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On the basis of an analysis of weak-turbulence Kolmogorov spectra, it is suggested that drift-wave 
turbulence is nonlocal: The dominant interaction is an interaction with a zonal flow, rather than a 
neighboring-scale interaction. The equation for nonlocal drift turbulence is derived. Its physical 
consequences are analyzed. In particular, two new effects are found. First, as the medium evolves, 
the k-space spectrum of the drift-wave turbulence separates into two unconnected components: 
an intense zonal flow and a jet of small-scale turbulence concentrated on an unclosed curve. 
Second, the very existence of a small-scale weak turbulence fixes the level of the zonal-flow 
turbulence. 

1. INTRODUCTION [see Appendix A regarding the normalization of the Fourier 

1.1. ln this paper we analyze the turbulence of drift transformation and the choice of variables a, ( t )  1. Equation 

waves or ~~~~b~ waves which have the dispersion relation ( 1.5) arises in studies of phenomena differing in physical 
nature: 

kx 
o = o ~ = ~ -  (1.1) 1. Rossby waves in the atmospheres and oceans of rotat- 

1+p2k2 ing  planet^."^ In this case, p = (gh,)'/'/f is the Rossby 

[ k = (k, ,k, ) is the wave vector and p and p are constants] 
and which interact with each other nonlinearly. Since the 
dispersion relation ( 1.1 ) is of a decay nature, the nonlinear 
interaction of the waves is incorporated in lowest order in 
the quadratic term on the right side of the dynamic equation 
for the wave amplitudes a, (t): 

ikk=wkak+sign w V-k,k,,d(k-k,-k,)ak,a,dk, dk,, (1.2) 
* 

ak=a+. (1.3) 

The matrix element Vk,k,,kZ characterizes the nonlinear wave 
interaction, which may take different forms. This matrix ele- 
ment has the symmetries 

radius, 

is the Rossby velocity, Y = (h, - h)/h, is the relative per- 
turbation of the height of the atmosphere or the ocean, and 
A =fp4 ( fiS the Coriolis parameter, h, and h are respective- 
ly the equilibrium height and perturbed height, and g is the 
acceleration due to gravity). 

2. Drift waves in an inhomogeneous magnetized plas- 
ma.29596 In this casep = ( Te /mi ) 'IZ /uBi is the ion gyroradi- 
us calculated from the electron temperature Te , 

The relations ( 1.4) mean that the variables a, ( t )  are ca- is the drift velocity, y = e@/T,, andA = WBip4 (m, and 
nonical Hamiltonian variables (see Appendix A).  are the ion mass and gyrofrequency, respectively, no is the 

1.2. The most important physical example which leads equilibrium plasma density, e is the charge of an electron, 
to Eq. ( 1.2) is the system of waves described by the Charney- and is the electric potential). 
Hasegawa-Mima equa t i~n l ' ~  3. (Lower hybrid)-drift waves in the plasmas of com- 

d d Y  d A Y  d A Y  d Y  pact tori, reversed-field pinches, and the ionospheric F lay- d y  ----- - d t ( p 2 ~ ~ - ~ ) - B - + ~ (  dx )=o er,' for whichp = ( Ti/m, ) I/' /uB, is the electron gyroradi- 
d x d y  d x  d y  

us calculated from the ion temperature Ti, 
(1.5) 

(A = const). If we take Fourier transforms in this equation, , Y =sCDlT,, A=osep4. 
switch to the canonical variables a, ( t )  (see Ref. 3 and also 
Appendix A of the present paper), and discard terms of 
higher than second order in the nonlinearity, we find Eq. and me and U B ~  are respectively the mass and gyrofrequency 

( 1.2) with the matrix element3 of the electrons. 
4. Electromagnetic electron oscillations of an inhomo- 

k2" 1 fikxk,zk2xl (2 + - v k , k , , k 2  = - - k~ geneous magnetized plasma. These oscillations are seen in z- 
4n I f  p2kiZ I f  p2k: +-) pinches and other high-current pulsed di~charges.~ In this 

(1.6) case, p = c/u, is the skin depth, 
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cis the velocity of light, w,, is the plasma frequency, and B, is 
the equilibrium magnetic field. 

5. Trapped-ion modes in a t ~ k a r n a k . ~ ~ ' ~  In this case we 
have p = ( T, /mi ) "' /wBi& ( E  is the ratio of the minor radi- 
us of the tokamak to its major radius), 

6. Density waves in the gas disks of galaxies." In this 
case Y is the gravitational potential, and 

where is the rotation frequency of the gas disk, and u is the 
unperturbed density of the galactic gas. 

The nonlinearity in Eq. ( 1.5) is called a "vector nonlin- 
earity." Under the condition k 'p2< 1, a "scalar nonlinear- 
ity" may also be important in the situations listed above. In 
such a case, Eq. ( 1.5) acquires a term - BY (dY/dx), 
where B = const. For electron drift waves, for example, we 
would have" 

The matrix element of the scalar nonlinearity is33 

The ion drift waves in a magnetized plasma with an 
inhomogeneous pressure can also be classified as drift 
waves.I3 Their dispersion relation is 

wherepis the drift velocity along the pressure gradient, and 
p:k and l/(p; k ') are small dispersive increments associat- 
ed with respectively the finite ion Larmor radius and the 
finite gravitational force. In the case 1) (plk)2) (p, k)-' 
the dispersion relation ( 1.8) is found from ( 1.1 ) through a 
Taylor-series expansion. In this case we have13 

In the case 1 ) (p, k) -'% (pl k)2, we can discard the nondis- 
persive term pk, from the kinetic equation for the waves 
from which we start (Sec. 2), although the dispersion rela- 
tion is very different from ( 1.1 ). We can assume that the 
dispersion is of the form Pk,/(p, k)2, which becomes the 
same as ( 1.1 ) under the condition p2k ', 1. In this region of 
parameter values we haveI3 

1.3. It is frequently assumed that only the interaction 
between waves (or vortices) of approximately the same scale 
is important in turbulence; i.e., it is assumed that the turbu- 

lence is "local." In the present paper, on the basis of a pre- 
liminary analysis (Sec. 2), we suggest that drift-wave turbu- 
lence is nonlocal. Specifically, we suggest that the evolution 
of the turbulence is determined primarily by the interaction 
with turbulence of much lower frequency, rather than with 
turbulence characterized by frequencies wk and wave vec- 
tors k which are of approximately the same scale. More pre- 
cisely, the behavior of the turbulence is governed primarily 
by the interaction with the zonal flow, i.e., by turbulence 
characterized by very small values of k, and w, . 

