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We suggest a mechanism for the appearance of intermittency in fully developed turbulence consistent
with the pictures recently presented by Kraichnan [Phys. Rev. Lett. 65, 575 (1990)] and She [Phys. Rev.
Lett. 66, 600 (1991)]. The key features in our model are (i) an inverse cascade associated with the spec-
tral density of an additional finite llux motion invariant, leading to (ii) an attempt to form large-scale
structures which (iii) are intrinsically unstable to a broadband spectrum of perturbing modes resulting in

a secondary transfer of energy to small dissipative scales in intermittent bursts.

PACS numbers: 47.25.Cg, 05.40.+j

Kolmogorov [I] proposed a universal theory for small-
scale eddies in high-Reynolds-number turbulent flows. It
rests on several assumptions: that the transfer of spectral
energy to large wave numbers is local over a window of
transparency (the inertial range) in wave-number space,
and that statistical information is lost in the cascade so
that average flow quantities are scale invariant and deter-
mined by the mean rate of energy flux e which is constant
in a statistically steady state. If E(k) is the spectral en-

ergy [u =JE(k)dk] then, for isotropic turbulence, the
equation for E(k) is

=T(k) —2vk E(k)+f(k),

where T(k) is the energy transfer integral given by a
linear functional of the third-order moment in velocities.
It is called a transfer integral because it neither produces
nor dissipates energy and it has the property that
JT(k)dk =0. The terms f(k) and —2vk E(k) repre-
sent the production and dissipation of energy. The form-
er could be proportional to E(k) if energy is introduced
by an instability process. Locality means that there is a
transparency window (called the inertial range) in the
wave-number spectrum [between the scale ko ' at which
energy is introduced and the dissipation scale kd
=(v /e) 't ] where T(k) exists. In this window, the pro-

duction and dissipation terms f(k) and —2vk E(k) are
unimportant. In that case, the balance in (I) has conser-
vation law form E, =T(k) = P'(k), where—P(k) is the
energy flux, positive when the flow of energy is to small
scales and large wave numbers. We call J,E (k)dk
(0 ~ a & b ~ ~) a true constant of the motion if P(k)
=0 at both k =a and k =b, so that the total energy is

trapped in the interval (a, b) for all time because of zero
flux through the boundaries. However, the presence of
viscosity makes these thermodynamic equilibria unin-
teresting because there is a constant leakage of energy
through to the dissipation scales. Therefore, in any inter-
val (a, b) of the transparency window where a & ko,
b & kd, (8/r)t) J,E(k)dk is zero by virtue of the fact that
the fluxes P(k) at k =a and k =b are not zero but the
same. In this case, we call J,E(k)dk a finite I]ux con-
stant of the motion, and it is finite flux constants which
are important to us here. Moreover, within the window
of transparency, the interval (a, b) is arbitrary, so that

then P(k) is a constant and equal to the mean dissipation
rate ~ throughout the inertial range. From dimensional
considerations E(k) (l t ), k (l '), and e (1 t ) are
related by the well-known Kolmogorov law E(k) =c2e t

xk, where c2 is a universal constant. Suitably nor-
malized higher-order moments of velocity diflerences
ut =u(x+I) —u(x) (velocity gradients in the limit
I 0) are also universal constants. The relevance of
such solutions to turbulence rests on the Kolmogorov as-

sumption that the energy dissipation rate e= —(d/dt)u
=2vJk E(k)dk does indeed settle down to a steady-
state value in which the energy production rate Jf(k)dk
is balanced by the dissipation rate. In this Letter, we will

suggest that the primary cascade of spectral energy to
small scales is necessarily accompanied by an inverse cas-
cade of the density of another finite flux motion invariant
to large scales and that the accumulation of this second
density there leads to fast instabilities which result in a
secondary cascade of energy towards small scales. It is

this secondary cascade that gives rise to intermittency. In

many respects our ideas are consistent with the works of
Kraichnan [2] and She [3]. Kraichnan shows how the
deviation from Gaussian behavior in the probability den-

sity function (PDF) for velocity gradients (which can be
taken as a definition of intermittency) can be explained

by following the dynamical and nonlinear evolution of the
PDF due to the combined influences of straining and
viscous relaxation. She follows Kraichnan but is more
specific in attributing the non-Gaussian behavior to local
structures with high amplitude fluctuations in the velocity
gradient field. By contrast we suggest a physical mecha-
nism for intermittency by identifying a source (the in-

verse cascade) for building the large-scale structures
whose instabilities lead to intermittent events, a source
which is present even when these structures are not
directly forced or even when the external forcing has been
switched oA.

