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The problem of Langmulr wave collapse m 2D and 3D plasma ms considered A new approach for computer slmulatton of 
this phenomenon is proposed, which includes two different theoretical models averaged dynamical equations and Viasov's 
set of equations It allows to take into account all essentml effects during the whole process of collapse and, hence, to get a 
reliable p~cture of the collapse m detad and to save markedly computer resources Pecuharmes of the numeric methods are 
also d~scussed 

1. Introduction. Langmuir collapse in the 
inertial interval 

Langmutr wave collapse predicted theoretically 
m 1972 [1] and recently confirmed experimentally 
[2, 3] is of fundamental  importance for modern 
plasma physics. Specifically, co l l apse -  the forma- 
tion of catastrophically depressed density wells 
filled by t rapped osci l la t ions- is  the main colli- 
sionless wave energy dissipation mechanism and 
the natural structural element of strong Langmulr 
turbulence both m cosmic and laboratory plas- 
mas. For the past one and a half decade the 
collapse of Langmuir  waves has been under in- 
tensive analytical and numerical mvestigations 
(see revtews [4-7] and references therein; and 
recent works [8-18]). It should also be noted that 
since [1] wave collapse became a conventional 
concept of modern physics, wide range applica- 
tions have been found in the study of self-focus- 
ing for monochromat ic  waves, collapses of 
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electromagnetic and lower-hybrid oscillations, and 
other types of wave collapses [19]. 

The general scenario for Langmuir collapse is 
the following: As a result of the development of 
modulat~onal instabihty in a turbulent plasma, 
density cavities filled with Langrnuir oscillations 
are formed. The initial energy density W m the 
cavity is of the order of the average turbulent 
level W 0 and the characteristic size of the cavity 
l o ~ rDX/nT /W is of the order of the Langmuir 
wavelength. The process of cavity compresston 
becomes rapidly self-simdar and the cavtty ac- 
quires an universal noticeably flattened shape. 
During the collapse the energy of the oscillations 
t rapped in the cavtty ts conserved. In the final 
stage the wave-particle becomes tmportant and 
Langmulr oscdlations t rapped m the cavity are 
"burned  out" through the acceleration of plasma 
electrons. As a result the energy ts transferred to 
a small group of fast particles. The process of 
energy burnout is fast and m general its duration 
does not exceed several hundreds of plasma pen-  
ods. 

Up to the final stage the cavity evolution is 
described by a set of dynamical equations aver- 

0167-2789/91/$03 50 © 1991- Elsevier Science Pubhshers B V (North-Holland) 



A I Dyachenko et al /Computer stmulatwn of Langmutr collapse 79 

aged over fast time obtained in ref. [1] in the 
framework of hydrodynamical plasma descrip- 
tion: 

A(2i~ + 3tovr2Aq t) ~Op = - -  V - ( ~ n V ~ ) ,  ( l a )  
no 

[V~I 2 
(~h - c 2 A~,) = A 16"rr'-----'M ' ( lb)  

where gt is the averaged electric field E 
= ½V(q t e - ' 'p t  + c c.) potential, and gn is the 
quasineutral plasma density variation. These 
equations preserve the integrals of motion, the 
number of quanta 

N = f l w ,  I 2 dr  (2) 

and the Hamdtonian 

H =  f (  1-i-~ Im~l 3r2 2 ._~ 16~no[V~12 + ½Mnov2 

Mc 2 ,~ .2~ 
+ - ~ o [ O n )  ) d r ,  (3) 

and have for sufficiently large initial conditions 
collapsing solutions in 2D and 3D situations. The 
important properties of Langmuir collapse in the 
inertial interval follow from system (1) at d = 2, 3. 
The negativity of the Hamlltonian is a sufficient 
condition for collapse, but for d = 3 this condi- 
tion is exceedingly stronger and collapse takes 
place for the following initial conditions [4]: 

H < 0 ,  d = 2 ,  

3 
< 1-6-~ N, d = 3 ,  (4) 

where l 0 is the characteristic size of the initial 
perturbation. 

For sufficiently intensive oscillations W / n T >  
m / M  one can neglect the fact that the sound 
velocity in (lb) is finite and the collapse is 
transformed into the supersonic regime. Asymp- 
totically at t ---, t o the supersonic collapse is self- 

similar: 

IE[ f ( ~ )  
( t  - to) z '  

8n V ( ~ )  

no ( t  - to) ` / a '  

r ~= 
( t  - to) 2/a' 

Z ~ ( t  - to) 2/a, (5) 

where to is the singularity formation time and 1 
the characteristic cavity size. 

The collapsing cavity has an asymmetrical 
oblate shape with the electric field in the cavity 
center directed along the short size. The cavity 
asymmetry is connected with the fact that the 
spherically symmetrical collapse model is non- 
real: in such a model the field m the cavity center 
is equal to zero, the ponderomotive forces are 
absent and the hump density formation in the 
cavity center takes place. Numerical calculations 
have demonstrated that a dipole charge distribu- 
tion in the cavity is a more realistic one. Since 
1974 [20] eqs. (1) are repeatedly solved numeri- 
cally (see works presented m ref. [3] and also in 
refs. [9, 15]). The calculated results well con- 
firmed the cavity properties described above and, 
m particular, have demonstrated the sufficiently 
arbitrary initial condition for the self-slmdar 
regime (5). 

The applicability of system (1) is restricted to 
small hf (hlgh frequency) energy levels W / n T  << 1 
and large cavity sizes kr o << 1. As the cavity 
collapses and the field intensity grows, the set of 
effects which are not taken into account become 
important. 

Among them we mention first of all the inter- 
action between electrons and Langmulr oscilla- 
trans. Also electron nonhnearit~es, nonlinearity 
saturation dispersion law change; hydrodynamlcal 
ion nonhneanties and others can play an impor- 
tant role. Simultaneous and adequate taking into 
account of these effects m the frame of some 
"improved" dynamic equations system seems to 
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be impossible. Of course the investigation of some 
effects inserted in model (1) in numerical experi- 
ments (the model Landau damping [9, 15], the 
electron nonhneanties in the quasi-one dimen- 
sional approximation [14], nonlinearity saturation 
and ion kinetics [16]) are of substantial interest. 
An adequate general physical picture description 
m the final stage of collapse is possible, however, 
only by using the full kinetic equation system: 

Ofe Ofe e V~o-Of, 
o--T + v . - ~ -  + m -b-v-=O, 

Of, Of, e Of, 
O-T + v " Or M Vg " - ~  = 0' 

A~ = - 4 ~ e f ( L - f o )  dr. (6) 

Namely the relatively short final stage of the 
Langmuir cavity collapse, during which the oscil- 
lation energy transformation to electrons takes 
place, is of main practical and scientific interest. 
Therefore the numerical simulation of the final 
collapse stage, which can take into account the 
main nonlinear and kinetic effects from "first 
principles", is of principal importance, 1.e. the 
solution of the kinetic equations (6) by the parti- 
cle method [21-25]. Only such simulations can 
answer the principal questions for an adequate 
building-up of the turbulence theory about the 
anlsotropy degree and sizes of the cavity m the 
final stage of evolution, the time of cavity burning 
out, the energy part which is transformed to 
electrons, the accelerated particle d~stributlon ano 
its anisotropy, and investigate the most important 
cavity characteristics during and after its burning 
out. 

This paper presents a survey of works of sev- 
eral authors [13, 16-18, 21, 22] which are devoted 
to this extremely difficult problem. The huge 
computational need for doing multidimensional 
kinetic calculations forced us to maximally take 
into account a priori propertms of the collapsing 
cavity m the formulation of the numerical experi- 
ment and the agreement of the numerical model 
applied both with the physical problem speclfica- 

tlon and the peculiarities of the multiprocessor 
computer system used for calculations, ES- 
1037-ES-2706 SRI, Academy of Sciences of the 
USSR. Below, these questions are &scussed in 
detail. Particularly, the Langmuir collapse con- 
cept "through simulation" is proposed; in this 
framework the solution of the self-simdar dy- 
namic equations (1) is used as an initial condition 
for the system (6). The detailed 2D picture of 
collapse is obtained for a wide inertial interval, 
and the different cavity evolution regimes have 
been investigated. Three-&mensional kinetic cal- 
culations have demonstrated a clear pmture of 
the collapse. The cavity parameters, the density 
variation amphtude and the maximal oscillation 
energy were found to be substantially different 
from the 2D case. Also the electron acceleration 
character differed from the one obtained m the 
2D case 

2. The difficulties and general principles of the 
simulation of Langmuir collapse 

First of all we estimated the computational 
need for the simulation of the cavity evolution. 
Achievement in the numerical model of a suffi- 
ciently large inertial interval lo/lmm >> 1 for the 
self-similar solution formation before additional 
mechamsms switch on, which are not inserted in 
(1), is of principal importance We set for a crude 
estimation 10 ~ 50lmm, /ram -< 20ro  [2, 3, 16-18]. 
Using the estimate for the collapse development 
time [4] 

M n T  1 ~/2 
tkO~ p ~ ( - ~ j  ' 

we obtain 

tkO~ p ~ 1 0 3 ~ / M / m  . 