The primary result of this study is the discovery that the 
following two effects (Sec. 3) occur if this hypothesis of non- 
local nature is correct. ( 1 ) "Intermediate scales die out": As 
time elapses, the turbulence spectrum in k space splits into 
two unconnected components. One is a low-frequency tur- 
bulence of the zonal flow, and the other is a high-frequency, 
short-wavelength jet. This jet is concentrated along a curve 
wk - Dk, = const. Throughout the remainder of k space, 
the turbulence spectrum vanishes exponentially. (2)  The ex- 
istence of weak high-frequency turbulence leads to a very 
restrictive condition on the turbulence of the zonal flow, 
which may in general be strong. This condition is that a cer- 
tain global spectral characteristic of the zonal flow must take 
on a certain fixed value. The rate of energy dissipation in the 
zonal flow determines the intensity of the jet of small-scale 
turbulence. 

We also show here that the nonlocal interaction with 
the zonal flow implies that the small-scale turbulence spec- 
trum becomes more symmetric under the reflection 
ky + - ky . A Kolmogorov jet spectrum of high-frequency 
turbulence corresponding to pumping of quasiparticles to- 
ward large values of Ik I is obtained. 

This paper effectively has two parts, which can largely 
be read independently. In the first part (Sec. 2),  we formu- 
late and provide a foundation for the suggestion that drift- 
wave turbulence is nonlocal. In the second part (Sec. 3) ,  we 
work from this suggestion to derive an equation for nonlocal 
drift-wave turbulence, and we discuss the physical conse- 
quences of this equation. 

2. HYPOTHESIS OF A NONLOCAL NATURE 

2.1. In 1922, Richardson14 suggested that only the in- 
teractions between vortices of approximately the same scale 
were important in a hydrodynamic turbulence. As a result of 
such interactions, energy would be transferred step by step 
from relatively large vortices to relatively small ones. Work- 
ing from this "hypothesis of the local nature of turbulence" 
and dimensionality considerations, Kolmogorov and Obuk- 
h ~ v ' ~ , ' ~  derived the energy spectrum of the turbulence of an 
incompressible fluid: 

(Cis  a universal dimensionless constant). This spectrum is 
determined by the energy flux P from scale to scale toward 
large I k I. In 2D hydrodynamics, there is an integral of mo- 
tion not present in 3D hydrodynamics, the enstrophy. A 
similar approach leads to two turbulence spectra of an in- 
compressible fluid, as was shown by Kraichnan. "," One of 
these spectra, 
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describes turbulence with an energy cascade, while the sec- 
ond, 

describes turbulence with an enstrophy cascade. The energy 
flux P i s  directed toward small values of J k  1, while the en- 
strophy flux Q is directed toward large values of I k 1. The 
spectrum (2.1 ) is supported by experimental data, while 
spectra (2.2) and (2.3) agree with the results of numerical 
simulations. However, we do not yet have a rigorous deriva- 
tion of Kolmogorov spectra (2.1 )-(2.3). In fact, we do not 
even have a proof of the hypothesis that hydrodynamic tur- 
bulence is local. 

Adopting the hypothesis of local nature, and making 
use of dimensionality considerations, one can construct 
spectra analogous to spectra (2.1 )-(2.3) for a wide range of 
weak-turbulence media (see Refs. 19 and 20 and the review 
in Ref. 21 ) . These "Kolmogorov weak-trubulence spectra" 
describe turbulence in which there is a cascade from scale to 
scale of some integral of motion or other of the dynamic 
equations. An important circumstance, which was estab- 
lished by one of the present authors,'9920 is that in the case of 
weak turbulence the Kolmogorov spectra can be derived sys- 
tematically from the equations of the medium, and the hy- 
pothesis of local nature can be tested explicitly. Weak-turbu- 
lence Kolmogorov spectra are exact steady-state solutions of 
the wave kinetic e q ~ a t i o n s ~ ~ - ~ ~  

which are derived by taking an average of the dynamic equa- 
tions. Here n = nk = E~ /w, is the spectrum of the wave ac- 
tion, E~ is the energy spectrum, and St[n] is the collision 
integral. K u z n e t ~ o v ~ ~  has derived weak-turbulence Kolmo- 
gorov spectra as exact solutions of the kinetic equations for 
very anisotropic media also. These spectra are power-law 
functions not of the absolute value of the wave vector (as in 
the case of isotropic media) but of its components. In the 2D 
case (to which drift waves for example, we have 

where the constant 9 is determined by the flux (rate of dissi- 
pation) of some integral of motion of the dynamic equations, 
and the exponent v = (c ,vy ) is expressed in terms of the 
properties of the medium. 

2.2. A necessary condition for Kolmogorov turbulence 
to be local is that the collision integral converge in the case of 
the Kolmogorov spectrum: Only under this condition is the 
Kolmogorov spectrum a solution of the kinetic equa- 
t i ~ n . ' ~ - ~ '  On the other hand, this condition is not sufficient 
for localness. It turns out that while converging for the Kol- 
mogorov spectrum itself the collision integral S t [ n ]  may di- 
verge for spectra n, differing from Kolmogorov spectrum 
n! by arbitrarily small "finite" perturbations 
Sn, = n, - n;. We say that a perturbation Sn, is "finite" if 
it is identically zero outside a certain range of scales" [e.g., 
in the isotropic case, Sn, -0 as I k I -+ 0 and I k I -+ ca ; alterna- 
tively, in an anisotropic 2D medium, Sn, = 0 if at least one of 
the conditions I k, I -+ 0, I k, I - a, I ky I - 0, I ky 1 - ca holds, 
where k = (k, ,ky ) 1. 

Furthermore, the convergence of the collision integral 

for the Kolmogorov spectrum itself and for spectra which 
differ from it by small finite perturbations is still not suffi- 
cient to guarantee that the turbulence will be local.28-30 It 
turns out that if we specify a small finite initial perturbation 
of a Kolmogorov spectrum2' then the evolution of the medi- 
um may result in the appearance of a spectrum for which the 
collision integral diverges. 

It is worthwhile to examine the question of whether a 
Kolmogorov spectrum is local with respect to some class of 
perturbations or other. A Kolmogorov spectrum which is 
nonlocal with respect to the class of all perturbations may 
prove to be local with respect to a narrower class of perturba- 
tions. For isotropic media, for example, we should examine 
the question of whether the Kolmogorov spectrum is local 
with respect to isotropic perturbations, which obviously re- 
main isotropic as time elapses. For drift waves under the 
condition 

I V (k,, k,; k,,, kg,; k,, k2,) 1 

perturbations which are even (i.e., which are symmetric un- 
der the substitution k,, - - ky ) remain so in the course of 
the evolution, and it is useful to determine whether Kolmo- 
gorov spectra are local with respect to this class of perturba- 
tions. Numerical simulations of turbulence are frequently 
restricted to even spectra (to reduce the amount of memory 
and CPU time required), so one must determine whether 
turbulence is local with respect to the class of even perturba- 
tions in order to correctly interpret the results of the 
calculations. 