Optical turbulence. —We illustrate the ideas in the
context of the optical turbulence connected with the regu-
larized nonlinear Schrodinger (NLS) equation itit, +V y
+ay ttt* =iy y, where y. y means Jy(k)A(k)e'" "dk
with A(k) the Fourier transform of y(x, t). The damp-
ing function y(k) is positive near k =0 and k =kd»ko
and is negative, that is, amplifying, in a narrow window

(ko Ak, ko+5k ). In a spatially homogeneous random
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field we take i f(@VS*—@*VS)dx to be zero and then
the two "invariants" are number density N =f tice*dx
and energy H=f(~Vy~ ——,

'
a)y~ )dx. When the

amplification rate is sufticiently small, the primary Auxes
of number and energy density in wave-number space are
described by weak turbulence theory, and a kinetic equa-
tion [4,5] BN /Bt+2y(co)N„=T(n) can be written for
the number density averaged over angle, N =fnt, dk
=fN„dco, where nt, 6(k —k') =(2 (k)A *(k')) and
N =took '(dk/dco)nt, with co=k and Ao the solid an-

gle in d dimensions. The kinetic equation is closed be-
cause T(n) can be approximated by an integral involving
triple products of np whose form makes clear that the
principal transfer mechanism is a four-wave resonant in-
teraction. Moreover, one can write T =B R/Bco,
R =fo (co —co') T(n)dco', Q =BR/Bco, P =R —co BR/Bco
and then it is easy to see that Q(P) represents the flux of
number density N„(energy density E„=coN ) towards
low (high) wave numbers. Equilibrium solutions are of
(a) thermodynamic type, nt, =r(s+co) ', where r is
temperature and s chemical potential for which both
fluxes Q and P are zero, (b) pure Kolmogorov type,
nt; =c~ Q co

" ', nq =c2P ' co, which corre-
spond respectively to a constant finite flux Q(P) and zero
flux P(Q) towards low (high) wave numbers and are val-
id for d ~ 3, and (c) a combination of (a) and (b),
nt, =r [s+co+aQr co ln (co/co, )] ', which describes
the equilibrium state for 0 (co ( coo (coo=ko) for d=2,
and has constant finite Aux Q. Further, all the usual Kol-
mogorov assumptions obtain for the primary fluxes of
number and energy densities. Interactions are local
[T(n) converges for solutions nk in the neighborhood of
the finite flux equilibrium spectra], statistical information
is lost (all nonresonant interactions are ignored and the
kinetic equation is irreversible), and average Aow quanti-
ties in the windows (O, coo) and (coo, cod) are scale invari-
ant and depend only on Q and P, respectively.

However, weak turbulence theory eventually fails. The
reason is that the Aux of energy density E„=mN„ to-
wards high wave numbers is necessarily accompanied by
a flux of particle number density towards m=0. This
occurs because of the conservation laws. A particle born
at a=coo carries with it an energy mo. When it dies at
the damping frequency md ))mo it has significantly
greater energy. Therefore very few particles born at mo

get to co =cod. Instead, most end up with energies
m & coo. The redistribution of energy is achieved by non-
linear interactions in which a small number of particles
Nd (Ndcoq —Nocoo) pick up energy but most, i.e. , No—Nd, lose energy. What is the fate of the particles that
drift to low frequencies? Near k =co=0, the low ampli-
tude theory fails because the quadratic term in H no
longer dominates the quartic and one must resort to a ful-
ly nonlinear theory. In the defocusing case, e = —1, con-
densates y=yoexp(ia~go~ t) are built and their growth
can only be controlled by damping at k =0. Further, the
weak turbulence theory of Auctuations about condensates
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has a diA'erent character [5]. In the focusing case
a =+1, the condensate state is unstable, a saddle point in
the phase space of the system. While the condensate it-
self is never attained, its unstable manifold, which in

physical space consists of collapsing filaments [6], is
reached, and a secondary flux of number density reverses
the direction of the inverse cascade and sends particle
number density (but not energy density because H =0 for
a collapsing filament) back towards high frequencies. No
damping at k =0 is required. The nature of the secon-
dary flow is entirely diAerent from that of the primary
flows. I( is simply the manifestation of a collapsing fila-
ment in physical space in which number density is
squeezed from large to small scales in a highly organized
and coherent manner. No statistical information is lost in
each event. Statistical considerations are introduced,
however, by the intermittent nature of events, the uncer-
tainty in time and space as to when and where they occur.
The process is probably governed by Poisson statistics
whose parameters depend on the primary Aux of particle
numbers towards the origin. Because these events involve
large amplitude fluctuations, their eA'ect is experienced
principally by the tails of the probability density function
for itc(x, t). Their manifestation in the particle number
dissipation rate is seen as an intermittent sequence of
spikes superposed on a background arising from those
particles which reach large frequencies through four-
wave mixing. Further, the inverse Aux appears to be
enhanced when intermittency is present because the in-

complete burnout of collapsing filaments leads to the pro-
duction of new wave-train particles, some of which gain
in frequency due to four-wave mixing but most of which
lose.