For such an evolution time the d-dimensional 
cavity evolution problem must be considered in 
the region ~ (lOarD) d The particle number used 
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for such a region is N ~  103aND ( N  D >> 1, the 
total number of electrons and ions in the volume 
r g)  and the n u m b e r  of  t ime steps is 
,~ 103 M1/-M--~ (top At)  -1 = 5 × 1031/-M-/m (we 

have used the typical particle model value At = 
0.2o)~-1). Introducing the characteristic z (time in 
microseconds to advance on one particle time- 
step) of the standard particle method for the total 
simulation time we obtam (in s) 

T =  5 × 1 0 3 d - 3 ~  gD'r. (7) 

Substituting for a crude estimation ~" = 40 Ixs, 
ND - 50 we obtain that even in the 2D case for 
the model mass ratio M / m  = 100 it takes tens of 
thousands of computer time hours for the calcu- 
lation of one variant. Hence the pure kinetic 
simulation in a wide inertial interval is absolutely 
unacceptable. 

It is clear, however, that the computational 
process can be naturally divided into two parts. 
At the beginning the averaged equations (1) are 
solved on the whole inertial length After that the 
obtained self-similar solution is used as the initial 
condition for the kinetic simulation by the parti- 
cle method We proposed to call this approach 
the "through simulation" and have realized it in 
refs. [13, 16] (we also used this approach later for 
a 1D Langmuir turbulence simulation [26]). The 
transition moment t* from averaged to kinetic 
description must be defined by the averaged de- 
scription conditions: 

Wmax 8n 
- -  << 1 ( 8 )  kr D << I, nT <1" no 

near the bound of their applicabdity. As our 
calculations have shown, the compression down 
to 1 ~ 30r D and the maximum hf energy density 
levels up to Wm~x/noT-0.2 are acceptable. Be- 
cause the kinetic calculations consume the main 
part of the computer  time, it is clear that the 
"through simulation" technique provides huge 
(about several orders) computational gain 

Consider the transition from dynamic to kinetic 
description in detad. As the initial data of the 
particle method are the ion and electron distribu- 
tion functions f l(r,  t) and f+(r, t) in phase space 
it is necessary to reconstruct them from the com- 
plex high-frequency potential envelope 0 ( r ,  t) and 
the low-frequency plasma density variation 
8n(r, t). In agreement with the applicability con- 
dltions of the set (1) at the moment of transition 
to the kinetic description the particle distribution 
was assumed to be Maxwelllan" 

L = _ _  
IV- V:(r)l:)] 

2v¢o 
ot = l ,e.  

( 9 )  

Because of their large mass, the ions participate 
only in the low-frequency motions, n, = n o + 8n, 
where 8n is determined from eq. (lb). The 
macroscopic ion velocity 1I, is searched from the 
hnearized continuity equation 08n/Ot + n o dlv V, 
= 0 The electrons participate in both low- and 
high-frequency motions: n e - n o + 8n + 8~. The 
hf density variation component and the electron 
velocity are determined from Poisson and lin- 
earlzed electron motion equations: 

0V~ + 3V2o v S t i  e V~o, A~o = 4.rre 8~, ~ n-"£ = 

where 

~0 = - [ ½  ~ ( r ,  t*) e x p ( -  io)pt*) + c.c.].  

It should be pointed out that two-stage practi- 
cal realization "through simulation" requires in- 
dependent  particle simulation of the final stage of 
the collapse. In spite of the fact that the whole 
investigation implies, of course, the "through sim- 
ulation" performance, such a statement is un- 
doubtedly of independent  interest especially 
when the " through"  realization is impossible 
for some reasons or too complicated. Namely in 
such a way the kinetic simulation of the Langmulr 
collapse by the particle method has begun [8, 
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27-30]. However, in these works the statement of 
the numerical experiment did not correspond with 
the physics of the investigated phenomenon m an 
optimal way because of a strong deficiency of 
computer resources. Insufficient account of physi- 
cal and geometrical cavity properties has led to 
nonadequateness a n d / o r  vagueness of the simu- 
lation of the general collapse picture as a whole. 
Note several considerable points: 

(1) The optimum choice of the initial con&- 
tlons is extremely important. From (3) it follows 
that for ~n = 0, H > 0, i.e. the uniform initial 
distribution choice leads m the 2D case to viola- 
tion of the sufficient collapse condition (4), and in 
the 3D case to its near-boundary character when 
the influence of nonphysical effects of the model 
is essential. As a rule in this case the initial 
uniform distribution is broken into locahzed cavi- 
ties [27-29]. Therefore  the effectweness of the 
"computational volume" used sharply drops. 

It is clear that the choice of the imtial con&- 
tions for the pure kinetic problem is rather arb,- 
trary. In any case, however, the initial plasma 
state must contain small ion and charge density 
perturbations 8n < 0 and p = - e  8~ (to imitate 
the density well filled by hf oscillations) which 
obey the inertial interval description conditions 
(8) and sufficient collapse con&tlons (4). 

(2) The small model particle mass ratio (for 
example, M / m  < 25 [27-29]) understates artifi- 
cially the ion inertia role, which is rather essential 
for the final collapse stage and leads to inertial 
interval shortening. 

(3) The perio&c boundary con&tions used [8, 
27-30] are rather inefficient from the computa- 
tional resources viewpoint and (if the special 
measures for zero harmonic generation are not 
taken) physically ungrounded in the case of one 
cavity in the considered region. In this case 
because of a nonzero potential jump along the 
small axis of the &pole cavity nonphysical cavi- 
t ies-satelhtes birth is unavoidable This effect 
disturbs the characteristics and unadmissibily re- 
duces the main cavity description under the con- 
ditlon of deficiency of resources. 

A physically correct and rather effective ap- 
proach for cavity evolution simulation is proposed 
and realized in refs. [13, 16-18]. This approach 
uses the cavity properties described above m the 
maximum degree. Suppose that the dipole cavity 
is flattened along the z-axis. Hence the electric 
field potential is asymmetric along the dipole axis 
and symmemc m the perpendicular direction: 

z )  = ,p( - r  ±,  , )  -- - , p ( , "  1 ,  - z )  

= , p ( - x ,  y, (10) 

The question of cavity symmetry was discussed 
for example in ref. [4] and this symmetry was 
demonstrated m numerical studies. Breaking of 
symmetry in ref [15] was associated with the 
special case of rotating cavRies. The symmetry 
properties allow us to use only a part of the 
cavity. For the simulation of a d-dimensional 
cavRy by the particle method it is enough to carry 
out the calculations in the region 

O<_r± <L± 1 1 __ , - s L  z < _ z < _ T L  z ,  

O~ F Onl'e F On - On = O, ( 1 1 )  

which contains 1/2 a-~ part of the cavity. One 
can reach a larger computational gain by solving 
the averaged equations (1) in the region 0 < r .  < 
L.~, 0 <_z <_Lz/2, containing 1/2 a part of the 
cavity with boundary conditions ~ l z = 0 = 0 ,  is 
sufficient. Unfortunately, in the particle method 
there are no analogous condiUons for particles, 
the electron cross the z = 0 plane and the kineUc 
description must be carried out in the region (11) 
with the boundary conditions for reflecting parti- 
cles. 

Because the minimum periodical cell contains 
two whole cavities with the electric field directed 
m opposite directions, the statement described 
above leads to a drop m the computational re- 
sources consumption of 2 a+~ for averaged equa- 
tions simulation and of 2 a for particle simulation 
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Fig 1 The kinetic simulation region containing 1 / 2  d - I  part 
of  the cavity, (a) d = 2 (shaded region is suffioent for solwng 
averaged equations), (b) d = 3 

with respect to the problem with equivalent peri- 
odical boundary conditions with zero averaged 
electric field. 

The optimal ratio between linear region sizes is 
defined by the cavity anisotropy, which is time- 
dependent  and can become both more and less 
than the initial one. It is reasonable therefore to 
put L ±  = L  z = L ,  which corresponds to an 
anisotropy of the order  of 2 Approximately such 
a value was observed in calculations [13, 15-18] 
and in laboratory experiments [2] In accordance 
with this fact it is advisable to carry out the 
kinetic calculations in the region O<_rj<_L, 
-½L_<z_<½L containing 1/2 d-1 part of the 
cavity (see fig. 1) with boundary conditions for 
reflecting particles and zero normal field compo- 
nent. 