If the turbulence is nonlocal, a study of its behavior 
requires consideration of the interaction with distant scales, 
at the edges of the inertial range. In reality, the neighbor- 
hoods of singular points of the collision integrals, at which 
divergence occurs in the case of an infinite inertial interval 
(i.e., in the case of a finite inertial interval), contribute sub- 
stantially to the collision integral. One might say that there is 
a nonlocal interaction with these neighborhoods. 

The nonlocal nature of a Kolmogorov spectrum may 
mean that this spectrum cannot be realized physically. An 
example is a Kolmogorov spectrum for which the collision 
integral diverges. On the other hand, there may also be situa- 
tions in which a Kolmogorov spectrum is nonlocal with re- 
spect to a certain class of perturbations, but the nonlocal 
interaction which arises suppresses these perturbations, so a 
Kolmogorov spectrum can be realized. For example, local- 
ness with respect to isotropic perturbations in the isotropic 
case and localness with respect to perturbations which are 
even in the variable ky in the case of drift waves are necessary 
for the occurrence of Kolmogorov spectra in these situa- 
tions. The nonlocal interaction which arises from an aniso- 
tropic perturbation component in the isotropic situation and 
from a perturbation component which is odd in ky in the 
case of drift waves results in suppression of these compo- 
nents of the perturbations. It does not prevent Kolmogorov 
spectra from occurring (Appendix B and Sec. 3 ) . 

It can be shown that the conditions for the convergence 
of a collision integral at small scales for the Kolmogorov 
spectrum itself and for a spectrum differing from it by an 
arbitrary small finite perturbation are identical (this is true, 
at any rate, for isotropic media and of drift waves). If a Kol- 
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mogorov spectrum is the solution of a kinetic equation, then 
nonlocalness with respect to finite perturbations cannot be 
manifested in the interaction with small scales of the turbu- 
lence in this case. Conditions under which Kolmogorov 
spectra are local with respect to various classes of perturba- 
tions have been derived in several places3' (Refs. 28-32). 

2.3. For media which can be described by the dynamic 
equation (1.2), the kinetic equation (2.4) can be written as 
follows (see Ref. 23 and Subsection A.4 of Appendix A): 

x ln,,n,+n,n,, s ign(oao3 

+n,n,, sign (ohmk,) ldki dkz, 

where n, = la, 1' = n - ,. This equation conserves three in- 
tegrals: the energy Z?, the enstrophy (the x momentum) 
P , ,  and they momentum 9, [which correspond to the 
integrals of motion of dynamic equation ( 1.2); see Subsec- 
tion A.2 of Appendix A] : 

1 
9'" = - J kv sign k=nh dk 

2 (2.9) 

[the integral (2.9) is zero for all spectra of the type in 
(2.511. 

To derive the Kolmogorov spectra (2.5), one assumes 
that the medium is scale-invariant in terms of the compo- 
nents of the vector k: 

o ( k )  =const 1 kJa=const 1 k,la=l k,lau, a= (a,, a,) ; 
(2.10) 

where q = (q, ,qy ) is an arbitrary vector with positive 
components, 

For a system of drift waves there are then two Kolmogorov 
spe~t ra :~~ ," ,~ '  

where P and Q are the fluxes (rates of dissipation in the 
system) of energy and enstrophy, respectively, and C, and 
C2 are dimensionless constants. 

For waves with the dispersion relation ( 1.1 ), the scale 
invariance in (2.10) prevails only under the condition 
) ky I ) I k, 1, and then only if either plk I ) 1 holds (a short- 
wavelength turbulence), in which case we have 

or i fp(k I < 1 holds (long-wavelength turbulence), in which 
case we have4' 

2.4. Let us examine Kolmogorov spectra and the ques- 
tion of whether they are local for a drift-wave turbulence." 
For the Charney-Hasegawa-Mima equation [see ( 1.5) and 
( 1.6) 1, we have the following in the short-wave- 
length region: 

In this case, a spectrum with an exponent v = (5/2,1) , cor- 
responding to a pumping of enstrophy [see (2.12) 1, is not a 
solution of the kinetic equation (2.6), and the collision inte- 
gral diverges for this spectrum at both large and small wave 
numbers. A Kolmogorov spectrum with an exponent 
v = (5/2,0), corresponding to pumping of energy [see 
(2.11 ) 1, is a solution of the kinetic equation (2.6), since the 
collision integral converges for this spectrum. For any finite 
perturbations of the spectrum, however, the collision inte- 
gral diverges at large scales ( 1 k ,  1 -O), while for finite per- 
turbations which have an odd part the collision integral also 
diverges as k,  - (0, - 2ky ) . For a long-wavelength turbu- 
lence we have 

A Kolmogorov spectrum with an energy flux [v  = (5/2,4) ] 
is a solution of kinetic equation (2.6), but for any finite per- 
turbations of this spectrum the collision integral diverges at 
the singular point k, = (0,O). If there is a component of the 
perturbation which is odd with respect to k,, the collision 
integral also diverges at the singular point k,  = (0, - 2ky ). 
A Kolmogorov spectrum with an enstrophy flux [v 
= (5/2,3)] is a solution of the kinetic equation (2.6), but 

for perturbations with a nonzero odd component the colli- 
sion integral diverges at the point k ,  = (0, - 2ky ). 

For a scalar nonlinearity [ a  = ( 1,2), P = (3/2,0); see 
(2.14) and (1.7)], both of these Kolmogorov spectra 
[v  = 5/2,1), with a flux P, and v = (5/2,0), with a flux Q; 
Ref. 331 are solutions of the kinetic equation (2.6), but for 
perturbations which have a component which is odd in k, 
the collision integral diverges as k, - (0,2ky ). Furthermore, 
a Kolmogorov spectrum with an enstrophy flux is nonlocal 
(or highly ~ n s t a b l e ~ ~ , ~ ' )  with respect to the evolution of 
even perturbations. 

