveswk2= const,sothat their energy
of R in [p I, averageeq. (5) overthe fast time and has a form usual for the weak turbulencetheory,
thenexpandit in k+k’. After straightforwardtrans- E

5= J Wkflk.

formationsof theresultingequationwe finally obtain
4. Eq. (7) for the evolutionof the quantumden-aw “(a~+-~.j~ar_-~— ak)nk=0~ (7) sityin k—rspace,n(k,r, t), bearsresemblancetothe

2D Vlasov equationfor the plasmaelectrondistri-

where bution function f(v, r, t) in velocity—coordinate
phase-space.This fact allows usto proposea nu-

kX+(vI~k)k
2

— 1 + k2 (8) mericalmethodfor thesimulationofthedrift wave—vortex turbulence— the quantumin thecell method
is the frequencyof the quanta;the term (QIC), analogousto the particlein the cell method

(PlC) in plasmaphysics [4]. The stateof the 2D
(VL ~k) k2 mediumis characterizedby the large-scale(vortex)

w~ww~(k,r, t) 1 +k2 (9) streamfunction ~‘L(r, tI_I,2) definedinthenodesof

is the nonlinearcorrectionowing to the motion of a 2D r-grid at time t,_
1~2,anda largenumber.K of

the large-scalebackgroundwith velocity quanta(waves)eachhaving a definite value of the
wave vectork~(t1)andposition r~(t1),j=l,..., Xat

= (~y ~L, — a~~L) . (10) time t1. To obtain the function WL at the nexttime

It is worth to point outthat eq. (5) describesthe stept~~112oneshouldcalculatethegrid functionsA (r,
conservationof thequantumdensityalongthe phase- 17), B(r, 1,) accordingto eq. (4) (compare,e.g.,with

the calculationsof the electrondensity,.ff(v, r, t)spacetrajectories
dv, or the meanvelocity, .f f( v, r, t) dv, in the PlC

~=a~w, l~=—a,~. (11) method [4]). Then, the function WL(r, t1~112)can

It is easyto showthat the totalnumberof quantaN, be obtainedasthesolutionof eq.(3), e.g.,by means
N= S nkdk dr, coincideswith the potentialenstrophy of the spectralcode.
of smallscales.This fact is in accordancewith the Afterwards,oneshouldfind the newvaluesof the
notion that potential enstrophycannotbe trans- wave vectorsandthe positionsof the quantausing
ferred from small scales to large scales in 2D eqs.(11) for theirtrajectorieswith thevelocityfunc-
turbulence. tion VL(r, 11+7,2) (see(10)). Let us divide a square

Insteadof the enstrophy,the totalenergyof high- gridcell incoordinatespaceby the diagonalfrom the
frequencyquanta,E5= 5 (nk/k

2) dk dr, is not con- top left icon of the cell to the bottomright one,and
served:thereexistsan inverseenergycascadefrom approximatethe large-scalefield ~PL(r, t•÷

1,2)in each
the small scalesto the largescales.Meanwhile,the of the triangularcells by a linearfunction (one can
setof equations(3), (7) provideconservationof the alwaysplot the planethroughthe threepoints cor-
total energy: respondingtothenodesof thegrid). Then,the large-

scalevelocity VL( r, t11.112)insidethesetriangularcells
E=EL +E5 =const, (12) will havesomeconstantvalue (seeeq.(10)). As long

where asthefunction ~

1L iscontinuousatall theboundaries
of thetriangularcells,thecomponentof thevelocity

E= ~$ [~P?+ (VY’L)2] dr field VL normalto theboundarydoesnotchangewhen
crossingthisboundary,while theparallelcomponent

is the energyof large-scalemotions. of VL changes(in thegeneralcase)by a finite value.

332



Volume 165, number4 PHYSICSLETTERSA 25 May 1992

Theimportantfact is thateqs. (11) for trajectories a
of quantacanbeintegratedanalyticallyunderunder
suchan approximationof large-scalevortex motion: - Vx

4

accordingto eqs. (8), (6), (9)—( 11) the velocities
of quantaI~and wavevectorsk~are constantinside .~ - T~~1~~- - - - I -

thetriangularcells (Ij, = const,h~= 0),while thewave - 1 - r - Vx,
vectorsofquantaundergosomefinite changeswhen
crossingthe boundariesof thesecells.

To find the valuesof suchchangesofk~let usfirst ______________ .L LL.
supposethe boundarybetweenthe near triangular
cellsto beoffinite width d withacontinuousparallel
velocity V~profile inside (the normal velocity v~
is constantwhencrossingthe boundary,seeabove), b
and then passto the limit d—~Oin the resulting
expressionsfor quantumtrajectoriesin k—r space.

