Semiclassical regime of a three-dimensional wave collapse
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A nonlinear three-dimensional Schrédinger equation is used to construct a
collapsing-type semiclassical solution which describes trapping of a finite number
of waves at a singularity. The existence of this particular regime is confirmed by
numerical simulations.

One of the basic models in the physics of nonlinear waves is the nonlinear Schré-
dinger equation

1
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which describes, in particular, the behavior of a spectrally narrow wave packet in a
medium with a positive dispersion (wy > 0) and inertialess nonlinearity. The solution of
Eq. (1) depends essentially on the dimensionality of space, d. If d>2, Eq. (1) describes a
fundamental effect—a collapse of waves, wherein the amplitude space of a wave pack-
et, 1, becomes infinite at particular points. From the physical viewpoint, wave col-
lapse, a process requiring a finite time, is a spontaneous concentration of wave energy
in small regions of space, followed by its dissipation. If d = 2, a wave collapse can be
interpreted as the formation of point foci due to self-focusing.! A negative value of the
Hamiltonian of Eq. (1), H = 1/2J(|V¢|*> — |¢|*)dr, at £ <0 is clearly a sufficient condi-
tion for a collapse to occur.?* In some cases (problems involving Langmuir waves in a
plasma, for example), a wave collapse may be the basic mechanism for wave-energy
dissipation.

To determine the efficiency of this mechanism, we must know the amount of
wave energy concentrated in the collapse zone. The question concerning the behavior
of the amplitude ¢ near the collapse zone therefore has a basic physical meaning. In
the present letter we consider the d = 3 case, which is important from the viewpoint of
plasma physics.

Equation (1) is consistent with a self-similar substitution (« is an arbitrary value),
irrespective of the value of d {Ref. 3):
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This equation describes, in the limit #—,, the formation of a singularity, |¢|*—c/r?, at
the point »=0. This singularity is amenable to integration only when d> 2. This
circumstance raises the hope that a physically reasonable solution describing a col-
lapse can be found. Calculations carried out on a computer show that when d = 3,
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such a solution can be found if @ = 0.54." In the case of self-similar regime (2), the
collapse zone contains a formally vanishing energy, and the effective dissipation factor
is, by virtue of the collapse, proportional to the radius 7, The dissipation does, in fact,
occur inside this radius [in which case Eq. (1) is no longer applicable]. For this reason,
Zakharov® called a self-similar collapse a weak collapse, from the standpoint of Eq. (1).

We will show that there can also be another collapse regime when d = 3. After

replacing the variables ¢ = \ne, we can write Eq. (1) as

n, + diva V¢ = 0,

t
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Let us assume that n, and a,, the characteristic initial values of the intensity and size
of a wave packet, are such that the semiclassical conditions are satisfied, n,>a; % We

can omit the term 4yn/\n in Egs. (3) in this case. The system of hydrodynamic
equations derived here is consistent with a self-similar solution of the type
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Here A and £, are arbitrary constants, and a(¢) satisfies the Newton equations
av 1 A2
+ — =0 d Via)=—— —a 3,
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which describe the central incidence of a classical particle. If a =0 at ¢ = ¢, then as
t—t, we have a~(t, — t)~'%; here n(0, t)~(t, — t)~ >

n'slﬁ (D,t)

FIG. 1
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Equations (4) and (5) describe a “strong” collapse of a wave packet as a whole. If
we assume that all the energy concentrated in the collapse zone is absorbed there, then
the efficiency of the collapse, viewed as a mechanism for wave-energy dissipation, does
not depend on the size of this zone. The regime under which a collapse occurs may be
called a semiclassical regime.

Since n ~ 1/a* during a semiclassical collapse, the condition under which a semi-
classical regime occurs, n>1/4%, improves in the limit ¢—0. In a three-dimensional
space, this circumstance is a consequence of the finite nature of the wave energy that is
concentrated in the collapse zone.

A semiclassical solution of (4) and (5) does not apply to a narrow region
|& — &.| = AE<E, . As a—0, the width of this region, A&, decreases in accordance with
A& ~a'P(A£,),7?'3, which is yet another indication that the semiclassical approxima-
tion can be used more effectively in the limit 7, A more rigorous test of this
conclusion requires that the self-similar solution of (4) and (5) be joined with the
solution of the linearized equation (1) for & — &, >A4&. A boundary layer, which is
described by the Penleve transcendental functions, will then appear in the zone
& — &.|~AE (we will not describe this procedure because of the limitation of space).

We have solved Eq. (1) numerically in the Lagrangian variables € and ¢
(e = s nr?dr), using a procedure similar to that of Ref. 4, with the initial conditions
approximately equal to those used in the solution of (4) and (5), with
A¢ = | (o) — ¢ (0)|~10.

In the limit #—t¢,, the function n(0, ¢) reaches its asymptotic behavior rapidly {0,
t)=c(ty—t)~#, where B = 6/5 + 0.03 (Fig. 1). In this case, a finite energy is trapped,
according to (4) and (5), in a collapse zone. For other initial conditions with (3¢ /
ar)|,— o = 0 we noticed that the function #{0, ¢} behaves as (¢, — ¢)~* within high accu-
racy. This result is consistent with the results of Ref. 5 and, at first glance, corresponds
to the self-similar regime (2). Even in this case, however, we have noticed that a finite
energy is trapped in a collapse zone, which is inconsistent with our conceptual under-
standing of a weak, self-similar collapse (2). The question of whether a self-similar
solution of (2) is feasible thus remains open.

UThis result was obtained by L. N. Shchur.
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