For ion drift waves,I3 in the case in which the dispersion 
stems from a finite Larmor radius 1 ) k)2 ) (p, k) -2; 
IkyI$Ik,I, wehavea= (1 ,2) ,P= (3/2,2) [see (1.8) and 
( 1.9) 1. A Kolmogorov spectrum with an enstrophy flux 
[v = (5/2,2) ] is not a solution of the kinetic equation (2.6) 
(for such a spectrum, the collision integral diverges as 
(k,  1 - 0 and also as 1 k, 1 - co ). Although a spectrum with an 
energy flux [v  = (5/2,3) ] is a solution of the kinetic equa- 
tion, the collision integral diverges at small wave numbers 
( I k, 1 -0) or for any finite perturbations of this spectrum. If 
there are perturbations which are odd with respect to k,, 
there is also a divergence as k, - (0, - 2ky ). 

If the dispersion of ion drift waves is a consequence of a 
gravitational force 1 $ (p,k)-'$ (p,k)'; Iky 1 % lk, 1, we 
havea=  (1, - 2 ) , p =  (3/2,-2).Inthiscaseaspectrum 
with an energy flux [v = (5/2, - 1 ) ] is not a solution of the 
kinetic equation, and the collision integral diverges as 
I k, 1 -0 and also as I k, ( - rn . A spectrum with an enstrophy 
flux [v  = (5/2,0)] is a solution of the kinetic equation 
(2.6), but if there are finite perturbations of any shape the 
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FIG. 1. Characteristic shape of the resonance curve, which determines 
pairs of vectors k , ,  k ,  which, along with the given vector, satisfy the equa- 
tions k + k ,  + k,, o, + o,, + o,, = 0. Each pointpon this curve speci- 
fies two solut~ons of these equations: k ,  = p, k2 = - k  - p  and k ,  = p, 
k ,  = - k - p  (Ref. 1) .  

collision integral diverges as I k ,  1 -0. In addition, this spec- 
trum (like all the spectra listed above) is nonlocal with re- 
spect to odd perturbations. 

We see that anisotropic Kolmogorov spectra are usual- 
ly nonlocal, in contrast with isotropic Kolmogorov spec- 
tra.21.30 These examples indicate that drift-wave turbulence 
may be nonlocal: The evolution of the turbulence (charac- 
terized by scales smaller than a certain value) may be deter- 
mined primarily by the interaction of the turbulence with 
turbulence of much larger scale (rather than of approxi- 
mately the same scale). In these situations, Kolmogorov 
spectra frequently have the property that the collision inte- 
gral either diverges as Ik, 1 -0 for the Kolmogorov spectrum 
itself or does so for a spectrum which differs from a Kolmo- 
gorov spectrum by an arbitrarily small finite perturbation. 

Figure 1 shows the characteristic shape of the resonant 
manifold [see (A.9) 1, along which the integration is carried 
out in the collision integral in Eq. (2.6). The nonlocal nature 
of the drift-wave turbulence, which is manifested in a strong 
interaction with large scales, means that the region of the 
resonance curve near the null vector contributes substantial- 
ly to the collision integral. 

According to the above analysis of Kolmogorov spec- 
tra, the region of the resonance curve near the point 
(0, - 2ky ) can also contribute substantially to the collision 
integral. For all the cases listed above, the collision integral 
diverges as k, + (0, - 2ky ) for spectra which differ from a 
Kolmogorov spectrum by arbitrarily small finite perturba- 
tions which have a component odd in ky [in the situations 
which we have been discussing, this nonlocal nature prevails 
in general for all power-law solutions of the type (2.5) with 
Y, > 2; for Kolmogorov spectra (2.1 1 ) and (2.12) we have 
Y, = 2.51. 

Let us assume that the regions of the resonance curve 
near the points (0,O) and (0, - 2ky ) dominate the collision 
integral, so we can ignore the remainder of the resonance 
curve. In other words, we assume that the drift-wave turbu- 
lence is nonlocal and that its behavior is determined primar- 
ily by the interaction with the zonal flow, i.e., with turbu- 
lence characterized by wave vectors with small components 
p, (and thus low frequencies w, ). 

Some of the Kolmogorov spectra discussed above ex- 
hibit a nonlocal nature not only near the zonal flow but also 
at large scales. In such a situation, one might expect the 
appearance of a significant nonlocal interaction with sub- 
stantially smaller scales [but note that for turbulence with 
plk I - 1, pl k, I - 1 a nonlocal interaction with small-scale 

turbulence would not be possible, since the resonant mani- 
fold (Fig. 1) does not pass through wave vectorsp with abso- 
lute values Ip / ) I k / 1. The question of nonlocal interaction 
specifically with the zonal flow, which is indicated indirectly 
by several experimental facts, seems to us to be the most 
important question here. Intense zonal flows are not rare in 
the atmospheres of rotating planets, e.g., that of J ~ p i t e r . ~ ~ . ~  
Observations of the spectrum of a plasma turbulence in the F 
layer of the equatorial ionosphere show that in the range of 
scales corresponding to drift waves (5  m 5 ( k  / -' 5 100 m; in 
this case we have p- 5 m)  the n, spectrum has a lk 1 - 6  

behavior." Since the collision integral diverges for power- 
law spectra of the type in (2.5) as (k  (-0, in which case we 
have Y, + vy > 6 (in the case of a vector nonlinearity) or 
Y, + vY > 4 (in the case of a scalar nonlinearity), these ob- 
servations indicate the possibility of a nonlocal interaction 
with large scales. Numerical sir nu la ti on^^"^"^ also point to a 
concentration of the spectrum in the region of zonal flows. 
Yet another circumstance which is evidence of a nonlocal 
interaction with the zonal flow is discussed in the following 
section of this paper. 

3. EVOLUTION OF A NONLOCALTURBULENCE 

3.1. We thus assume that drift-wave turbulence is non- 
local. Specifically, the behavior of this turbulence is deter- 
mined primarily by the interaction with the zonal flow. The 
kinetic equation (2.6) then reduces to 

(we are assuming that the vector k does not lie in the region 
of the zonal flow). We have ignored the term n, n, + , , under 
the assumption that n, is quite large. In Eq. (3.1) we used 
the function 

which plays an important role in the discussion below. The 
quantity - a, represents the frequency of the wave in the 
coordinate system moving at the drift velocity 0. 

The resonance curve in Fig. 1 intersects the region of 
the zonal flow in neighborhoods of two points: (0,O) and 
(0, - 2ky ). Let us examine the contribution of each of these 
neighborhoods to the collision integral. 

