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The character of the evolution of wave turbulence is studied within the framework of the 
nonintegrable nonlinear Schroedinger equation in the absence of wave collapse. It is shown that 
the turbulence separates into two components-weak wave turbulence and a low-density soliton 
gas whose density decreases with time. The soliton gas is a statistical attractor whose dimension 
decreases with time. The results of this work were confirmed by numerical experiments. 

1. INTRODUCTION 

As a rule turbulence in nonlinear continuous media is 
accompanied by the appearance of localized, extremely non- 
linear structures. In those cases when the equations describ- 
ing the medium have stable soliton solutions the solitons are 
natural candidates for the role of such structures. Turbu- 
lence in this case can be termed soliton turbulence. Soliton 
turbulence was apparently first studied in 1973 by Kingsep, 
Rudakov, and Sudan.' The purpose of this paper is to give a 
qualitative description of soliton turbulence within the 
framework of the nonintegrable nonlinear Schroedinger 
equation in the absence of wave collapse. It is shown below- 
based on simple estimates which were confirmed by a nu- 
merical experiment (see also Refs. 2 and 3)-that with time 
two components of the turbulence can be identified: weakly 
nonlinear wave turbulence and a low-density soliton gas. 
Over long times the degree of rarefaction of the soliton gas 
(the ratio of the characteristic distance between solitons to 
the size of the solitons) increases asymptotically, and in the 
process almost the entire value of the integral of the "num- 
ber of quasiparticles" (physically playing the role of energy) 
is concentrated in the soliton component. 

A similar assertion was already made in Refs. 4 and 5, 
where it was justified by a thermodynamic approach. Such 
an approach is, however, inadequate, since in reality the tur- 
bulence is far from a state of thermodynamic equilibrium. 
For this reason, in Ref. 6 Protogenov and Fraiman cast 
doubt on the idea that solitons play a special role in turbu- 
lence free of collapse. In this paper we prove the assertion 
that solitons play a central role in the asymptotic state of 
turbulence of this type and we thereby show that a soliton 
gas is a unique statistical attractor, whose dimension de- 
creases with time, in a nonintegrable Hamiltonian system 
with an infinite number of degrees of freedom. 

2. ANALYSIS OF THE CHARACTER OF THE EVOLUTION 
OF TURBULENCE 

A quite universal model of wave turbulence is the non- 
linear Schroedinger equation (see, for example, Refs. 2, 5, 
and 7) 

which has a solution in the form of a moving soliton: 

forf(u) > O a n d f ' ( u ) > C ~ ' ~ - ~ ) / ~  (disthedimensionofthe 
space) the soliton(2) is unstable and is not realized in turbu- 
lent processes. Conversely, if the soliton is stable (for the 
important particular case of a power-law nonlinearity 
f = us" the condition for stability has the form sd < 4), the 
turbulence is soliton turbulence. The question of the charac- 
ter of the evolution of this turbulence is of fundamental, gen- 
eral physical interest. Equation ( 1 ) has the following inte- 
grals of motion: 

~ = 3  r I V$12-Q(l$lZ) ldr, 

@'(.) = f  ( u ) .  

If quantum effects are neglected, the value of the Ham- 
iltonian H i s  determined primarily by the short-wavelength 
range because the energy tends to be distributed uniformly 
over the degrees of freedom. In this case a condensate-a 
uniform field accompanied by small-scale fluctuations- 
could form in the system. But for f ' (u)  > 0, the condensate is 
unstable and in the absence of collapse it decomposes into 
solitons. In the special integrable case f (u)  = Cu, C >  0, and 
d = 1 solitons are scattered elastically by one another, and 
the number of solitons is conserved. In the general noninte- 
grable case a qualitative thermodynamic analysis of the in- 
teraction of solitons with free  wave^^.^ shows that the behav- 
ior of the system is determined by the accumulation of weak 
effects which arise owing to the fact that opposing processes 
are uncompensated. When solitons with a weakly turbulent 
spectrum interact the processes which increase the ampli- 
tudes of the solitons as the number of solitons decreases are 
thermodynamically advantageous. As the solitons merge the 
value of the integral H decreases somewhat and the differ- 
ence is carried away by free waves; the integral correspond- 
ing to the number of quasiparticles N (the wave energy) is 
determined primarily by the soliton. In the process the size 
of the soliton decreases. 