Similarly, for the solution of the averaged 
equations in the first stage of the "through simu- 
lation", it is reasonable to carry out the calcula- 
tions in the region containing 1 /2  d part of the 

1 cavity, 0 _< r ± < L0, 0 _< z _< ~L 0, with the bound- 
ary conditions 

O~ [t F1 0 8 n  I 
-~- = ~ l ~ = 0 = - ~ n  r = 0 ,  

where F 1 is the part of the boundary without the 
points z = 0. 

It should be noted that during the simulation 
of the collapse in the frame of (1) our method of 
"cutting-out" [13, 16] seems to be rather efficient. 
It means, in fact, that the sizes of the calculation 
region follow the diminished cavity sizes. Practi- 
cally, we extracted the central part of the calcula- 

1 1 tlon region 0 < r i < ~L, 0 < z _< xL in discrete 
time moments corresponding to the hf energy 
density growth by an order of ten (here L is the 
variable region size which varies in cutting-out 
time moments). The required functions in the 
cutted-out region were reconstructed with the 
help of cubical sphnes. The number of grid-points 
during the cutting-out process was constant; the 
control was performed with the help of motion 
integrals (2), (3). So, the cutting-out method leads 
to an increase of the inertial interval without 
additional consumption of computational re- 
sources 

Let us now discuss the question about the 
simulation of the final stage of the collapse by the 
particle method with the help of the principles 
described above [21, 22] The spatial grid which is 
necessary for the calculation of charges and fields 
is introduced by dwiding the plasma volume L a 
Into regular cells each of linear size A, which 
defines the spatial resolution in the system, the 
cell number in each direction M = L / A  is chosen 
generally as M = 2 p (p  is an integer number) for 
the applicability of FFT algorithms which are 
used for the calculation of forces acting on the 
particles. 

The whole database volume V = Q + l/g, Q >> 
Vg is divided by particle arrays each of Q = 
8 d N n M d ( A / r o )  d bytes (every particle is de- 
scribed by 2d  paramete rs -coord ina tes  in phase 
space) and the common grid arrays of volume 
containing several arrays of volume V 0 = (M + 1) a 
(depending on the dlmensionality and calculation 
details [21]). It was taken into account here that 
the grid functions in the statement (10), (11) are 
real (I.e. expanded into slne and cosine products 
contrary to complex exponents In the case of the 
periodical problem); the spatial grid nodes are 
placed not in the cell centers but in their apexes 
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(in the periodical problem V o = j M  a, where j = 1 
for real and j = 2 for complex arrays). 

Using the estimates M = 128, A = r D, N D = 50 
one can obtain that for the 2D problem V--- Q ~ 
13 Mbytes. It is clear that such database volumes 
cannot be placed in R A M  computer  storage and 
have to be placed in external memory units (mag- 
netic dtsks, as a rule). In additton a large calcula- 
tion volume reqmres the use of a computer  with a 
large integral performance.  This means both h~gh 
calculation speed and fast access to reformation 
on the magnetic disks (MD). From thts viewpoint 
the multiprocessor system (MPS) is quite accept- 
able. The MPS consists of the HOST ES-1037 
and several loosely coupled array processors (AP) 
ES-2706. The MPS is orgamzed m SRI, Academy 
of Soences  of the USSR jointly with the specml- 
ists of the Bulgarian Academy of Sciences and 
I Z O T  (see, for example, ref [21]). The maximum 
AP performance ts 12 Mflops and it has memory 
page organization w~th a total memory volume of 
Mbyte (each memory page contains 2 t6 words). 

The MPS permits mdependent  calculattons in 
HOST and AP and data I / O ,  This parallelism 
allows us to carry out simultaneous calculattons 
m AP and I / O  between HOST and AP, HOST 

and MD. 
Consider the calculaUon process for the single 

AP case The phase "pic ture"  as a whole (the 
particle parameters)  ts placed on the MD. The 
grid arrays and also two memory buffers for the 
particle I / O  are placed m the AP memory.  The 
total particle set ~s dwided m equal portions, each 
of memory buffer size Each portion ts read suc- 
cesswely from MD, put to AP and ts written to 
MD after processing. The memory buffers are 

organized by the "handshake"  principle, i.e. dur- 
ing the processing of the nth particle port~on 
m the first memory buffer, the output of the 
(n - 1)th portion from the second memory buffer 
and after that the input of the (n + 1)th portton 
are performed.  After  that the buffers change 
places. In the HOST computer  also two memory 
regions, each of the AP memory size, are re- 
served. The particle I / O  between HOST and 
MD ts also orgamzed by the "handshake"  princi- 
ple: m one t~me step the reading is performed 
from one region and the writing is performed to 
another  one. In the next t ime step the regions 
change places (see table 1). Such memory organi- 
zation provtdes the existence of one undamaged 
phase picture m the case of hardware malfunc- 
tion. It ~s easy to see that the processing ttme of 
one portion of particles ts defined by the longest 
process time, t.e. either I / O  time or AP process- 
mg time Because the I / O  speed U 0 is constant 
(U 0 ~ 1 Mbyte / s )  it defines the largest possible 
particle processing rate. It ~s easy to obtain that 
the time which is required for _the l / -O-o f  ~xe 
particle in the d-dimensional case is of the order 
of 16d txs (every particle is described by 2d 
numbers each of 4 Mbyte to be read and write). 
Therefore  the processing t~me for one particle 
cannot be greater than 16d I~s. Such a hard 
condmon was fulfilled by carefully p rogrammmg 
the movement  and change d~strtbut~on subroutine 
using Array Processor assembler Language. Ft- 
nally, one should note that an addtttonal gain can 
be reached at the cost of paral lehzmg calcula- 
tions and I / O  data flow into several M D - A P  
chams controlled by a smgle HOST computer  

[21] 

Table 1 
The temporal diagram of parallel processes m MPS The number of developed particles is gwen in parentheses G and P are the 
input and output of particle parameters m and out of AP, W and R are the reading and writing of particle parameters from 

and to MD 

AP running (n - 1) (n) (n + 1) 

I / O  AP ~ Host G(n - 2)P(n) G(n - 1)P(n + 1) G(n)P(n  + 2) 
I / O  Host ~ MD W(n - 3)R(n + 1) W(n - 2)R(n + 2) W(n - 1)R(n + 3) 
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3. The formulation of the 2D problem 
specification and the simulation 

The 2D geometry is the minimum one for 
Langmuir collapse. It is natural therefore that the 
final collapse stage investigation is based mostly 
on 2D statements [8, 13, 16, 27, 29, 30] But the 
2D situation is rather specific: It is a borderline 
one, i.e. even taking into account the average 
description (1) of small terms of different physical 
nature (nonlinearity saturation, &spersion law 
change and so on) can stop the collapse It is 
clear that thls effect is especially strong for near- 
threshold cavities. 

Consider the properties of the quasistationary 
cavltons formed because of stopping of collapse 
We shall consider only the nonhnearity saturatmn 
effect Close to the stationary state, the low- 
frequency motions can be considered as adiabatic 
ones and the electron distribution function can 
be taken in the Boltzmann approxamation As- 
suming for the sake of simplicity that the ion 
temperature is zero, we have 

8n =no[exp ( - ~ / T )  - 11. (12) 

Here qb is the ponderomotwe force potential" 

= e2lEI2/4m~o~. 

Expanding the exponent and substituting (12) into 
(la) we get in dimensionless variables 

A(ll/.t + At/t) + V "  [ V ~ . ( I V ~ I  2 - IV~la)]  - 0 

(13) 

The time is here normalized by to~ -~, the spatial 
dimensions by (3/2)1/2rD and the electric field by 
(32~rnoT) 1/2. 

Eq. (13) is a Hamiltoman one: 

AH 
IAq',= ~ , ,  

Its stationary solution of the form 

= exp(1A2t)q~ 

is described by the equation 

--~2 + a% + v .  [v lv l (1 -tv 12)] = 0 ,  

(15) 

where /~2 iS the nonlinear frequency shift in the 
cavlton (h is ~ts characteristic reciprocal size). 
These solutions realize a minimum of H for a 
fixed number of waves in the cavlton N =  
fJVq~[ 2 dr.  Multiplying (15) by ~*  and integrat- 
ing we get 

;tZN + f(IV ] 2 -  Ivq'l' + IVa/~]6)dr  = 0 (16) 

Consider the scale transformation conserving N 
in the 2D case ~ --, ¢(Ar). In this case 

H(~)  ~-- f[/~2(IVl/-tl 2 -  1]Vl/tl 4) + l/~41Vl/tl 6] dr. 