Denoting the integrand in (3.1 ) by F(k,p),  

and noting that we have F(k,p) = - F ( k  + p, - p ) ,  we find 
the contribution to the collision integral from the neighbor- 
hood of the first point, p = (0,O) : 

Expression ( 3.2 )-( 3.3 ) was derived by Vedenov and Ruda- 
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kov3' in a description of the diffusion of plasmons in a ran- 
dom field of ion acoustic waves. It follows from the reso- 
nance condition f2, +, - a, - a, = 0 that asymptotically 
at small values of (p ( we have p, = qp,, where 

Making use of the 6-functions of the frequencies to integrate 
overp, in (3.3), we find 

The tensor in (3.5) is degenerate. Using the change of vari- 
ables (k,,ky)-(k,, u = b ( k ) )  we can reduce (3.2) to an 
expression which contains only differentiation with respect 
to k, : 

Here and below, B / 9 k y  means differentiation with respect 
to ky at constant u = f2(k): 

a 
-= 

d d 
-q - + - ; n=n (k,,  c )  . 

B k u  dk,  dk ,  

Near the second point, p = (0, - 2ky ), integration 
over py in (3.1 ) with the help of the 8-functions of the fre- 
quencies leads to the expression 

where 

dQ dQ -' 
y = l - - (  dk,  d k ,  

+ m 

j 8n 1 V ( k ,  k g ;  p,, -2k.; -I%,, k,) I 'n(p, -2ku)dp,. 

It is easy to see that Y(ky ,u) is an even function of k,. 
In determining S and Y, we replaced the finite integra- 

tion limits by infinite limits, since the assumption that the 
turbulence is nonlocal makes the collision integral negligible 
outside the neighborhoods of the points (0,O) and 
(0, - 2ky 1. 

The kinetic equation (3.1 ) thus becomes 

where we have added a term yn, which describes the sources 
and sinks [ y  = y(ky ,u) 1. 

3.2. According to Eq. (3.8), the evolution of the spec- 
trum n (ky ,v) in k space occurs independently on each of the 
curves 

which are shown in Fig. 2. The redistribution of the turbu- 

FIG. 2. Curves of R (  k )  = u = const, along which small-scale waves inter- 
act in k space. I - u = - 2; 2- - 1.5; 3- - 1; 4- - 0.5; 5 - 4 5 ;  6 1 ;  
7-1.5; 8-2. 

lence among curves is a slower process, determined by cor- 
rections to Eq. (3.8) which may very well be local, described 
by an integral operator rather than by a differential-differ- 
ence operator. 

On each of curves (3.9), Eq. (3.8) conserves the num- 
ber of particles in the case y = 0: 

It can be seen from (3.10) that if the quantity y were 
positive everywhere on some curve (3.9) then the total num- 
ber of particles on this curve would increase without bound. 
Equation (3.8) would then be insufficient (for finding sta- 
tionary states, for example), since it would not reflect the 
leakage of wave action from the curve. Such a situation 
might arise if the curves along which the interaction oc- 
curred (in lowest order) were bounded (Appendix B ) .  If we 
wish to ignore the following order and to limit the discussion 
to Eq. (3.8), we must require that there be an effective sink 
on each curve (more on this below). For drift waves, the 
curves (3.9) are not closed; they run off to infinity, where 
there is always a strong viscous dissipation. 

For spectra which are even in k,, the second term in 
braces in ( 3.8 ) vanishes. This result agrees with the circum- 
stance that this term arose when we incorporated the evolu- 
tionary nonlocal nature of the turbulence with respect to 
perturbations having an odd component [manifested near 
the point (0, - 2ky ) 1. The integral in (3.7) diverges at the 
point p, = 0 for all power-law spectra of the type in (2.5) 
with v, > 2, i.e., whenever this nonlocal nature prevails 
(Sec. 2). It is also simple to verify that the integral in (3.6) 
diverges at the point py = 0 for all Kolmogorov spectra 
which are nonlocal at large scales (Sec. 2). 

The conclusion that drift-wave turbulence is nonlo- 
cal-the conclusion which leads to Eq. ( 3.8 )-was reached 
on the basis of an analysis of whether Kolmogorov spectra 
known only in the sector I k, I % I k, I are local. Nevertheless, 
Eq. (3.8) can also be examined outside this sector. The rea- 
son is that the quantity Y(k) is determined by the spectrum 
n, , for which we have Ipy I = 21 ky 1 % Ip, I [see (3.7) 1. The 
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quantity S(k)  is determined by the spectrum n, on the 
straight linep, = pp,. The quantity p ( k )  is small not only 
for I k, 1 %  1 k, / but also in other situations [e.g., I k, I 4 1 k, I 
orp2k2% 1; in any case we have Ip(k) ( < 1 / 0 1 .  

3.3. Let us examine the time evolution of the energy and 
the momentum of each of curves (3.9): 

B(v) = -1 j k  sign kzn.S (P (k) -u)dk. 
2 

According to Eq. (3.8) we have 

where Q(ky ,u) = - S g n ,  / 9 k y  is the diffusion flux of 
particles along the curve. The integration here is along the 
curve (3.9); i.e., it is assumed that k, is a function of k,, 
specified implicitly by the equation 0 (k, ,k, ) = v. Since the 
energy and the momentum are integrals of motion of the 
entire system in the case y = 0, the first terms in expressions 
(3.12)-(3.14), taken with a minus sign, give us the energy 
and momentum fluxes from the curve to the zonal flow. 
Equations (3.12)-(3.14) have a clear physical meaning: 
The number of particles is conserved on each of curves (3.9) 
[see (3.10) 1. As they move (in a diffusive fashion) along the 
curve (3.8) from the source at small Ik, 1 to the dissipation 
region at large I k, I (Fig. 2) ,  the quanta go through states 
with smaller values of Jw, I and 1 k, 1 but larger values of I k, 1. 
They thus lose energy and enstrophy, but they acquire y mo- 
mentum. 

The energy and enstrophy which are lost are transferred 
to the large-scale turbulence of the zonal flow, causing an 
increase in the spectrum at points p such that p, 
= - p(k,,u)p, (k, is the instantaneous coordinate of the 

particle on the curve). At these points, y momentum is ac- 
quired which is equal in magnitude and opposite in sign to 
the momentum acquired by the particle on the curve. If the 
spectrum on the curve (3.9) is not even in k,, they momen- 
tum is transferred to the zonal flow in a different way [see 
the second integral in (3.14) 1,  without an accompanying 
transfer of energy and enstrophy. 

3.4. For a given spectrum n, of the turbulence in the 
zonal flow, the quantities S and Yare functions of k, and u. 
The nature of the evolution of the spectrum along the curve 
(3.9) is then determined by the solution of the eigenvalue 
[A ( U) ] problem 

with the boundary conditions 

n(+O, v )  =n(-0, v) ,  

Q(+O, u)=Q(-0, u), Q = ~ ( l l k , ) ~  Fu+*m.  (3.16) 

Equation (3.15) obviously reduces to a system of two sec- 
ond-order differential equations. For spectra which are even 
in k,, Eq. (3.15) is itself a second-order differential equa- 
tion, 

which is to be solved under the boundary conditions 

The eigenvalues depend on the function y(k,,u) (on the 
shape of the "potential well"). For drift waves in various 
physical situations, the functions y(k, ,v) turn out to be ap- 
proximately the same (see Refs. 7 and 35-37). A typical 
shape of this function is shown by the contour plot in Fig. 3. 
As a rule, the function reaches a maximum on the k, axis, 
and the y = 0 contour line frequently passes through the 
point k = 0 (Refs. 7 and 36). 