Hydrodynamic turbulence. —Using these ideas, we ask
if it is possible that a similar scenario occurs in three-
dimensional, isotropic, hydrodynamic turbulence. Define
the velocity correlations,

u f(r) =(u(x)u(x+r)) =„F(k)coskr dk,

u'h(r) =(v'(x)u(x+r)) =
4 0

kH(k)coskr dk,

where u and v are the velocity components parallel and
perpendicular to r and u =F. is two-thirds the kinetic en-
ergy. The von-Karman-Howarth equation for f(r),
without forcing, is

B ~ ~I B 4 ~1 B 4Bfu f(r)+2u 4 r h(r) =2vu r
Bt r4 9r r4 air 6r '

from which we obtain formally

BE E BM BL
2V = 8, =0 2u c p,Bt g Bt Bt

(2)
where I=lim„. r f(r), L fo u r f(r)dr, lim, r
&&h(r) =c, and k=[—f"(0)] 't is the Taylor micro-
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=(4x) ' g(u;(x)u;(x+r))dr.
aJ

In the absence of forcing, it is a true motion constant as
there is no leakage at small or large scales. Its invariance
was first noted by Safl'man [7] who argues that in general
M is not likely to be zero and supports his argument by
showing that if a turbulence field is generated by a distri-
bution of random impulsive forces with convergent in-
tegral moments of cumulants, then M is nonzero and con-
stant. This is in contrast to the work of Batchelor and
Proudman [Sl who, assuming that the turbulent field has
initially convergent integral moments of the velocity dis-
tribution, found M =0 and the Loitsyanskii "invariant' I
[representing the average of the squared angular momen-
tum (SAM) =(4x) ' fr (u(x)u(x+r))dr] to exist al-
though, due to large range pressure correlations, the
third-order velocity correlation h (r) does not decay
suSciently fast so that I is constant. Rather, they found
that h (r) cr as r ~ which leads to (2). Never-
theless, we shall argue that when L exists, it is a finite
flux motion invariant in exactly the same way E is and
that its loss occurs at low wave numbers near k =0. We
assume that if the fluid is stirred at intermediate scales
kp ', the energy density E(k) [E =fE(k)dk] flows to
high wave numbers at constant rate e and we then prove
that the density of SAM J(k) [L =fJ(k)dk] must flow
to low wave numbers and suggest that the flux rate will
be p. We shall argue the same for M(k) [M=fM(k)dk], the density of SLM.

We now formally define spectral densities for I. and M.
Consider

and

j(r) = u r f(r)dr = J(k)coskr dkdp

m(r) =)I u (r f)'dr =M —u r f(r)

M(k)coskr dk

so that j(0) =L =fp J(k)dk and m(0) =M
=fp M(k)dk. A little analysis will show that kJ(k) and
kM(k) are the Fourier integral sine transforms of
u r f(r) and u (r f)'. The Fourier integral cosine

scale. I n the absence of viscosity, the first equation
expresses conservation of energy. I n the presence of forc-
ing at intermediate scales kp and under the assumption
that viscosity acts only after the viscous scales kd ', the
Kolmogorov theory asserts that the turbulence relaxes to
a steady state for which e is constant and, along with the
local scale k, determines statistical behavior in the
wave-number window (kp, kd=(ev )' ). The second
equation corresponds to the conservation of (average)
squared linear momentum (SLM)

f+ OO

M = lim r f= (r f)'drr=~

transforms of these two quantities are F""(k) and
kF"'(k) —3F"(k)=3[k 'E(k)]', where 3E(k)
=k F"(k) —kF'(k) [9]. Hence (P is Cauchy principal
value),

F„„(k) I P I
k'J(k')dk'