We shall study in greater detail the elementary interac- 
tions of solitons with one another and with weakly nonlinear 
free waves taking into account the integrals of motion (3).  
For simplicity we shall confine our attention to a power-law 
nonlinearity f(u)  = ud2. Then a soliton of arbitrary size 
il ' can be expressed in terms of the universal mode R (7) : 

E=r-vt, Ag+f  (gz) g-hzg=O, V g  1 ,,, = 0, 
g+O for 8 - t ~  (2)  (R(7 )  = [ ( I  + ~ /2 ) ' /~ / ch ( s7 /2 ]~ / "  with d = I ) ,  which 
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makes it possible, in particular, to derive useful relations Within the framework of Eq. ( 1 ) the growth rate of the 
between the integrals ( 3 ) for the soliton solution (2) : modulation instability of the condensate $oexp [if( 1 $ol ') t ]  

va is determined by the expression 
* NL+9, N=)LugNc,, (4) P-Nv, H=N- -- 

4 I+q (k)=k(2A-k")'", 

where 

2s 
N ~ . = J R ' ~ ~ ,  r l - z  >o,  x=,N,,-9. 

With the help of Eqs. (4) it is easy to see that in the case of 
scattering of a weakly nonlinear wave of the form 
a exp [i(kr - k 't) ] with SN quanta, momentum SP 
= 2kSN, and Hamiltonian SH = k 'SN by a soliton (N,v) 

the following relation holds: 

Its maximum is reached at k = A'/2 and is equal to 
y,,, =A. The corresponding modulation length 
A,, = ~ T / A " ~  determines the number t > y ~ a  of solitons 
formed for times nz (L /A,,, )d. The parameters of the 
model were chosen so that the competing requirements that 
the statistics of the solitons be convincing n >  1 and the 
asvm~totic soliton be adesuately resolved (AAld& 1 ( A  is . . 

6No(~ko-v/2~2+~N~)=~Nt(~kt-~/2~2+~Ng), (5  the linear size of the cell and il is the inverse characteristic 

where the indices 0 and 1 refer to the starting and scattered 
waves, respectively. 

It follows from (5)  that as energy is transferred from 
the wave into the soliton (SN, < SN,) the soliton slows down 
and the wave vector of the wave increases. It is qualitatively 
understandable that on the average this process is more like- 
ly than the reverse process: as waves accumulate in the re- 
gion of high values of k their phase volume increases and the 
entropy of the system increases accordingly (since the num- 
ber of soliton degrees of freedom is much less than the num- 
ber of weakly turbulent degrees of freedom it may be as- 
sumed in practice that the value of the entropy is determined 
by the contribution of the weakly turbulent spectrum). 

The kinematic calculation of the interaction of solitons 
with the participation of free waves is more complicated. 
Using (4)  we can show that when two solitons (N,, v, ) and 
(N,, v,) interact the following relations hold (in the coordi- 
nate system in which the total momentum of the waves is 
equal to zero) : 

where and are carried away by the free waves. It is 
obvious from (6)  that for low velocities the stronger soliton 
is strengthened and the weaker soliton is attenuated. This 
process corresponds to a pair "collision" and is obviously 
more likely than the reverse process (triple "collision"). 
These arguments confirm the qualitative conclusions of a 
thermodynamic analysis: as a result of the evolution of a 
given starting distribution the soliton is a statistical attrac- 
tor-with time the state decays asymptotically into a soliton 
and a collection of weakly nonlinear waves. 

3. RESULTS OF NUMERICAL MODELING 

To prove this assertion directly we integrated numeri- 
cally the one- and two-dimensional equations ( 1 ) to long 
evolution times with different nonlinearities f(u).  The prob- 
lem was solved in the bounded region O<r<L with periodic 
boundary and perturbed uniform initial conditions: 

where q ( r )  & 1 is a small perturbation. 

size of the soliton; for a power-law nonlinearity 
A - Ns/'4 - sd) ) always holds in the calculations. The calcula- 
tions were performed on the ES- 1037-ES-2706 mu1tiproce:- 
sor complex of the Space Research Institute of the Academy 
of the Sciences of the USSR. Equation ( 1 ) was integrated 
using an FFT algorithm following a procedure analogous to 
that employed in Ref. 8. The integrals of the motion (3 )  were 
used to monitor the calculations. Aside from the power-law 
nonlinearity, systems with saturation of the type 

f(u)=u(I-au), f ( u ) = ~ ( l + b ~ ~ ) / ( l + b ~ ~ )  

were also studied. 
The computational results demonstrated that the ob- 

served space-time dynamics of the system is in complete 
agreement with the qualitative picture of soliton turbulence 
predicted above. Figure 1 shows the results of integrating the 
one-dimensional equation with f (u)  = u1l2. A lattice of so- 
litons with a period of the order of il,, forms as a result of 
the development of the modulation instability (Fig. la) .  In 
the course of further evolution the system is increasingly 

FIG. 1. Fragments of the evolution of the solution of the equation 
i$, + +hxx + I$I+h = 0 with the parameters $o = 1 and L = 60; the time 
t = 17.4 (a),  365.4 (b),  and 730.8 (c).  
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FIG. 2. Fragments of the evolution of the solution of the equation 
i$, + $x, + 1$12[(1 +0.11$12)/(1 +0.5/$12) ] =Owith theparameters 
$,, = 1 and L = 40; the time t = 52.2 (a)  and 765.4 (b) .  