As time elapses, the spectrum on the curve (3.9) tends 
toward an eigenfunction corresponding to the maximum 
eigenvalue 2 ( u )  . This eigenfunction is positive everywhere. 
If, at some v, we have 2 ( u )  > 0, the spectrum on curve (3.9) 
increases exponentially with the time: The source creates 
more particles than are carried off diffusively to the dissipa- 
tion region. 1f 2 ( u )  < 0, the spectrum n (k, ,u) tends toward 
zero: The diffusion coefficient is so large on the curve (3.9) 
that the particles move off into the dissipation region faster 
than they are created by the source. 

Accordingly, if there exist values of u for which the con- 
dition 2 ( v )  > 0 holds [such values of u correspond to curves 
(3.9) with large growth rates y(ky ,u) > 01, then Eqs. 
(2.12)-(2.14) tell us that the energy and momentum fluxes 
into the large-scale turbulence of the zonal flow will increase 
with time, causing an increase in the spectrum of the zonal- 
flow turbulence. We would naturally expect that this process 
would lead to an increase in the diffusion coefficient S and 
thus the rate of the diffusive escape of particles to the dissipa- 
tion region, i.e., to a decrease in the eigenvalues 2 (0). If the 
curve passes through a region of strong dissipation, the 
eigenvalue 2 ( u )  always goes negative for a sufficiently large 
increase in S. The interval of values of u for which the condi- 

FIG. 3. Typical appearance of contour lines of the function y ( k ) .  The 
growth rate ( y  > 0) is in a region adjacent to the k,  axis, reaching a maxi- 
mum on this axis; we have y - - m as I k 1 - m .  
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tion 1 ( v )  > 0 holds thus shrinks as time elapses, until it de- 
generates into a point v,, with X ( v )  = 0 [the source is in a 
sense at a maximum on the O(k)  = vo curve]. The k-space 
turbulence spectrum thus splits up into two unconnected 
components: a zonal flow and a high-frequency, short-wave- 
length jet concentrated on a curve f l  ( k )  = v0 ("intermedi- 
ate scales die out"). 

3.5. It can be concluded from this discussion that a 
small-scale weak turbulence imposes a severe limitation on 
the turbulence of the zonal flow. To illustrate this point, we 
consider an example. We assume that the turbulence spec- 
trum is even in k,. At small lpl, the asymptotic formula 

with some number u and some function U(k), usually holds. 
The integral in (3.6) can then be written in the form 

where 
+ m 

The value of p ( k )  at points on the curve (3.9) depends on 
the shape of the spectrum in the sector 

alone. This sector is comparatively narrow: p,,, (v) -0 as 
v- oc, (Fig. 4). We assume that at v = uo the sector (3.20) is 
so narrow that in it we can ignore the angular dependence of 
the large-scale turbulence spectrum n, (we are assuming 
that the spectrum n, has no singularities on the k, axis). The 
quantity (3.19) is then independent of k. The point vo is the 
value of v for which, at the maximum value of the parameter 
p ,  there exists a positive solution of the equation 

which satisfies the boundary conditions (3.18). Solving the 
eigenvalue problem ( 3.18 ) , (3.2 1 ) , we find the eigenvalue 
p(v) and the corresponding positive eigenfunction E(k, , v ) .  
The point vo is the point at which the function p ( v )  reaches 
its maximum. As a result of the evolution of the medium, the 
large-scale turbulence should go into a state in which the 

FIG. 4. The function p,,, ( 0 ) .  The evolution of the spectrum along the 
R ( k )  = u curve depends on the turbulence of the zonal flow, with wave 
numbersp from the sector Ip, /p, / < p,,, ( u )  alone. 

integral (3.19) is equal to the eigenvalue, po = p(vo): 
+ - 
I n (0, p,)p:'zdpu=,uo = max p(v). (3.22) 

- m  O<c<+m 

The spectrum of the high-frequency turbulence tends to- 
ward a jet having the shape of the eigenfunction 7i (k, ,v,) . Its 
amplitude is determined from the condition that the energy 
flux away from the curve (which is proportional to the am- 
plitude of the jet spectrum) be equal to the dissipation rate in 
the zonal flow. 

If the spectrum n, has a singularity on the k, axis, but 
the spectrum of the enregy E, = wpnp  (or of some other 
quantity) does not have a singularity, then it is again possi- 
ble to find a condition, corresponding to the condition 
(3.22), which fixes the level of the large-scale turbulence. 

None of our arguments require that the turbulence in 
the zonal flow be weak. The only requirement imposed on 
this turbulence is that its effect on the small-scale turbulence 
lead to a small frequency broadening of the spectrum of the 
latter; specifically, 

The presence of a small-scale weak turbulence can thus fix 
the level of the large-scale turbulence [see (3.22) 1, even if it 
is strong. 

3.6. This stabilization of large-scale turbulence by 
small-scale turbulence suggests yet another approach to the 
solution of the inverse-cascade problem.L7"8,s~39 In the theo- 
ry of2D turbulence it is assumed that energy is transferred in 
a step-by-step fashion from the source to large scales, at 
which there may be no effective dissipation, in contrast with 
the situation at small scales. If there is a maximum scale in 
the system, energy will accumulate on it (as quanta accumu- 
late in the course of Bose condensation). In this situation it is 
not clear just which mechanism will operate to saturate the 
level of the large-scale turbulence and just which consider- 
ations are to be used to find this level. According to our 
results, the mechanism by which the large-scale turbulence 
reaches saturation might be as follows. A cascading energy 
flux enhances the spectrum at large scales, eventually to the 
point that the turbulence becomes nonlocal. The pumping of 
energy ceases to be a step-by-step process, and a nonlocal 
energy flux arises [see (3.12)-(3.14) 1. The spectrum of the 
small-scale turbulence becomes a jet, whose amplitude is de- 
termined by the dissipation rate in the large-scale turbu- 
lence. If there is no dissipation at all at large scales, the am- 
plitude of the jet vanishes, and the large-scale turbulence 
reaches saturation because it is left without a source. In this 
case, its level is determined unambiguously [see (3.22) 1. 
The existence of this saturation mechanism is yet another 
piece of evidence in favor of the hypothesis that drift-wave 
turbulence is of a nonlocal nature. 

