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We study the nonlinear dynamics of waves in systems with two possible kinds of collapse: "weak" 
collapse with zero energy going into the singularity and "quasi-classical" collapse with a finite 
amount of trapped energy. We use the example of the one-dimensional Schrodinger equation with 
a high-power non-linearity (s  = 6) to show that the evolution of an initial wave distribution 
makes it multiply subdivided and accompanied by weak field singularities. 

1. A broad class of physical problems in which wave 2. To study the properties of the self-similar solutions of 
collapse occurs is described by the three-dimensional non- Eq. (3)  we apply to it the modified lens transformationh-' 
linear Schrodinger equation 

Y =  
1 

-idY/dt+AY+Y I Y I2=0. (1)  E (g, T) erE2I8, 
( to- t )  v, 

(4)  
In the framework of this equation the evolution of an arbi- x 
trary field distribution with a negative Hamiltonian (to-t)  '" ' 

H = J  ( 1 B Y l ~ l , l Y 1 4 ) d r  corresponding to the transition to a frame of reference which 

comes to an end after a finite period of time through the 
formation of a singularity. The analysis of the asymptotic 
state of the singularity formation indicates two alternative 
regimes of self-similar c~llapsel,~-the so-called "weak col- 
lapse" (Y = (to - t )  -'/2p(r(t,, - t )  - ' I 2 )  ) with zero ener- 
gy I = J I Y I 'dr going into the singularity, and "quasi-classi- 
cal strong" collapse where the amount of trapped energy is 
finite. It was shown in Ref. 2 that this latter collapse regime 
is unstable to the excitation of small-scale perturbations; the 
problem of the stability of the weak self-similar collapse re- 
mains so far unsolved. The problem of the quantitative col- 
lapse scenario of an arbitrary wave packet is also unsolved. 

These problems might be solved by means of a numeri- 
cal study of Eq. ( 1 ) . A serious difficulty consists here in the 
fact that to find a physically valid answer it is necessary to 
solve an essentially three-dimensional problem with an ap- 
proach to the point of collapse adequate for reliable conclu- 

is compressed into the point x = 0 according to the weak 
collapse rule. In the new (6, T )  frame in which the moment 
at which the singularity is formed becomes infinity, Eq. (3)  
can be written in the form 

The weak collapse mode is a stationary solution of (5)  
of the form ~ ( 6 ,  T) = g(6)e - '"' and is determined by the 
parameters go = g(6  = 0)  and a [if we assume symmetry, 
g'(f = 0)  = 01. One can show that the corresponding 
asymptotic form of the amplitude has the form 

If there is no right-hand side, the stationary localized field 
distributions have the form 

sions. 
The difficulties connected with the high dimensionality E (z ,  T)  =21huo ch-lb (3uo3E)  exp (-iuo6t)  ( 7 )  

of Eq. ( 1 ) can to a considerable extent be if we use and are, clearly, on the whole unstable. When we take the 
the fact (see, for instance, Ref. 3 that a number of the most extra terms into account the structure of the mode is de- 
important properties of the nonlinear Schrodinger equation formed, to begin with at the periphery ,in accordance with 

are determined in a space of dimensionality d solely by the 
product ds. The equation describes stable solitons when 
ds < 4, the "critical" collapse fords = 4, and collapse "in the 
general sense" in the case d s  > 4, to which the three-dimen- 
sional Eq. ( 1 ) also belongs. It is therefore expedient to con- 
sider the one-dimensional problem of the general form of 
collapse. 

Concretely, we consider the case s = 6, when we have 
instead of (2)  (see also Refs. 4, 5) 

Equation (3 )  is similar to the original problem ( 1 ) in the 
sense of the laws for the formation of a singularity. 

(6 )  1. The first term on the right-hand side of ( 5 )  corre- 
sponds to an increase in the number of quanta in the E(<,  T) 

distribution, and it follows from the properties of the solu- 
tion (7 )  that it acts to broaden it. However, the effect of the 
second term, which describes emission of waves from the 
periphery of the bunch and a decrease in the number of quan- 
ta in the central part of the distribution, increases. One may 
assume that under conditions when these factors are in equi- 
l i~r ium Eq. ( 5 ) has a stable stationary solution in the form of 
a solitary dissipative structure. It is just this fact which guar- 
antees an important role for the weak collapse process in the 
dynamics of nonlinear systems. 

3. Another possible regime for the formation of a singu- 
larity is the strong quasi-classical ~ o l l a p s e . ' ~ ~  We apply to 
Eq. ( 3 )  the appropriate compression transformation: 
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The equation for the self-similar mode can then be written in 
the following form: 

There are no exact stationary localized solutions of Eq. (9) ,  
so that the quasi-classical collapse mode 
~ ( 6 ,  t )  = A(c) exp( - iA :r) is determined in the limit as 
a( r) --L 0 and has the form (see also Ref. 9) 

A ( E )  =Ao (1-E2/Eo2) ' I s  when ~ ~ ( g o 2 = 5 0 ~ 0 B / 3 ,  
(10) 

A ( E )  =O whenE2>go2. 