Supposethat a quantumis moving toward the ~?x2

boundaryparallelto thex-axis, so thatv~=v~(y), >~

vLY=const within the boundarylayer (all the other Vx,
situationscanbeconsideredin thesameway). Such
a form ofthevelocity profile impliesconservationof
“energy”, w, and“x-momentum” of the quantum,
k~(w doesnotdependon timeandthex-coordinate,
seeeqs.(6), (8), (9)). Therefore,the Hamiltonian
equations(11) for quantummotion are integrable c
— thereexisttwo integralsof motion in the involu- I
tion in 4D phase-space. -- N,~ ~ Vx4

It is usefulto considerthe resultof the integration / - - - vx2

in the form of anexpressionfor theparallelvelocity
t~ as a function ofk~(on thequantumtrajectory)
resultingfrom eqs.(6), (8), (9) andtheconditions
(0, kx, vLV=const, namely,

~ (13)

seefig. 1 a. Thevalueof k~that the quantumhasat d
a point y=y~within the boundarylayercanbe ob-
tainedby solving eq. (13) with v~=v~(y*)with
respecttok~,it is easyto seethat this equationcan
berewritten as a cubicequation:

(vLY/kX)k~+(v~+w/kX)k~+(vLykX)kY

+(k~v~+l—w/kx—wkx)=0. (14)

It is clear that this cubicequationhasonly onereal
root if

Fig. 1. (a) Relationbetweenthetangentcomponentoftheveloc-
w—k~I <(4)3/21VLYkX I , (15) ity andthenormalcomponentof thewavevectorin thebound-

ary layer perpendicularto the y-axis (with v~,,,=2,k~=0.5,
while in theoppositecaseit haseitheronerealroot ~,= 1.5); (b)—(d) Phasetrajectoriesof a quantumpassingthe

boundarylayer (betweenthedashedlines)for differentvalues
ofthetangentvelocity in theadjoiningcells.
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or threereal roots dependingon the valueof ~. (3) If theparallelvelocity profile variesfromvalue
Evidently, if condition (15) is satisfiedthen the v~2to v~3thenthereare threeroots of eq. (14) in

newvalueof thequantumwave vectorcanbefound boththeupperandthelowercells (seefigs. 1 a, 1 d).
asthe only root of eq.(14) with thevalueof thex- Thereis no reflectionin this case:the smallest,mid-
velocity in the adjoining cell (while k~is not dieandlargestrootsof eq.(14) in theuppercell,k7~,
changed). k2~,k3~,are joined by trajectorieswith respectively

A morecomplexsituationarisesif condition(15) the smallest,middle andlargestroots in the lower
isnotsatisfied:thenforsomevaluesofv~in thecells cell,k’1~,~ k’3~(k1~—+k~~,k2~—+k~~,k3~—~k’35).
eq.(14) mayhavethreeroots.So,to definethefinal
valueof k~wemustfind out howthe trajectoriesbe- 5. Notice that the quantacan crossseveralcells
have insidethe boundarylayer. Consider,for ex- during onetime step,so the QIC methoddescribed
ample, the case I w— k~I > (4)3/21v~k~I, co> kx, aboveseemsto be very fast. Anotheradvantageof
VL)cX> 0, representedin figs. la—id. theQIC methodis thatthereis no limitation on the

(1) Supposefirst that thevelocityv~variesin the smallestscaleof the turbulence,so we cansimulta-
boundarylayer(betweenthe dashedlinesin figs. ib— neouslytakeaccountof dynamicsof sufficientlydif-
ld) from the valuev~1in the lower cell to thevalue ferentscales.
v~2in the uppercell asshown in fig. 1a. In thiscase In our next paperthe QIC methodwill be applied
eq. (14) hasthreeroots k~5,k2~,k3~,k1~>k2~>k3~, to the problemof excitationof large-scaledrift and
in theuppercell andonly oneroot in the lowercell, Rossby vortices by a small-scaleturbulent back-

seefig. lb. Hence,a quantumapproachingthe groundandthemodelingof nonlocalstrongdrift and
boundarymay haveone of two valuesof k~:kj;, or fl-planeturbulence(cf. thenonlocalweakturbulence
k3~.If the initial value of the wave vector corre- theorydevelopedin refs. [1,2]).
spondstothelargestroot (k3~)then accordingtofigs. Theareaof applicabilityoftheQIC methodis not
1 a, lb the quantumwill crossthe boundarywith a restrictedby the Charney—Hasegawa--Mimaequa-
final valueofk~correspondingtotheonly root of eq. tion; it canbe generalizedto morecomplexmodels
(14) in the lowercell (k’3~).If the initial valueof k~ of drift turbulence.A similar methodcanbe devel-
correspondsto the smallest root (k1~)then the opedalsofor any nonlinearmediumwheremainly
boundarywill reflectthis quantumandit will move essentiallyseparatedscalesinteract;e.g. for nonlin-
backwitha wavevectorcorrespondingto themiddle earopticsbasedon thenonlinearSchrodingerequa-
root of eq. (14) in the uppercell (k2~). tion [51.

(2) Let the x-velocity t~ vary in the boundary
layer from some valuev~2to Vx4 (see figs. 1 a, 1 c). References
Theneq.(14) hasoneroot in theuppercell andthree
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(final k~is equaltok’1~),while if thequantummoves [31LD. LandauandE.M. Lifshitz, Courseoftheoreticalphysics,
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be reflectedalong the largestroot in the lowercell [4] C.K. Birdsall and A.B. Langdon, Plasma physics, viacomputersimulation(McGraw-Hill, New York, 1985).
(final k~is equalto k’3~). [5] A.M. Rubenchik,Izv. VUZ Radiofia. 17 (1974) 922.

334