separated into solitons and weakly nonlinear free waves. The 
interaction of solitons with one another and with free waves 
leads to gradual transfer of waves from weak solitons into 
stronger solitons, and the amplitudes of the solitons in- 
creases as the number of solitons decreases (Fig. lb) .  Over 
long times the system is reduced to a single soliton of small 
size and large amplitude (Fig. lc).  The measured velocity v 
of the soliton is much less than the group velocity 
(dw/dk), =, , this is completely obvious: a motionless soli- 
ton minimizes the energy. The form of the asymptotic soli- 
ton is adequately described by the exact solution of Eq. (2),  

in which the quantity A is calculated from the measured am- 
plitude. Free waves account for about 15-20% of the start- 
ing integral N. 

Analogous results were also obtained for other types of 
nonlinearities (Fig. 2 corresponds to the nonlinearity 
f (u)  = u [ ( l  + O.lu)/(l + 0.5u)]),  as well as in the solu- 
tion of the two-dimensional problem. In the two-dimension- 
al case [the results of the integration of Eq. (1)  with 
f( u ) = u'I4 are presented in Fig. 31, however, the evolution 
time increases to such an extent (as the number of solitons 
decreases the probability that they interact with one another 
decreases) that the problem of achieving a single soliton be- 
comes very complicated for numerical modeling. However, 
the qualitative picture of the evolution of turbulence, as we 
can see, is identical to the picture described above. It should 
be noted that in studying the evolution of turbulence we did 
not observe any cases in which the number of solitons in- 
creased owing to fragmentation of a soliton under the action 
of weakly nonlinear waves; this indicates that the process is 
statistically irreversible. This behavior agrees with the cal- 
culations of Ref. 9, where it was found that the fragmenta- 
tion of a soliton by a sound wave requires a special sound 
packet with large amplitude. 

4. CONCLUSIONS 

Thus in the process of evolution of long-lived soliton 
turbulence a nonintegrable system approaches the state of a 
soliton gas; this makes it possible to regard this state as a 
statistical attractor. This result was obtained by three meth- 
ods: analytically near the equilibrium state435 and far from 
equilibrium (see Sec. 2 of this work) as well as by direct 

FIG. 3. Fragments of the evolution of the solution of 
the equation i$, + $x, + gYy + f $ 1 " 2 $  = 0 with the 
parameters $,, = 1 and L = 37.7: a-t = 13 and 
/$/2,., = 33.2; b--t = 277 and / $ 1 2 , , ,  = 63.9; and, 
c-t = 2681 and l $ I Z , , , ,  = 137.3. 
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numerical modeling (Sec. 3).  The result does not depend on 
the dimension of the space and on the details of the interac- 
tion (if, of course, the solitons are stable). 

The separation of the soliton state was confirmed for 
the one-dimensional case and a power-law nonlinearity in a 
detailed paper by Lebowitz et al.,1° where, unlike direct 
modeling, analytical assumptions about the properties of the 
thermodynamically equilibrium state are made first and 
then this state is studied numerically. The well-known diffi- 
culties of introducing a measure on function spaces5 were 
not mentioned in Ref. 10. 

The analytical work of Protogenov and Fralman6 is 
based on the Langevin force method. They introduce a phe- 
nomenological equation, which is chosen so as to obtain the 
correct answer for linear waves, to describe the soliton. This 
equation, which differs from the equation derived analyti- 
cally in Ref. 11, does not take into account direct soliton- 
soliton interactions and the result obtained-that there are 
no strong solitons in the asymptotic limit--contradicts the 
results of the numerical experiment performed in this work. 

We note that for infinite-dimensional systems the Ham- 
iltonian character of the system does not prevent the exis- 
tence of statistical attractors of the soliton type. Strictly 
speaking, dissipation, which ensures the possibility of the 
existence of true attractors, also appears as a result of aver- 
aging over the many degrees of freedom of the starting Ham- 
iltonian system. 

We also note that damping of waves with large wave 
numbers as well as different nonlinear mechanisms of damp- 
ing are always present in real physical systems. These effects 

lead to the fact that solitons of quite small size and high 
intensity will rapidly dissipate. The concentration of energy 
in solitons of small size thus turns out to be a strongly nonlin- 
ear mechanism for the absorption of energy; this mechanism 
can be compared with the "collapse" mechanism of dissipa- 
tion owingto catastrophic development of singularities of 
the wave field. Thus it turns out that the "soliton" and "col- 
lapse" variants of wave turbulence are qualitatively not too 
different from one another. 
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