(3)
I ~ F""(k')dk'
n "—- k' —k

[3k iE(k)]' I P
k'M(k')dk'

k' —k
(4)

kM(k) P k' —k

From (3) we obtain, for small k, that E(k) —(2L/9x)k,
and for large k, kJ(k) —24E/hark so that fPJ(k)dk
=24E/5+k p & ~. From (4), E(k) =(M/6z)k for
small k, i.e., E(k) is thermodynamic, and for large k,
M(k) = —6E/xk" so that fPM(k)dk = —2E/eked & ~.
Therefore, since the interval (kp, ~) can only contain a
finite amount of I, and M and since, as we show in the
next paragraph, there is no leakage of either quantity
through k =~, if either J(k) or M(k) is produced at a
finite rate near kp, the density of each must increase in
the low wave-number range k & kp. Indeed, recent ex-
periments of Douady, Couder, and Brachet [10] who, us-
ing a new bubble visualization technique, observe that
short-lived high-vorticity filaments appear to form spon-
taneously and disintegrate through helical instabilities
which stir large eddies, are consistent with our picture of
an inverse cascade of J(k).

We may write equations for the spectral densities
F(k), M(k), and J(k) directly from their definitions and
the von-Karman-Howarth equation with added forcing.
Each contains a transfer integral, dissipation, and forcing
terms. It is clear that in the absence of forcing, the con-
tribution to (8/Bt) fp F(k)dk comes from dissipation and
high wave numbers, (8/Bt) fp M(k)dk is identically zero,
and (8/8r) fp J(k)dk = —fp T3(k)dk, where

Q OO

T3(k) =(4/x)u [c —r h(r)]coskr dr .
p

The decay of L comes from small wave numbers and is
due to the large-scale behavior of the third-order correla-
tion because of long-range pressure forces. The contribu-
tion from the dissipation term is zero. For example, if we
take r h(r) —c[1 —ri (r~ +r ) '+ l, then T3(k)
=2cu 8(k) as r

~
~. If J(k) is increased at k =kp

and lost at k=0, we might expect the squared angular
momentum flux rate p =2u c plays a similar role in the
window of transparency (k

~

=r
~

', kp) as e, the dissipa-
tion rate, plays in (kp, kd), although this assertion is not
crucial to our argument that J(k) flows to small wave
numbers. If the Kolmogorov hypotheses hold in this re-
gion, then the usual dimensional considerations give
J(k) =c k ' ' and E(k) —k'
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No matter whether M or L is invariant, we have shown
that, if produced at a constant rate at ko, the correspond-
ing spectral density will How to small wave numbers. The
question then is: What is the fate of these "particles" ?
Do they condense into large-scale structures as in the
cases of defocusing NLS or two-dimensional hydro-
dynamics where mean-squared vorticity density flows to
small scales and energy to large scales where it builds
large vortices? Or do they behave as in the case of the
focusing NLS where instead of building condensates,
they nucleate collapsing filaments which return the ener-

gy to high wave numbers? Our conjecture is that the in-
verse cascade of J(k) should lead to the formation of
large vortical structures just as the inverse cascade of
particle number in NLS should lead to condensates. But
in the focusing case, we have seen that because these con-
densates are unstable, they never get a chance to form.
Instead, as soon as the particle number density reaches
scales large enough to nucleate collapsing filaments, the
latter are formed and the inverse cascade is reversed. So
just as in optical turbulence, where, although the conden-
sate state is never reached, its unstable manifold plays an
important role in the dynamics, in three-dimensional hy-
drodynamics we should look at the instabilities of large
vortical structures although these structures themselves
will never get the chance to form. Bayly [11] has shown
that elliptical vortices are unstable to a subharmonic res-
onance between the inertial wave e'" ' " with frequency
cu =2 0 cose, where 0 is the rotation speed of the vortex
and coso=Q. k/Ak. The subharmonic resonance occurs
at 0= —', x, the window of instability ~8 ——, rr~ depends on

the amount of ellipticity a [u = (0 ( —
1
—a)y, 0 (1

—a)x,0)] in the original vortex, and the rate of growth
is proportional to a and independent of the wave number
k. Therefore the amount of energy which is inserted
directly in short waves is largest. While one would expect
that the net effect of the instability is to restore an isolat-
ed elliptical vortex to a circular shape, the lowest energy
configuration for a given angular momentum, the con-
stant Aux of SAM to low wave numbers keeps producing
distorting fields and the resulting instabilities continue to
feed high wave numbers. We suggest that this secondary
How of energy density has the required behavior to ac-

count for intermittency. Moreover, this conjecture could
be directly tested with careful numerical simulations. We
have verified numerically [5] in the case of optical tur-
bulence with a =+1 that intermittency can be suppressed
by applying damping for all k & ko. Likewise, intermit-
tency in hydrodynamic turbulence will be suppressed if
there are no sources available to build and maintain (ei-
ther through direct forcing or by an inverse cascade)
those large-scale structures which lead to high-k instabili-
ties.
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