The term with the spatial derivative, which was dropped to 
obtain (10) turns out to be small for this distribution every- 
where except in a narrow region A{=: 1/rA : near the points 
6 = + 6,. This region serves as an unusual generator of 
small-scale perturbations which develop against the back- 
ground of the stationary structure ( 10). An analysis of the 
linear stage of the field instability, given in the form 

E =  [A (E) +a (E, r )  ] exp (-iA,Br), JaJ <A, 

shows that amplitude perturbations with a wavelength 
R = 2 r / x  - Ac(co grow in the central region, starting from 
a level 1 ) (al/A,) 1 / 6 ? ~  A2, according to the formula 

6'"rAOS 25x2 I - exp {5.6'%~: [A,&- 5% - (1 - -) 6AosrZ "'I} 
and lead to the destruction of the quasi-classical solution. 

FIG. 1. Fragments of the evolution of an initial quasi-classical distribu- 
tion with A,, = 1.15, a = 1: a )  t = 0, b) t = 0.36, c )  t = 0.62. 

FIG. 2. Results of the simulation in the 6, r variables: a )  the function IY l 2  
for~=O(dashedcurve)  and2~10- '~Yj~ fo r r=40( fu l l d r awncurve ) ;  
b) the 7-dependence of - d [  IY (0, r) I - ' ] /d t .  

4. The conclusions concerning the laws governing the 
behavior of the system studied were confirmed by a numeri- 
cal experiment in which we studied the effects of the struc- 
tural instability of broad quasi-classical distributions, the 
weak collapse process, and the effect of short-wave damping 
on the nature of the occurrence of singularities. We show in 
Fig. 1 fragments of the evolution of an initial field distribu- 
tion in the form ( 10) with A, = 1.15 and a = 1. Our calcula- 
tions show that the wave clusters formed by breakdown of 
the quasi-classical structure of the wave packet change to a 
weak collapse regime which leads to the formation of singu- 
larities with zero trapped energy. 

With the aim of a direct proof of the instability and a 
determination of the structure of the weak collapse mode, we 
undertook a study of the dynamics of a separate collapsing 
section. We succeeded in studying the detailed picture of the 

FIG. 3. Evolution of a spatial distribution in a system with small-scale 
damping: a )  t = 0, b) t = 0.87, c )  t = 0.88. 
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FIG. 4. Gradual diminution in the energy of a wavepacket in a system 
with damping. 

formation of the singularity up to significant-by 6 to 7 or 
more orders of magnitude-excess of the field amplitude 
over the initial level, thanks to a specially developed experi- 
mental procedure'0*" based upon changing to a (6, r )  refer- 
ence frame which is compresssed according to the formula 

We show in Fig. 2a the self-similar structure established dur- 
ing the evolution of the initial field distribution (dashed 
curve) with a Gaussian form: Y (x, 0)  = exp( - x2/16). 
The self-similarity law in which we are interested was veri- 
fied, in particular, according to the formula 

which is shown in Fig. 2b. One sees easily that starting from 
r z  10 and IY(0, t)  1 - 10 the distributions are trapped in the 
stable weak collapse regime. In the self-similar regime, the 
"tail" of the distribution agrees with excellent accuracy with 
the asymptotic form (6). The structure of the weak self- 
similar collapse mode is described in detail in Ref. 10. 

The most important feature of this regime of self-simi- 
lar collapse is the decrease of the energy I, contained in the 
collapsing distribution Y(x, t)  as the time of the singularity 
approaches: I, - (to - t)  ' I 6 .  In actual systems with small- 
scale damping of the waves (for instance, in a high-tempera- 

ture plasma) this leads to many bursts of field bunches and 
the corresponding "hatched" energy dissipation. We ob- 
served such a process when we modified the numerical ex- 
periment by introducing into the right-hand side of Eq. (3) a 
dissipative term 

with a = lo2, B = 7.5 [guaranteeing damping (of the Lan- 
dau type) of the high spatial harmonics of the Y (x, t )  field]. 
This enabled us to simulate the system for arbitrary evolu- 
tion times (Fig. 3). The function I ( t )  shown in Fig. 4 which 
characterizes the gradual decrease in the energy stored in the 
initial field distribution confirms the conclusion that the im- 
portant role is played by the weak collapse in the dynamics of 
wave systems with a local nonlinearity. The problem of the 
behavior of the wave packet remains then on the whole un- 
solved. One may assume that the packet will also be com- 
pressed according to a so far unknown law that must be de- 
termined by a further theoretical analysis and numerical 
experiments. 
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