(17) 

In the caviton H(A) has to reach a maximum. 
Hence 0H/&~2h2=l = 0  for locahzed stationary 
solutions. This gives 

H+½flvq~16dr=O.  (18) 

It is well known that if we neglect the nonlinear- 
lty saturation the caviton size A-1 is arbitrary. 
This is clear, e.g., from the fact that after the 
substitution r ~ a r  the stationary equation which 
describes the cavlton neglecting the nonlinearity 
saturation, 

-A~Oo + a%o + V.  (Vq~olV~0ol 2) = 0 ,  (19) 

is independent of A. 
It is clear from (18) that H is zero for such 

solutions while the caviton energy 

24= f [ I w l  - IIV~[tl 4 + IIV~I-tJ6 ] dr .  (14) o, pN = o~pflv~o012 dr--- oJpN th 



86 A I Dyachenko et al / Computer stmulauon of Langmutr collapse 

is also independent of its size. If the initial carl- 
ton energy is larger than the critical value topN th, 
the caviton collapses. 

Including the saturation lifts the degeneracy 
and the cavlton equilibrium size is determined 
uniquely by its energy. We define this connection 
assuming that the nonlinearity saturation is small 
We look for a solution of the form 

9 = 9 o + 8 q ~ ,  8 ~ < < 9 o ,  

where q~(r) is the solution of (19). One can as- 
sume that the function q~ is real. Introduce 8N = 

N -  N th = 2f(vq~0,VSq0dr .  Llnearlzmg eqs. (16) 

and (19) we get 

)t2= 3(N-Nth)  

2flY9016 d r  

(20) 

We see that if the energy enclosed in the cavlton 
is considerably larger than the critical one, N >_ 
N th, the equilibrium caviton size in dimensional 
variables is of the order of the Debye radius. It 
Is clear that such cavltons cannot exist due to 
Landau damping. If we are just above criticality, 
the cavIton size increases, 

In the 2D case we have realized the whole 
collapse investigation p r o g r a m - t h e  "through 
simulation" [13, 16]. In the inertial interval the 
cavity compression is described well by the equa- 
tion set (1). After transformations to dimension- 
less variables, 

IV~l 2 --+ 6~-~--~ noTe ~ - IV~l  2 , 

r - - + 3 r o ~ / ~ r ,  

3 M it ' t - ,  

4 m 
8n ~ ~no--~n, 

these equations take the form 

A(lq, t + A1/.t) = V.  (r/Vl/t), 

r~ - An = A I ~ ' I / - / ]  2 (22) 

with corresponding Hamiltonian 

H = lAst/f] 2 + n l V ~ ]  2 + ~n + +(V(~) 2 

l ~ rD~/Nth / (  N - N t h ) ,  (21) 

and the role of Landau damping decreases 
rapidly. 

We have already mentioned that as the cavlton 
size decreases, many effects neglected in (1) be- 
come important. We mention only electron non- 
linearities with characterist ic t ime r - I  ~ 

(krD)2 t%E2/8"~nT,  corrections to the dispersion 

law with r -  1 ~ (kro)4wo and the nonlinearity sat- 
uratlon with r -  l ~ t%(E2/8.rrnT)2.  Since for the 
cavlton ( k ro )  2 ~ E2 /8~rnT ,  all these effects must 
be considered at the same time. Therefore,  the 
calculations given above are only quantitative and 
show that the carlton structure formation can be 
expected only in the regime just above criticality. 
However, the final conclusion about caviton exis- 
tence can be drawn only by numerical simulation 

where q~ is the hydrodynamical low-frequency 
motion potential On/Ot = - A q ~  In accordance 
with section 2 the system (22) was solved in the 
region 0 < x <_ L o, 0 < z < L o / 2  (see fig. la) with 
the following boundary conditions: 

We choose as an initial condition for the set (22) 
the function ~ such that 

A q Z = O o s l n k z ( l  + c o s k x ) ,  k = ~ r / L  o (23) 

and for low-frequency plasma density variations 

8n[  = I V l / ) " l  2 

n-7 t=0 16,rrn0T e , 8n = 0. (24) 
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The 2D collapse initial condition H < 0 for the 
lmtial distribution (23), (24) takes the form 

( Tr 12(384 ~1/2 14.4 
Po > p ~ h = t L 0 ]  t 1 8 1 ]  = L--~-o 

with the number  of quanta N(p~ h) = 2"rr2/3 
The equation set (22) was solved with the help 

of  FFT  algorithms using a technique analogous to 
that of  ref. [31]. The reliability of the calculations 
was checked by the motion integrals N, H. The 
initial region size was L 0 = 512r o. During the 
calculation process twofold successive cutting-out 
was performed and the kinetic simulation was 
carried out in the region L = 128rD. The first 
simulation stage was finished when the character- 
lStlC cawty size was decreased down to (20-30)r  o 
or the field energy density in the cavity center was 
increased up to Wmax/nT~ 0.2 Further,  one of 
the most important pamcle  methods (the dipole 
expansion method) was used [21, 25] We used 
values standard for such a model a = A = r D (a is 
the macropartlcle half-width) with Gaussian 
macropartlcle charge distribution. The number  of 
model particles of each kind in the Debye cell 
was changed from 16 to 64; the total number  of 
particles reached ~ 8 × 105. The simulation ade- 
quateness was checked in different ways" by 
checking the total energy conservation in the 
field-particles system, the particle number  and 
time-step variation (0.2_< tOp At_< 0 4) for the 
same physical variants, with the help of test calcu- 
lations for periodic boundary conditions in the 
region containing two whole cavities with oppo- 
sitely directed electric fields. 

The organization of the kinetic stage of the 
calculations was performed according to the 
scheme described in section 2 In the 2D situa- 
tion the use of one AP with its memory contain- 
lng grid arrays of the charge density, the forces 
and their derivatives happened to be sufficient 
The volume of one portion of particle which is 
transferred along the M D - A P  chain is equal to 
11264 particles. The AP processing time did not 
exceed the I / 0  one, i.e. 32 txs 

Before presenting the calculation results and 
their analysis we shall return to the question 
about the possibility of the appearance of caviton 
structures To study them we have performed two 
additional calculaUon sets in other, simpler mod- 
els In the first of  them the calculations were 
performed In the framework of eqs. (13). In the 
second one we considered a mLxed description 
[13, 16] The high-frequency motions were de- 
scribed by the equation 

A(2iqt + 3topr2 A~ ) = tOp V.  ( ~ n ~ V ~ ) ,  
no 

(25) 

and the ion motion in the low-frequency potential 
q~ field was described by the kinetic equation 

0f, Of, e Of, 
0---7 + v" Or M Vq~. -~- = 0 (26) 

and solved by the particle method. The electron 
distribution, on the other hand, was assumed to 
be a Boltzmann distribution, 

bn e = n  o exp T¢ - 1  = ~ n , ,  

e2 ]~Tai~[ 2 
q~= 4ww~p , (27) 

and the charge separation in the If motions was 
neglected 

In the static limit this hybrid semi-kinetic de- 
scription is reduced to eq (13), but besides the 
nonlinearity saturation effect It describes the 
ion nonlinearities and the Landau damping on 
the Ions. 

4. The results of 2D collapse simulation 

As was mentioned above, one of the features of 
the Langmuir  collapse " through simulation" is 
the presence of a large inertial interval. This 
enables us to assume that the final collapse stage 
is independent of the initial electric field and 
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density distributions in the cavity but is deter-  

mined solely by the number  N (or energy W)  of  
plasmons t rapped m it. The  threshold value N th 

(W th) can be de termined reasonably in the 2D 

geometry f rom the condit ion that  the Hamllto-  

nlan of  the equat ion set (1) is equal to zero. It is 
clear that  the cavity evolution character  has to be 

defined by the overcrlticlty pa ramete r  • = 
W / W  'h = (pO/ptoh) 2 

We shall turn now to the results obtained in 
the numerical  experiments  and their analysis. It 

should be noted first that  m the dynamical equa- 
tion f ramework the cavities reach ra ther  rapidly 

the self-similar compression regime (5) This fact 
was checked by the depression and electric field 

ampli tude changing rate The  largest inertial in- 
terval length was reached for variants with two 

central  cavity parts cutting-out.  The car l ton size 
up to the momen t  of  transition to the kinetic 

stage was decreased by a factor of  10 to 15 with 

respect  to its initial size 
After  the t ransl tmn to the kinetic description 

both particle and averaged simulations were per- 

formed. We show in fig 2 the temporal  evolution 
of  the oscillations of  the energy density for vari- 
ant E---6.6 It is clear that  dynamical equat ions 

satisfactorily describe the collapse up to the oscil- 

lation level W m a  x ~ 0 4noT 

The calculations showed, as was expected, that  
the cavity evolution depends  significantly on the 

imtlal overcrmclty •. The  calculations were per- 
formed for various Ion to electron mass ratios, 
1 0 0 < M / m < _ 1 8 3 6  It was found that  for all • 