3.7. Incorporating the evolutionary nonlocal nature 
with respect to perturbations having an odd component has 
led to the appearance of the second term in braces in Eq. 
(3.8). This term tends to make the spectrum n(k,,u) sym- 
metric, i.e,, even ink,. Let us assume that the second term in 
(3.8) mtweighs the first. Equation (3.8) then breaks up into 
systems of equations consisting of two ordinary differential 
equations: 
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n(kv, v) =Y(kv, V )  in(-k,, v)-n(k,, v) ]+y (k,, v)n(kv, v)  
(3.23) 

(in each such system, k, takes on the two values + I k, I ). It 
follows from (3.23) that in the limit t-* we have 

where f?= [y(k,,v) - y( - ky,v)]/(2Y). If the source is 
symmetric with respect to the k, axis, the spectrum n (ky ,v) 
becomes symmetric, i.e., even in k,, as time elapses. If there 
is an asymmetric source, the relative asymmetry of the spec- 
trum, %, tends toward zero with increasing intensity of the 
zonal flow [i.e., with increasing Y(ky ,v) 1. 

By virtue of the conservation of the total number of 
particles on the curve, the conversion of the spectrum 
n(ky ,v) to a symmetric form means that if the number of 
particles in a state with wave vector (k, ,ky ) is greater than 
the number of particles in the state (k, , - k, ) there will be a 
transition of particles from the first of these states to the 
second. There will be a loss of y momentum on the curve; it 
will be transferred to the zonal flow [see the second interval 
in (3.14) 1. Since this transfer of y momentum is not accom- 
panied by a transfer of energy or enstrophy [see (3.12) and 
(3.13) 1, some of the particles in the zonal flow, in the state 
with the wave vector (p,, - 2ky ), will go into the state 
(p, ,2ky ). There is thus a nonlocal flux of y momentum into 
the zonal flow, which implies that the zonal flow rotates 
(when the condition n, = n - is taken into account): The 
direction of the zonal flow acquires a component along the 
gradient of the inhomogeneity (they axis). This effect might 
prove important in research on the anomalous-transport 
problem.5.6 

3.8. Since the number of particles is conserved on each 
of the curves (3.9), it is natural to take up the problem of a 
Kolmogorov spectrum with a flux of particles along the 
curve. Let us assume for simplicity that the quantities 
S(ky ,v), y(ky ,u), and thus the steady-state spectrum 
n (k, ,u) are even functions of k,. We assume that we have 
y(ky ,v) SO in some interval a(v) < k, < b(v). In the inter- 
val a < ky < b the steady-state spectrum is then found from 
the condition that the flux of particles along the curve re- 
main constant: 

Hence 

In the approximation in which ( 3.19) does not depend on k 
we have 

This Kolmogorov solution is a two-parameter solution and 
also incorporates thermodynamic spectra (with a uniform 
distribution - of particles with respect to degrees of freedom) 
n = const, Q = 0. 

In summary, the jet spectrum formed as a result of the 

evolution of the medium is a Kolmogorov spectrum in the 
intervala(v,) <ky <b(v,). 

We wish to thank L. P. Kadanoff, C. Liu, W. Horton, V. 
S. Shrira, A. M. Rubenchik, and K. H. Spatschek for interest 
in this study and for useful discussions. 

APPENDIX A 

Some comments on the Hamiltonian formalism 
for drift waves 

A. 1. According to the form of dispersion relation ( 1.1 ) 
and relation (1.3), the complex amplitudes a, ( t )  of waves 
with wave vectors k from the half-space k, >O are indepen- 
dent phase variables for a system of drift waves [in real 
space, this system is described by the single real function 
9 (x, y,t) 1. In this case the dynamic equation is written 

with the Hamiltonian 

I 
H = a,a,:kdk + -- vep, ,,6 csn + s,k1 

k,> 0 s, s,, s, kx>o 
kU>O 
k,, >o 

$ s2k,) aksak,slak~dk,dk2dk, (A.2) 

where s, s,, and s, take on the two values + 1; and a: = a,, 
a, = a:. Since the dispersion relation (1.1) is of a decay 
type, the nonlinear interaction of the waves is incorporated 
in the lowest order (in the degree of the nonlinearity) by a 
Hamiltonian which is cubic in the wave amplitudes a, ; high- 
er-order terms are discarded.24 Introducing the matrix ele- 
ment V,,,,,,, , which is defined for all values of the wave vec- 
tors (not solely for those with positive exponents) by 

we write Hamiltonian (A.2) in the form 

and we write the dynamic equation (A. 1) in the form 

which holds for k, > 0. Taking the complex conjugates of 
both sides of this equation, and replacing k by - k, we find a 
dynamic equation for k, < 0: 

For arbitrary k, the dynamic equation is 

6 H 
ii, = -sign k,. (-4.4) 

6~-k 

Substituting the Hamiltonian (A.3) into this equation, we 
find Eq. ( 1.2). Noting that the Hamiltonian is real and that 
the second integral in (A.3) is symmetric with respect to k, 
k,, and k,, we find relations ( 1.4). 

A.2. Equation (A.4) obviously conserves integrals of 
the energy Hand  the momentum 
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1 
9 = -I 2 kaka-, sign kdk, (-4.5) 

whose x component has an essentially positive density I k ,  I 
la, 1' and is called the "enstrophy." 

A.3. Physical equations often are not in explicit Hamil- 
tonian form (A.4) and are instead written in the form 

i@k=@kqk + sign k, j ~ - ~ , , , , ~ ~ 8  (-k+k1+k2)qkqk,dk, dk,, 
(A.6) 

where p, ( t )  is the Fourier transform of the function 
*(x, y,t), which describes the state of the medium in real 
space and is given by 

here 
* 

(pk=(P-k? W-k. -kl. - k ~ = ~ k ,  kt, h = W k ,  - k1, kc? 

but there are no other symmetries of the type (1.4). The 
transformation 

then makes it possible to find a dynamic equation for the new 
variable a, ( t )  which, after nonlinear terms of order higher 
than the second (in a,  ) are discarded, has the form in ( 1.2), 
where 

If the resulting equation is to be a Hamilton's equation, i.e., if 
symmetry relations ( 1.4) are to>old, the function g, must 
satisfy the condition g, = g -  , , and the function 
Igk 1' W,,,,,,? must have symmetries of the type in (1.4), at 
least on the resonance manifold: 

On the one hand, these conditions determine the choice of 
the function g, (clearly, this function can always be regard- 
ed as a positive, real, even function); on the other hand, they 
show what the function W,,,,,,, must be if the problem is to 
be put in Hamilton's form. choosing the matrix element in 
the form 

we find the coefficient G of the transformation (A.7) in ac- 
cordance with (A.8): 

The function g is usually chosen in such a way that the qua- 
dratic part of the physical energy E is equal to 4 $lw, I 
X a,  a -, dk for drift waves. For example, 

Hence 

This situation arises, for example, in the Charni-Hasegawa- 

Mima equation ( 1.5). The canonical variables a,  ( t )  were 
introduced in Ref. 3; in terms of those variables, the Char- 
ney-Hasegawa-Mima equation is of the form of a Hamilton's 
equation in all orders (in the nonlinearity). 

