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MEETINGS AND CONFERENCES

Scientific session of the Division of General Physics and Astronomy and the
Division of Nuclear Physics of the Academy of Sciences of the USSR (20-21
January 1988)

Usp. Fiz. Nauk 155,529-533 (July 1988)

A joint scientific session of the Division of General
Physics and Astronomy and the Division of Nuclear Physics
of the USSR Academy of Sciences was held on January 20
and 21, 1988 at the S. I. Vavilov Institute of Physics Prob-
lems. The reports enumerated below were presented at the
session.

Scientific session dedicated to the 80th anniversary of
the birth of Academician L. D. Landau (1908-1968)

January 20
l.A.M. Polyakov. Problems in quantum geometry.
2. P. B. Vigman. Superconductivity in strongly corre-

lated electronic systems.
January 21

3. O. A. Kirzhnits. Electrodynamics of the magnetic
monopole.

4. V. E. Zakharov. Wave collapse.
A summary of one report is presented below.

V. E. Zakharov. Wave collapse. Solitons—stable local-
ized excitations—are actively employed in different areas of
modern theoretical physics. Solitons comprise the best-
known class of strongly nonlinear wave phenomena.

The purpose of this report is to call attention to another
class of such phenomena: wave collapse—explosive concen-
tration of wave energy in a shrinking volume. The theory of
collapse is closely related with the theory of solitons: in those
cases when the soliton becomes unstable, the nonlinear stage
of the instability is usually a wave collapse. The collapse
could result in the formation of a smaller soliton, but the
most typical situations are those when the energy flowing
into the collapse is absorbed owing to appearance of dissipa-
tive effects which were previously unimportant. In this case
collapse is strongly nonlinear and could be a very important
mechanism for dissipation of wave energy.

Steady-state excitations of the soliton type can contrib-
ute to the thermodynamic properties of matter and can be
studied by means of statistical physics. Wave collapse is a
fundamentally non-steady-state phenomenon, required for
understanding many strongly nonequilibrium processes of
the turbulent type. They include wave turbulence, arising
when strong light pulses propagate in a nonlinear dielectric
(here the collapse is a steady-state or non-steady-state self-
focusing); flows of strong currents in a plasma (the collapse
consists of catastrophic z-pinch compression); propagation
of collisionless shock waves at an angle to the magnetic field.
Collapse of Langmuir waves plays a central role in the theo-
ry of Langmuir plasma turbulence, arising when a plasma is
heated by intensive methods, e.g., electromagnetic radiation
or beams.1

The number of physical situations for the understand-
ing of which collapse has to be invoked is constantly growing

and it could turn out that the significance of collapse in phys-
ics is comparable to that of solitons.

The simplest variant of the theory of collapse is the the-
ory of the appearance of singularities in the solutions of non-
linear wave equations. Thus the nonlinear Schrodinger
equation (a general model for quasimonochromatic wave
packets in a nonlinear medium)

0 (1)

with dimension d = 1 describes stable solitons, but fordZ. 2
the initial condition for which the integral of the motion
(Hamiltonian) is negative

terminates in a singularity at a finite time t = tQ.2 The ques-
tion of the nature of this singularity has been solved only
very recently. Two variants of the singularity were studied3:
"weak collapse," when the energy flowing into the singular-
ity formally equals zero and an integrable singularity of the
wave-energy distribution forms at the point of collapse and
"strong collapse," when the energy concentrated at the
point of collapse is finite. The choice between these two pos-
sibilities strongly affects the formula for the effective coeffi-
cient of nonlinear damping, contributed by the collapse. It
has now been established45 that for d = 3 the collapse is
weak (although unstable regimes of strong collapse are pos-
sible6) and self-similar

and in addition as t->tn
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The theory in the two-dimensional case d = 2 is more
difficult. Back in 1975 it was hypothesized7 that the collapse
is quasi-self-similar:

(3)

and in addition the function Ro(£) is identical to the profile
of a steady-state two-dimensional soliton, exhibiting in this
case neutral stability. This hypothesis was proved in Ref. 8,
where the form of the function f(t) was also established:

a In a — a | In (t0— t) \ (a = const).

The asymptotic behavior (3) means that the collapse is
strong, and a constant and fixed amount of energy (critical
energy) flows into the singularity. The numerical solution of
Eq. (1) played an important role in the construction of the
theory of collapse on the basis of that equation. Special nu-
merical schemes with an adaptive grid, enabling very close
approach to the singularity (|¥max iVl^ol2- 1°'8)> were de-
veloped. In general, numerical simulation is fundamental for
the theory of wave collapse.