0.96 

~tr~g 

7b 

Fig 2 The dependence of the maximum energy density of 
the field m the cavity (1) results of the dynamical equations 
solution, (2) the results of the "through" s~mulatmn 

the cavity evolution depends  on the ion mass m a 

self-similar way while all characterist ic times de- 

pend  only on the product  t o p / =  r 

For  overcrltlCy e >_ 6 a clear collapse picture 
(see figs 2 -4 )  was observed. The oscillation en- 
ergy evolution for several typical variants IS shown 

in fig. 3. It is clear that  for E = 6.6 fast (during 

~- ~ 7) burning out of  an appreciable part  of  the 

energy (65%) t rapped in the cavity is observed. 
The spatial electric field energy and plasma den- 

Slty distributions are presented m fig. 4 at several 
successive moments .  The  maximum energy den- 

slty for this variant was Wmax/nT = 0.98 and the 
ion well depth was 8 n / n  o = - 0  38. It is also seen 

from fig. 4 that the cavity continues to deepen  
also after burning-out  of  Langmmr  oscillations 

due to ion inertia. The  cavity size for maramum 
deepening time is ra ther  large, ~ (10 × 25)r 2 

The  electron velocity distribution is also anlso- 

tropic (see fig 5) It is clearly seen that as a result 
of  the collapse the hf field energy is t ransferred 
to a relatively small part  of  the fast electrons, 

which IS accelerated mainly in the direction of  the 

average cavtton field (along z-axis). 
For  small overc rmcmes  a long-hved ( r  ~ 40) 

caviton structure was found (see figs 6, 7) We 
shall note  first its nonsta t lonary nature Such 
behavior  is completely natural  m the f ramework 

of  eq (13) Indeed,  for the cavlton solution the 

W 

) 

O02 

9O 

Fig 3 Time dependence of the average energy density of the 
field in the cavity (1) e = 66, (2) E = 1 25, (3) e = 27 
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'Fig 4 Spahal distribution of hf field energy EZ/16'rrnoTe (left) and plasma density nJn o (right) for the variant with e ~- 6 6, (a) at 
t = 0, (b) at the t~me when the field m the cavity is a maximum (t = 10 8o~-t); (c) at the time when the depth of the cavity is a 
maximum (t = 17 2to~, l) 

H a m d t o m a n  has a completely defimte value dif- 

fering from the initial one. Therefore ,  because of 

conservat ion of the Hami l ton ian ,  the cav~ton so- 

lu t ion can be reached only ff small disslpatwe 

processes or energy emission beyond the simula- 

t ion region limits are taken into account  

We have per formed additxonal calculat ions of 

caviton structures in the f ramework of (13) and  a 

hybrid semi-kinet ic  approach (25)-(27). The  cal- 

culat ions m these models  gave s~mdar results. 

However,  m this case the cawton s~ze tu rned  out  

to be one-and-a -ha l f  to two times smaller  than in 
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Fig 5 The electron d ls tnbutmn functmn for the varmnt e = 
6 6, integrated over space and the velocmes V~ (1) and V~ (2) 
at t = 35 l(o~, l 

the " through simulation". This fact indicates that 
such effects as electron nonlinearities, changes 
in the dispersion law of Langmuir waves and 
Landau damping make an appreciable contribu- 
tion to the caviton formation. 

We shall now dtscuss the cause of the caviton 
damping after the time z ~ 40. Passing through 
the cavlton of size l the electron gains an energy 
A E  = e f E V d t .  The electric field E changes pro- 
portmnally to cos t%t. If the time for passing 
through the caviton is less than r r / t%,  the elec- 
tric field does not change sign and the electron 
gains an energy eEl ,,, T.  Assuming that the char- 
acteristlc electron velocities are of the order of 
3V z we find that the cavlton starts to be strongly 

damped when I = / r a m  ~ 3 " r r V T / t ° p  ~ 10rD, which 
corresponds to the minimum cavity size obtained 
in the calculatmns. When l > Ira, ~ the quantity 
AE is exponentmlly small, AE ~ T e x p ( - l / I r m ~ ) ,  

but for our calculations completely finite. Ulti- 
mately this nonadmbattc interaction with the 
electrons leads to the caviton damping. 

To check this assumption we performed a one- 
dimensional calculation by the particle method m 
which we used as initial condltton the soliton 
solution of the average dynamical equations It 
turned out that a sohton with dtmenslons close to 
the caviton dimensions obtained in the " through 
stmulation" also burns up after a time of the 
order of ~" ~ 40. 

Z25- 

I 

Fig 6 The temporal dependence of the cawty characteristics 
for the carlton variant E = 1 25, (1) average density of  the hf 
field energy W/noTe, (2) maximum energy density W/noTe, 
(3) density vartatton an/n o 

We have described two opposite situattons: 
pure collapse and formation of quasistationary 
structures Calculations for moderate  overcntt- 
cies, 2 < • < 6, showed that, as one should expect, 
In that case an intermedtate regime is realized 
which can naturally be called a delayed collapse 
(fig. 8). We note that in all cases the minimum 
caviton size was ~ (10 × 25)r 2. 

So, the 2D "through simulation" has shown 
that If the imtial osollation energy in the cavity is 
appreciably larger than the threshold N th, there 

occurs m the final stage of the collapse burning 
out of almost all the energy trapped in the cawty 
The minimum cavity size is rather large and is of 
the order of 10r D In th~s case one can expect 
that 2D calculatmns simulate adequately 3D tur- 
bulence. If  N is close to N th then in the final 
stage a long-lived quaststationary state is formed. 
Its formation lS connected with the 2D nature of 
the calculations and thts result cannot in general 
be extrapolated to the 3D situatton. The results 
obtained indicate addlttonal ditticulUes arising in 
the 2D strong turbulence calculations (see refs. 
[32, 33]). It lS interesting, in particular, to clear 
the question about the amount of energy cap- 
tured by the cavity when tt is formed as a result 
of development of modulatlonal mstabthty 
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F~g 7 Spatial distributions of the hf field energy E2/16xrnoTe (left) and the plasma density nl/n o (right) for the cavlton variant 
corresponding to ~ = 1 25 (two cavities are presented) 

~tmx 

Fig 8 Temporal  dependences  of  the average (1) and the 
maximum (2) hf  field energy in the cavity for E = 2 7, corre- 
sponding to a delayed collapse 

The 2D collapse simulation is much simpler 
than the 3D one and consideration of the 2D 
collapse is the natural first step for the investiga- 
tion of the collapse problem. As was already 
mentioned above the 2D situation is a specific 
one and has its own distinctive features. We shall 
enumerate the most appreciable differences be- 
tween 2D and 3D collapse: 

(1) From eq. (5) it follows that the hf energy 
level increases in the 3D case more rapidly than 
characteristic wave number values of trapped os- 
cillations and can exceed appreciably the thermal 
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density energy in the evolution process. This fact 
was demonstrated, for example, in the framework 
of the calculations of averaged equations [9]. The 
large density intensity values can lead to a change 
in wave-particle interaction, electron accelera- 
tion character and the energy part transforming 
them. 

(2) It was previously shown that for 2D near- 
threshold cavities the collapse is stopped and 
formation of quasistationary structures is typical. 
In the 3D situation this phenomenon must be 
absent. 

(3) From eqs. (1) and (5) it follows that the 
~n V 2 ratio of the kinetic energy of the ions, $ 0 , ,  to 

the potential one, cZno(Sn/no) 2, vanes as 
",, (t o - t) 4/a-2. Therefore for the 3D case the 
ion kinetic energy grows faster than the potential 
one and the density profile in the cavity is defined 
by the ion inertia but not by the thermal motion. 
Therefore even though additional nonlinear 
mechanisms of the final stage would stop the 
collapse the ion inertia have to compress the 
cavity down to switching on of electron-oscilla- 
tion interaction. In this case the density well will 
continue to deepen even after the burning out of 
the plasma energy part. Thus, in 3D cawties the 
plasma variation value must be appreciably larger 
than in 2D case. 

The discussion above illustrates obviously the 
fact that solution of the 3D problem is of princi- 
pal importance. In the next sections the final 
stage of the 3D cavity evolution is investigated by 
the particle method [17, 18]. Such mmulation is 
near the limits of today's computer capabihty [21, 
22]. 

5. The 3D kinetic model and its realization 

We succeeded in solving the problem of the 3D 
Langmuir cavity evolution using the principles of 
collapse simulation by the particle method pre- 
sented m section 2. The huge computational need 
for the 3D simulation required a very deep in- 
sight in cavity properties in the numerical model 

[22] and also in the application of parallel compu- 
tation with its new organization elements [21]. 