A.4. The kinetic equation for waves corresponding to 
the dynamic equation (A. 1 ) isz4 

where 
-1.3,i 2 ROt2=4n) Vk,k,,k,) 8 (k-kt-kz) 6 ( ~ k - ~ k ~ ~ ~ h a )  

This equation becomes the kinetic equation (2.6) if we 
switch from integration over the half-spaces k ,, > 0 and 
k, ,  > 0 in the collision integral to integration over all wave 
vectors, making use of the condition nk = n - , and symme- 
try relations ( 1.4). 

APPENDIX B 

Nonlocal turbulence in isotropic media 

B. 1. For comparison, we consider nonlocal turbulence 
in an isotropic medium with a dispersion relation o = I k  l a .  
If a > 1, this dispersion relation is of a decay type, and the 
kinetic equation for waves is24 

If the interaction with large scales is the dominant interac- 
tion, we can restrict (B. 1 ) to an integration over small ( k ,  ( 
(and take small I k,I into account by doubling the result). To 
first order (in the ratio of the small and large scales, which is 
a small parameter), we can ignore the quantity w,, in Eq. 
(B.l),  since it is small in comparison with the difference 
w ,  - wk2 z (6'0, / d k )  k , .  In lowest order, the evolution of 
the spectrum n, in k  space thus occurs independently on 
each of the circles 

The high-frequency quanta move in a manner which con- 
serves their energy w, against the background of the "fro- 
zen" large-scale turbulence. In the case of nonlocal drift- 
wave turbulence, we ignored the quantity R, , , assuming 
that the large-scale turbulence is frozen in the coordinate 
system moving at the drift velocity 8. In the lowest order, 
the total number of particles on the curve in (B.2), 

N~ = j nkdq 

(q, is the polar angle of the vector k ) ,  obeys the equation 

3. = I bnkdq. (B.3) 

In isotropic media, on some of the circles (B.2), the quantity 
y, is usually positive everywhere, so the number of particles 
N(o) on these circles will increase without bound according 
to (B.3). It is then no longer sufficient to retain only the 
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lowest order in the nonlocal interaction; we need to incorpo- 
rate higher orders, which describe a redistribution of parti- 
cles among circles. The validity of using only the first ap- 
proximation in the case of a drift-wave turbulence is based in 
a fundamental way on the circumstance that any curve of the 
type (3.9) passes through a region of strong dissipation. 

B.2. If y, is isotropic [ y = y ( 1 k 1 ) 1, the interactions 
among circles (B.2) then lead to a rapid conversion of the 
spectrum n, to an isotropic form. Then there is a slower 
redistribution of particles among the circles, which is de- 
scribed by the average kinetic equation2' (averaged over 
angle) 

where Uco,coI,~02 is a function determined by the matrix ele- 
ment of the medium, which satisfies U ,,,,,,2 = Urn.01101 . If 
the medium is scale-invariant, the function UW,W,r,2 is a ho- 
mogeneous function of some power of A: 

U ( e w ,  em,,  e w , ) = e L U ( o ,  w , ,  a , ) .  

In this case we have the Kolmogorov spectrum 

where P is  the energy flux to small scales, and C is a dimen- 
sionless constant. This spectrum is an exact solution of Eqs. 
(B.4), (B.2) under the condition that it is steady and local 
(i.e., under the condition that the collision integral con- 
verges for this spectrum). If the Kolmogorov spectrum 
(B.5) is nonlocal in an evolutionary sense with respect to 
anisotropic perturbations alone, the nonlocal nature of the 
turbulence is manifested only in the stage in which the spec- 
trum becomes isotropic. The subsequent evolution of the 
spectrum is determined by the interaction between nearby 
scales. The spectrum (B.5) may be established in the pro- 
cess. 

If the Kolmogorov spectrum (B.5) is also nonlocal 
with respect to isotropic perturbations, then the nonlocal 
interaction with large scales determines the evolution of 
even isotropic spectra. Equation (B.4) reduces to the differ- 
ential equation 

where 

S=2 U ,... -.,o,'Nwidwi. 

If the asymptotic formula 

holds in the limit w ,  -. 0, then we have S = Sowa - q ,  where 
So = 2u$,"N,, w':+2dw,, and Eq. (B.6) becomes 

since the effect of the large-scale turbulence on the small- 
scale turbulence is described by the single constant So. In the 
case y = 0, this equation conserves the total number ofparti- 
cles, and the general steady-state solution of this equation is 

the sum of a Kolmogorov spectrum (with a particle flux Q) 
and a thermodynamic-equilibrium spectrum (with a uni- 
form distribution of particles among degrees of freedom): 

I '  Finite perturbations correspond to the case in which the primary source 
and the primary sink which shape the Kolmogorov spectrum, and 
which are concentrated at the edges of the inertial interval, remain con- 
stant. Such perturbations are always present in a medium because of 
internal or external fluctuations of the system. 

2' Finite perturbations form a natural class of initial conditions in the 
formulation of a Cauchy problem for the linearized kinetic eq~ation.~'  

" No distinction was made in those studies between nonlocalness which is 
a consequence of the divergence of a collision integral for a finite pertur- 
bation of the spectrum and nonlocalness which is a consequence of a 
divergence for a spectrum which arises as a result of the evolution of a 
finite initial perturbation. The two cases were lumped together in the 
concept of evolutionary nonlocalness which was introduced in Refs. 28- 
32 (in this case, the evolution of perturbations is not determined exclu- 
sively by near-scale interactions). 

4' Strictly speaking, what is scale-invariant in the case of dispersion rela- 
tion (2.14) is not the frequency o, but the quantity pk, - w, ,  which 
may be interpreted as the frequency in a coordinate system moving at a 
velocity p. In this case, Pin  expression (2.11 ) represents not the energy 
flux P but the energy flux measured in the coordinate system moving at 
a velocity B: P' = P 9 ,  - 8. For simplicity, however, we will not be 
specifying just which energy we have in mind. 
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