The collapse of Langmuir waves consists of the forma-
tion of shrinking regions of low density in the plasma—cav-
ities, which act as resonators for electromagnetic oscillations
of the dipole type. Cavities have a lenticular shape and their
initial size exceeds by several orders of magnitude the Debye
radius. The basic collapse process is described by a system of
equations for the complex envelope of the high-frequency
potential * and variation of the density n, related to Eq. (1):

A (ixVt + A¥) -= div n v f ,

nlt - Ara = A ' - w '2 (4)

The system (4) has been modeled numerically many
times.' Combined analytical and numerical studies have es-
tablished that in the most interesting region of scales

1/2

the collapse is strong, and in addition energy of the order of

E.

where A is a structure factor, flows into the singularity.
The vibrational energy concentrated in the collapse is

transferred at the final stage of the process to the electrons in
the plasma; the collapsing cavity also generates acoustic os-
cillations. To study this stage of collapse the plasma must be
modeled numerically by the method of particles in cells, and
a substantially three-dimensional problem must be solved.
This modeling, which falls at the limit of the capabilities of
modern computers, has recently been performed at the
Computational Complex of the Institute of Space Studies of
the USSR Academy of Sciences."1 The modeling showed
that the final size of the cavity is quite large (L /rD ~ 15-20,
which agrees with previous, apparently unexplainable data
from a laboratory experiment"), and it confirmed the hy-
pothe sis that collapse is an efficient mechanism for acceler-
ating hot electrons, usually observed when a plasma is heat-
ed with a laser.

The study of the elementary act of collapse is a prerequi-
site for the development of the theory of "light-induced tur-
bulence," described by Eq. (1), and of Langmuir turbulence
of a plasma, described by the system (4). In both cases the
turbulence is accompanied by instantaneous collapse, in
which dissipation of wave energy and generation of small-
scale disturbances occur. The numerical modeling of turbu-
lence of these types is a very important problem, and only the
first steps toward its solution have been taken. '2 Other types
of plasma turbulence that are accompanied by collapse and
have been studied to some degree are the lower-hybrid tur-
bulence13 and magnetosonic turbulence in the case of posi-
tive dispersion of sound,14 occurring when acoustic waves
are propagating at an angle to the magnetic field. It should
be noted that many different types of turbulence can develop
in a plasma in a magnetic field, and many of them undoubt-
edly involve collapse.

There exists an important general physical situation
that leads to collapse. In strongly nonequilibrium media (in
the presence of charged-particle beams, flows, etc.) waves
with negative energy, whose propagation reduces the total
energy of the system, can exist. In such media explosive in-
stability is possible. It can occur when triplets of waves exist
with the wave vectors k,, k2, and k3 and frequencies <y,, <y2,
and co3 satisfying the resonance conditions

kj + k2 + k3 = 0, U l + o)2 4 co3 = 0 (j - 1, 2, 3).

(5)

This process is described by the system of equations for enve-
lope waves

TM (viV) = iVJVj{ (i^j^k); (6)

here v, are the group velocities of the wave packets. The
system (6) can be solved exactly with the help of the method
of the inverse scattering problem (see Ref. 15); application
of this method shows that a sufficiently strong initial condi-
tion of a general type leads to the formation of a point singu-
larity—a collapse. The integrability of the equations with
the help of the method of the inverse scattering problem not
only does not eliminate the possibility of collapse, but, on the
contrary, most integrable equations in the "general posi-
tion" exhibit collapse. Thus the Korteweg-de Vries equation

--1- uux -j- uxxx •- 0 (7)

for the complex function u leads to collapse, which is easily
verified by analyzing the simplest exact solution of the one-
soliton type. In the real case, for equations of the type

= 0 (8)

collapse occurs for/) S 4.
Thus turbulence with the participation of waves with

negative energy is accompanied by collapse. Concrete phys-
ical examples of such turbulence have not yet been studied;
they should occur in plasma physics and hydrodynamics. In
general, the question of the role of collapse in hydrodynamic
turbulence is one of the most important questions. A number
of experimental data—intermittency, strong difference
between a turbulent random process and a Gaussian process
(large "excesses" in high order correlation functions),
etc.—suggest that the dissipation of turbulent energy is of a
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moment of collapse is shown in Fig. 1. The system (9), how-
ever, is no longer applicable when a~d, and the question of
the further behavior of the system of filaments remains open.

There is no doubt that collapse plays a role in the turbu-
lence of potential oscillations of a compressible liquid
(acoustic turbulence). Here shock waves play the role of
collapses; the distinction from the preceding situation lies in
the fact that the shock waves are long-lived flat regions of
energy dissipation. The question of whether or not point or
filamentary regions of this type can exist is very interesting
(they could be called "density funnels"; see Ref. 17). Inves-
tigation shows that point density funnels exist in the nonlin-
ear Schrodinger equation (1), if the dimension of the space is

FIG. 1.

nonuniform, "spotty" character, which could be explained
by collapse. However the possibility of collapse in hydrodyn-
amics has not yet been proved. But a numerical experi-
ment,16 describing collapse in the problem of the interaction
of two vortex filaments of finite thickness (on the basis of a
quite rough model of such interaction), has been performed.
We shall give the analytic explanation of this experiment.
Let two vortex filaments, symmetric about the x axis and
having equal and opposite vorticity T and radius d be given;
let the distance between the filaments be a (see Fig. 1); and,
let x be the coordinate of the center of the system. Then in the
approximation.

the following system of equations is obtained:

rf2a (9)

This system has a collapsing self-similar solution of the form

which agrees qualitatively and quantitatively with the data
of the experiment of Ref. 16. The state of the filaments at the
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