The total astronomical calculation time is of 
the order of 

T ~ 2Qtf 
Uom A t '  (28) 

where m is the number of processors (not large, 
as a rule), t f  the characteristic time for the final 
stage of the collapse, If  tOp "~ 200. From (28) tak- 
ing into account the expressions for Q and char- 
acteristic values U o and At presented in section 
2, it follows that a reasonable maximum calcula- 
tion time (15-20 h) is reached for a number of 
cells in each direction of M_< 32. Because T is 
proportional to M a it is difficult to use more 
grids by means of enlargement of m or At. For 
M = 32 and the typical particle model value A = 
r D the cavity quarter was simulated in a region 
(32ro) 3, i.e. the whole cavity in a region 64 × 64 
× 32r 3. It is clear that for a sufficiently large 
inertial interval providing acceleration of heavy 
ions an increase of the hnear size L is required. 
It can be performed only at the cost of a more 
crude grid used with a linear mesh-size exceeding 
the standard value rD. The principal possibility of 
such inertial interval increase is provided by a 
sufficiently large minimum cavity size observed in 
the 2D calculation (see section 4) and laboratory 
experiments [2, 3] (lm,n ~ 10-20rD). The increase 
of mesh-size A leads, however, to enhancement 
of the aliasing effect and a correction of the 
model becomes unavoidable. Let us consider this 
question m detail. 

For the traditional dipole method with Gauss- 
1an particle charge space &stributlon ~ exp(-  r2 /  
2a 2) the long-wave Langmulr oscillation &sper- 
s l o n  is  

to(k) = t%[1 + ~-(krD) 2 -- ½(ka) 2] (29) 

and can differ markedly from the real one. In 
particular tf the particle size a > f3rD, the dis- 
perslon agent becomes negative. A trial 3D col- 
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lapse simulation with mesh-size A = 2r o and 
traditional smoothing a = r o has demonstrated 
the strong energy nonconservat~on due to ahasmg 
effects. The energy conservation was much better  
in the strong short-wave harmomc suppression 
(a = 2r D) case But in this case the dispersion 
term, however, becomes  negative and the 
collapse is absent. For the long-wave region 
minimization of dispersion correction and ahas- 
mg effects we have chosen the "plateau-l ike" 
distribution (for n ~ co) 

S ( k ) = e x p [ - ( k a ) ~ ] ,  (30) 

The initial conditions for the final collapse 
stage were chosen in accordance with the re- 
quirements described m section 2. To minimize 
the aliasing effects and to increase the inertial 
interval we have chosen the initial charge distri- 
bution in the cavity as a combination of the 
eigenfunctions of the boundary problem 

A~o=O, O~r=O, 
O < x , y < L ,  - L / 2 < _ z < L / 2  

for minimum wave number  k = ,tr/L: 

which differs from the traditional Gausslan charge 
distribution. The  "p l a t eau -hke"  distribution 
makes the spectrum equal to zero at k > 1/a. 
The choice of a and n was verified by means of a 
much less expensive 2D model The correctness 
of the 2D simulation with the smoothing factor 
(30) for A = 2r D was verified by comparing it 
w~th the results obtained for A = r D. The test 
calculations were found to be the best for a = 
1.4r D and n = 6 (energy nonconservatlon ~ 0.2% 
during the time ~ 300to~- 1). One can see that at 
such smoothing parameters  the d~sperslon of the 
long-wave part  of the spectrum is defined by 

to(k)  = top[1 + 3(krD)2] ,  

with an accuracy of the order of k 4 The above 
expression coincides with the real dispersion of 
Langmmr waves. 

The conclusion about the posslbihty of using an 
analogous k-space smoothing for the 3D case is 
based on the theoretical prediction about stronger 
collapse character m the 3D case. This means, at 
least, that energy flow along k-space scales is 
absorbed by plasma particles within a smoothing 
zone defined from 2D calculations. 

The described procedure of standard dipole 
particle method correction enables to use both 
linear sizes L = 34r o and L = 64r o The last one 
corresponds to consideration of the whole cavity 
in the region 128 × 128 x 64r 3 

p( r )  =po(1  + cos kx)(1  + cos ky) sm kz. 

The plasma density variation 8n was defined from 
kinetic and hf pressures balance, 

~o t~o IEI2 16rrno ~ + C, 

1 f l E[ 2 d r ,  
C =  16~rnoTeL3 

where the constant C corresponds to zero mean 
density, which is unavoidable in parncle models. 
The initial particle velooty dlstribution was cho- 
sen to be Maxwellian, the ion temperature  and 
velocity equal to zero. 

For the described initial plasma conditions the 
calculation of integrals (2) and (3) gives in dimen- 
sionless variables 

19 2 2 
N = -~--~rPoL , 

3 j 1 
(31) 

Here  N and H are normahzed by the whole 
thermal energy L3noTe, the charge density P0 and 
length L by en o and r D, respectively. Now substi- 
tuting 10 - - L / 2  m the sufficient collapse condi- 
tion (4) for the initial perturbation amphtude 
(here the condmon W/noT<< 1 is taken into 
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account) we have 

35 .9 /L  2 = ptoh < PO << 4 .99 /L .  (32) 

From this condition, in particular, it follows that 
L >> 7.2 

The particle mass ratio in the calculations was 
chosen sufficiently large, 100 < M / r n  < 400. The 
total particle number  was ~ 1.8 × 106. The calcu- 
lation correctness was checked by controlling 
total  energy conserva t ion  in the system. 
the nonconservation did not exceed several per- 
cents. Furthermore,  in the initial cavity evolution 
stage (for small long-wave oscillations levels) we 
always had exact conservation of the integral N, 
i e. the whole field energy 

Now consider briefly the peculiarities of 3D 
software development and realization. The maxi- 
mum particle processing rate is achieved by grid 
arrays displacement in the AP main data mem- 
ory. It  should be noted that these arrays cannot 
be placed in the same memory pages as process- 
ing particles because of memory conflicts in the 
case of simultaneous memory region requirement 
by the processing program and I / O  channel 
The number  of grid arrays (each of volume V 0 = 
(M + 1) 3) is for the 3D case equal to 10: G (the 
charge density and its Fourier components),  FX, 
FY, FZ (the forces and their Fourier-compo- 
nents), FXX, FXY, FXZ, FYZ, FYY, F Z Z  (the 
force derlvatwes). However, the existence of a 
sufficient time-stock (the processing time is less 
than the I / O  time) makes possible the calcula- 
tion of derivatives immediately in the inner cycle 
and storing only four data arrays. The trial calcu- 
lations have shown that this problem is solvable if 
the above memory distribution requirements have 
been fulfilled Such data volume can be placed on 
three AP pages It means, however, that two 
array elements have to be placed on different 
memory pages and results in additional inner 
cycle programming difficulties, which increase the 
processing time. From the other side, to minimize 
the inltlahzatlon time for I / O  between HOST 
and AP, MD and HOST and AP running, one 

Fag 9 The grid array dlstrlbutmn in the AP memory for 3D 
mmulatlon BUF1 and BUF2 are the memory regmns for 
pumping portions of particles 

should use the maximum portion size. Taking 
into account all previously mentioned circum- 
stances we used in 3D kinetic calculations eight- 
page AP with a memory distribution presented 
schematically in fig. 9 

The organization of the calculations for the 
case with one AP coincides with the one de- 
scribed in section 2. In the case of m AP there 
are m M D - H O S T - A P  chains Each AP memory 
distribution remains the same; the phase space 
on MD is divided by rn parts (each one is in- 
tended for the arbitrary AP); the HOST memory 
contains 2m particle buffers The whole data 
processing flow consists of parallel working 
pipelines This process becomes possible by means 
of I / O  synchronization between m MD and the 
first group of m HOST memory buffers simulta- 
neously with an analogous I / O  process between 
m AP and the second group of m HOST memory 
buffers. After the particle processing the whole 
charge density is defined by the summation G = 
E ~ G , .  This process consists of sending each 
array G, from the tth AP to the others m - 1 AP 
and simultaneous computation of the sum G in 
each of the m AP This addition does not worsen 
the time characteristics because it is performed 
simultaneously with the next I / O .  When the cal- 
culation of G has completed the calculation of 
forces is performed for each of the m AP. It is 
easy to show that any other calculation procedure 
of forces (for example, accumulation of the den- 
slty array G in one AP and its subsequent sending 
to the other ones) is much more expensive 

The described computational procedure pro- 
vldes - -m(1 + a ) / ( 1  + a m )  times computational 
gain [21] where a << 1 characterizes the relative 
calculation time for the calculation of the forces 
using the density The configuration of the used 
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multiprocessor system allowed to use in our cal- 
culations two AP. The volume of each portion 
travelling along each M D - H O S T - A P  chain was 
equal to 10922 particles. The particle processing 
time does not exceed the I / O  time of 48 ~s. The 
average computer  system performance per  parti- 
cle turned out to be slightly larger and for one 
AP equal to 51 Ixs due to some expense; for 
m = 2 this value was found to be 27 tzs. The 
whole database volume on MD was 2 Q -  85 
Mbytes. 

Finishing this section we shall note that an 
assembly of methods described here (the using of 
asymmetry, the doubling of the mesh-size with 
correction of smoothing, the calculations paral- 
lehzatlon) allowed to reach m the 3D case two 
orders of computational gain with respect to the 
traditional approach and to perform 3D kinetic 
cavity evolution simulation. 

6. The final stage of 3D Langmuir collapse 

Consider the results of the numerical experi- 
ments. We shall note first of all that in any 
simulation variant the hf field energy maximum 
corresponds to the ion density well and coincides 
with their initial location (the coordinate refer- 
ence point). The trial calculation set carried out 
for region size L = 32r D has demonstrated the 
collapse picture: a growth of a hf oscillation in- 
tensity maximum of 2 times accompanied by a ion 
well deepening of 1.5 times. The small inertial 
interval due to the small initial perturbation led, 
however, to a fast average hf oscillation energy 
damping by electrons because of switching on of 
Landau damping. An appreciable advance was 
obtained using doubled region size. We have 
found experimentally the initial perturbat ion den- 
sity threshold p~' = 0.009, which happened to be 
the same as calculated from estimation (32), p~h 
= 0.0088 For values P0 > P~ the picture of field 
focusing at the initial density perturbation center 
and ion well depression was observed, which led 

to hf oscillation energy burning out (the spatial 
physical cavity characteristics for one of the typi- 
cal variants are given in fig. 10). The choice of the 
perturbation amplitude P0 <P~ led to destruc- 
tion of the initial field and density amplitude 
Similar to the 2D case, we introduced overcrltlC- 
lty paramete r  E = W(po) /W(p~)  = (po/p~) 2. The 
calculation results for an initial hf oscillation en- 
ergy density in the cavity center of 0 .135< 

W m a x / n 0 T  e < 0 .485  is presented below; the aver- 
age hf field energy was changed m the limits 

0.024 _< W / n o T  e < 0.080. 
The temporal  dependences of the mean hf 

oscillation energy W/noTe, the maximum hf oscil- 
lation energy Wmax/noT ~ and the ion well depres- 
sion (nma x -- nmm)/n o for four simulation variants 
are presented in fig. 11 For large exceedings 
P0 = 0.02, c = 5, M / m  = 100 (variant 1 In fig. 11) 
and P0 = 0.015, E = 3, M / m  = 100 (variant 2 in 
fig 11) a bright collapse picture with a slx times 

energy growth up to a maximum Wmax/noT e ~ 3, a 
3-5  times ion well depression down to (nma x -  
nmm)/n 0 ~ 0 7 and a significant part  (70%) of the 
hf dissipation during ~ (8-9)top, I was observed. 

In the 2D case for exceedings 2 < e < 6 a "pro-  
longed" collapse was realized (fig. 8) but a 
"br ight"  collapse was only for e > 6. Even for the 

regime practically near  threshold P0 = 0.01, E = 
1 1, M / m  = 100 (variant 4 in fig. 11) we observed 
a three-times field energy growth and a 2.3 times 
well depression during ~ 30to~-, I. The average 
oscillations level remained practically unchanged. 
In the 2D case we have already seen that for the 
exceeding E = 1.25 during the same time the cavl- 
ton structure formation took place (see fig. 6). 

To clear the ion inertia role we have carried 
out twice calculations for the amplitude t9 o = 
0.015: for M / m  = 100 and M / m  -- 400 (variants 
2 and 3 in fig. 12 respectively). This ion time- 
scaled variant (see fig. 13) is seen to be the same 
with respect to a time-shift of ~4to~-1-5o~, l 
because of the ion immobility at the initial time; 
the burning-out t ime in ~o-1 units does not de- P~ 

pend on the mass ratio vlM-/m. In accordance 
with the qualitative presentations of  the ion iner- 
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Fig 10 Spatial distributions of hf field energy density E2/8"rrn~Tc (left) and the ion density n,/n o (right) for variant P0 = 0 015, 
M / m  = 400 (a) for t = 0, (b) the mtenswe hf field growth stage (t = 70 4to~-I), (c) the time of hf field maximum m the cavity 
(t = 139 2too- t), (d) the stage of hf field burning-out (t = 210 4to~- I), (e) the ttme of the maximum cavity depth (t = 284 0to~ t) (Left 
side) the whole region, (right side) the cross-section by plane z ~ 0 
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Fig 11 T e m p o r a l  d e p e n d e n c i e s  of  co l laps ing  cavity charac-  

t en s tms  (1) P0 = 0 020, M / m  = 100, (2) P0 = 0 015, M / m  = 
100, (3) P0 = 0.015, M / m  = 400, (4) P0 = 0 010, M / m  = 100 
(a) The  average  hf  field ene rgy  W/noT e m the c a r r y ,  (b) 
m a x i m u m  hf  field ene rgy  in the  cawty, (c) m a x i m u m  va lue  

over  space  of  cavRy d e p t h  (nma x -- nm.n)/n o 
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Fig  12 The  same  as in fig 11 on ion r ime-scale  for var ian ts  

(1) Po = 0 015, M / m  -- 400, (2) Po = 0 015, M / m  = 100 

tia role in the 3D case for the bright collapse 
variants the main ion density well depression was 
after the hf field reached its maximum (see fig. 
11). The hf energy levels and plasma density 
variation values reached exceeded appreciably 
(more than twice) the observed ones in analogous 
2D calculations. 

The field and density variation spatial depen- 
dences along and perpendicular to the dipole axis 
presented m figs. 13 and 14 for variant P0 = 0.15, 
e = 3, M / m - - 4 0 0  for the time moments t 1 = 0, 
t 2 = 139.2to~ -l (at which the field is at its maxi- 
mum) and t 3 = 284t% -I (at which the density 
deformation is at its maximum). The cavity 
eccentricity (the long size to small size ratio) at 
the time moments t~, t2, t 3 was 1.65, 2.1, 2.3 for 
the field intensity and 1.65, 2.3, 2.2 for the density 
well, Le. during the evolution the cavity preserved 
the dipole flattened shape tending to a more 
spatial amsotropic shape. 

One of the most important s~mulatmn results 
which we have observed for all bright collapse 

o21 
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Fig 13 Distributions along the dipole axis of values 
E2/81rnoTc (curves 1) and 2~n/n o (curve 2) for variant 
p0=0015, M/m=400 (a) t=0, (b) t=1392~o~-J, (c) t= 
284 0~o~- i 

,~N, 64 
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Fig 14 The same as m fig 13 perpen&cular to the dipole 
axis 

variants is the rather large ( ~  10rD-16r  D) mlnt- 
mal cavity size; in the 2D case this value was 
~ 10r D. This result is in good agreement  with 
laboratory experiments [2] (see also ref. [3]) which 
seemed previously inexplicable. The explanation 
could be in the fact that because of a higher value 

of Wmax/noTe  than m the 3D case the 
electron-oscillation interaction is apprectably 
modified by the strong nonlinearity. Th~s assump- 
tion is confirmed by the phase plane picture 
(z, V z) analysis (see fig. 15, z is the field oscilla- 
tion direction, the picture is averaged in perpen-  
dicular &rectlon). The "curls" formation is clearly 
seen, i.e. wavebreaklng takes place The final 
electron velocity distribution (see fig. 16) is char- 
acterized by a substantial amsotropy (the maxi- 
mum electron acceleration along the &pole axis) 
and the extstence of strongly accelerated, up to 

V =  Vmax----9Vro, electrons (m 2D calculations 
Vma x = 5Vro, see fig. 5) It means, in particular, 
that collapse is a more effective mechanism of 
fast electron generation than one could expect 
from 2D model calculations. 

Fig 15 Electron phase plane ( z ,V  z) (m perpen&cular &rec- 
tlon the picture is averaged) for variant M/m = 400, p = 0 015 
at the time t = 284to~ l 

2.5 5 7E t0 

Fig 16 The electron d~stnbut~on function integrated over 
space and velocities (1) V x, Vy(t = 0), (2) V x, V~(t = 284to~1), 
(3) Vx, V~ (t = 284t0~ -I) for variant P0 = 0015, M / m  = 400 

The number  of electrons whose veloctties ex- 
ceed 3, 5 and 7 Vro m dependence on time are 
presented in fig. 17. The hf oscillation energy is 
seen to be transformed to a small part  of the 
electrons (about 0.3% of the total number)  be- 
longing to the tail of the distribution function. 
The growth of accelerated particles starts when 
the hf field is mammal. This fact demonstrates  
that the collapse is stopped simultaneously with 
the beginning of the effective electron accelera- 
tion. 

The results obtained m the 3D ktnetlc simula- 
t i o n -  the local level of high hf osciUatlon, the 
quash-one-dimensional electron distribution func- 
tion taft, the flattened cavity s h a p e - a l l o w  us 
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to use for a qualitatwe general physical picture 
analysis in the final stage the auxahary one-di- 
mensional part icle-method slmulatxon of hzgh-ln- 
tenslve hf energy structures over the ion density 
well. One should note that 1D kinetic calcula- 
hons of large-amphtude wave evolution were car- 
ned  out, for example, in works of Buchel 'mkova 
and co-workers (see, e.g., ref [34]) In contrast to 
these works we have investigated the dissipation 
distribution process obtained as a 3D evolution 
result. For the sake of simplicity we have carried 
out auxiliary 1D calculations for periodical 
boundary conditions, Le. tWO full cavities with 
oppositely directed electric fields were consid- 
ered. 

The field structure In the cavities was simu- 
lated by a soliton-type mmal  distribution 

E(x) = Eo[1 / ch  A(x - L/4) 

- 1 / c h  A(x - 3 L / 4 ) ] ,  

where L is the region size, for parameters  (E  0 
the amplitude, A the inverse size) corresponding 
to 3D cavity parameters  at the beginning time of 
field burning out. The ion density deformation 
value was defined from hf and kinetic pressures 
balance, 

E 2 8n 
ot 16.rrnoT ~ = - n---~ + C, 

1 roLE 2 C= 16~rnoTe L dx, 
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FJg 17 Temporal dependencies of the number of electrons 
whose velocztles exceed (1) 3Vre , (2) 5Vre, (3) 7Vre for varmnt 
P0 = 0 015, M / m  = 400 

where ot is the coefficient which allows to calcu- 
late the required field using the known field am- 

phtude 
Using the above initial distribution for cavity 

parameters  Wmax/noT~ = 1.8, -Sn /no~  0.5 and 
cavity half-width 15r D corresponding to the 3D 
variant P0 = 0.015, e = 3, M/m = 400, we have 
observed a fast (2-3 plasma periods) burning out 
of such structure accompanied by a formatton of 
a tad in the accelerated particle electron distribu- 
tion function; the ton cavity profile during this 
time remained practically unchanged (see fig 18). 

From the phase space picture corresponding to 
this variant the pecultarlty formation with subse- 
quent transformation into multlflOW is clearly seen 
(fig 19). The zero electron temperature  and with 
the same initial conditions calculation variant (the 
phase space plane evolution presented in fig. 20) 
gave a more clear multlflow picture origin 

The physical interpretation of the energy trans- 
formation to electrons is studied next. The cavity 
electric field changes its direction during the time 
r ~ "rr/to o If  a sufficient number  of electrons suc- 
ceed in crossing the whole cavity during this time 
then a substantial part  of  the t rapped energy is 
taken away by these particles from the cavity. The 
oscillations of the electric field in our calculations 
are so large that even initially immobile particles 
succeed in accelerating and leave the cavity within 
the time r. In this process a part  of the particles 
is reflected back and produces mulhflow motion, 
which is clearly observed in fig 19. The finite 
temperature  washes away the picture but the 
main phase space structures are observed suffi- 
oent ly  well 

For 3D simulation a similar phase space behav- 
ior is also revealed. The absence of a break in the 
small-velocity region is explained by the fact that 
the picture given In fig 15 is averaged in perpen- 
dicular dlrechon and particles from the cavity 
periphery, where the field is negligible, fill the 
break. One should note also that the part  of 
burned energy in 1D calculations is about 80%, 
which is in good agreement  with 70% of the 
burned-out energy in 3D simulation 
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1D experiment 

The initial cavity size increase decreases sub- 
stantially the energy transmission to particles 
The  hf  field level decrease In the cavity acts 
similarly. To simulate such an effect we shall take 

into account  that  in the real 3D situation the 

cavity collapse preserves the plasmon number  
N ~  Wmax/3, where l IS the characterist ic size, 
Wm~ x the maximum value of  the hf  energy in the 
cavity. Therefore  the sizes r 1 and r 2 correspond-  

ing to Wlmax and W2max are connected  by r 2 = 
rlWlmax/W2max. This allows us to simulate the 
cavity dissipation described above in the more  

recent  stage. The  value W m a x / n o T  ~ = 0.5 for the 

above described example W m a x / n o T  e = 1 8, r 2 = 
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la) 

Fig 20 The phase plane evolution in the 1D experiment for T c = 0 (a) mmal stage (t = 1 2WpZ), (b) wave breaking (t = 3 2tOpl), 
(e) the multiflow (t = 6 0toff ~) 

15r D corresponds to the length r - - 2 4 r  D. The 
variant of  the calculation with the initial condi- 

tion W m a x / n o T  e = 0 5, r 2 = 24r o has demon- 
strated a practically unchanged energy value 
localized m the cavity during several plasma 
periods. This fact emphasizes the threshold char- 
acter of the hf energy burning-out process in 
dependence on field amplitude and its localiza- 
tion size 

Thus, the investigation of the 3D cavity evolu- 
tion final stage has demonstrated a clear collapse 
picture. The general characteristics of the cavity 
and its interaction w~th e l ec t rons -  the maximum 
hf energy levels, the ion density deformation am- 
plitude, the maximum electrons velooty, the min- 
imum final cavity s i z e - e x c e e d  substantially the 
analogous characteristics in the 2D kinetic calcu- 
lations. The  geometr ica l  cavity charac te r -  
lStlCS-the large minimum size ( ~  16r D) and 
amsotropy p o w e r -  agree with experimentally ob- 
served ones [2, 3]. The burning out of high lnten- 
slve structures ~s accompanied by formation of 
phase-space vortices, generation of multlflOW and 
a throwing out of a substantial part  of  the parti- 
cles from the cavity 

One should note that stable registration of a 
sufficiently large minimum cavity size means, in 
particular, that one of the most Important cavity 
p a r a m e t e r s -  t rapped oscillations characteristic 
wave n u m b e r - r e m a i n s  small ( k r  o ~ 0.2) up to 
the final stage of evolution. This fact can play an 
appreciable role for a simplified description of 

bmldmg up of the collapse. On the other hand, a 
large minimum cavity size can lead to the fact 
that the inertial interval length for real plasma 
experiments will not be very large This fact must 
be taken Into account m the interpretation of 
experimental results. 

One should emphasize finally the following. As 
calculation results show [32, 33] the density fluc- 
tuations excited by the ponderomotwe forces dur- 
ing the cavity collapse can affect substantially the 
turbulence properties. In several works (see ref  
[33] and references therein) attention was paid to 
the "nucleat ion" of  the collapsing cavities, i e the 
rise of cavities on the location of the burned-out 
ones. This effect depends substantially on the 
well density structure at the location of the 
burned-out cavity. In ref. [33] the 2D simulation 
m the framework of the dynamical equations was 
carried out. Our  calculations show that the maxi- 
mum density fluctuation amplitude which is 
reached already after the cavity burning on the 
inertial compression stage even m the 2D case is 

large, 8 n / n  o ,,, 0 3-0.4. In 3D calculations this 
value is increased up to 8 n / n o = 0 . 7 .  Kinetic 
effects are already very important for such fluc- 
tuations and this fact must be taken into account 
in carrying out turbulence simulation In particu- 
lar, the problem of the level and the fluctuation 
spectrum remaining after the cavity burning-out 
have to be studied using the particle method, It is 
convenient to do this using the semi-kinetic model 
(25)-(27) described in section 3. 
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7. Conclusions 

We have car r ied  out  a Langmui r  col lapse nu- 

merical  s imulat ion which includes the  physical 

p ic ture  analysis of  the especmlly impor tan t  cavity 

evolut ion final stage. Such an invest igat ion based 

on 2D and 3D kinet ic  calculat ions b e c a m e  possi- 

ble due  to especmlly des igned and practically 

r eahzed  genera l  pr inciples  of  the L a n g m m r  col- 

lapse s~mulatton. These  pr inciples  are based on 

r igorously taking into account  of  the cavity physics 

m the model ,  th rough  co-ord ina ted  pe r fo rmance  

of  all p rob lem s t a g e s -  f rom physical s t a t ement  to 

software deve lopment .  

The  2D p rob lem solut ion in the wide mer tml  

interval  ( " th rough  s~mulatlon") have demon-  

s t ra ted the collapse o f  cavities which t rapped  a 

large energy amoun t  and quaslstat~onary cawtons  

for low exceedmgs.  Th~s result  must  be taken into 

account  m the in te rpre ta t ion  of  2D turbulence  

slmulat~on results and their  ext rapola t ion  m the 

3D case. 

The  3D part ic le  s~mulatlon has demons t r a t ed  a 

c lear  col lapse and part ic le  acce lera t ion  p~cture 

A g r e e m e n t  be tween  the cavity character is t ics  with 

ones observed  m laboratory exper iments  has been  

obta ined  The  calculat ion results point  out  the 

impor tan t  role of  jo in t  nonhnea r  and kmeUc ef- 

fects taken  into account  m theore t ica l  models  of  

tu rbu lence  and present  useful data  for braiding-up 

of  such models  and in te rpre ta t ion  of  the experi-  

ments  
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