
Quasi-one-dimensional weak turbulence spectra 
V. E. Zakharov and A. V. Smilga 

f? f? Shirshov Institute of (keanography, Academy of Sciences of the USSR 
(Submitted 6 May 1981) 
Zh. Eksp. Teor. Fiz. 81, 1318-1326 (October 1981) 

We analyze the kinetic equation describing the four-wave nonlinear interaction for weak-turbulence spectra 
for the case where the spectrum is concentrated along a selected direction in k-space. The kinetic equation is 
strongly simplified in the quasi-one-dimensional limit and this enables us to obtain simple formulae for the 
angular dependence of the spectrum and for the nonlinear energy transfer along the spectrum. We apply the 
results obtained to the problem of Langmuir turbulence of an isothermal plasma which occurs when the 
plasma is parametrically heated by an oscillating electric field and to the problem of wind waves on a liquid 
surface. We suggest that there exist two scales in the angular spectrum of wind waves. 

PACS numbers: 52.35.Ra, 52.35.Mw, 68.10.Cr, 47.25. - c 

INTRODUCTION characterist ics  of the spectrum-the position and inten- 
sity of the jets. The fine structure of the jets  i s ,  how- In weak-turbulence theory one often meets with a s i t -  
ever,  determined a s  before by processes of the kind 

uation when the dispersion law w(k) forbids three-wave 
(2). One can therefore say that we solve in the present processes with a resonance condition: 
paper the problem of the structure of one-dimensional 

"I (k,+kz) = o ( k , )  +o (k , )  . (1) jet spectra. 

Such a dispersion law i s  usually called a non-decay The basic technique used in the present paper i s  the 
law; one can also call the corresponding weak turbu- expansion of the kinetic equation for the waves in pow- 
lence non-decay turbulence. Langmuir turbulence in e r s  of the quantity (6')-the mean square angular width 
an isothermal plasma, and also turbulence of the waves of the spectrum. 
on a liquid surface, a r e  examples of non-decay weak 
turbulence. (3 1. ZEROTH APPROXIMATION 

It is well known from the theory of Langmuir turbu- A conservative medium with a non-decay dispersion 
lence that i t s  spectra a s  a rule turns out to be singular law i s  described by the effective Hamiltonian 
("jet-likew), i.e., they a r e  located in k-space on spe- 1 
cia1 surfaces, or  lines-"jets."' In a number of cases,  H -  So (k)a.ate dk + J Ttk,,t,tp.a., 

in particular, when the plasma is parametrically heat - x ar,'ar,'6 (k+k,-k,-ks) dkdk,dk,dk,. (3) 
ed by an oscillating electr ic  field, the jets a r e  straight 

The statistical behavior of the medium in the f rame-  
lines passing through the origin, i.e., the spectrum i s  

work of weak turbulence is described by the quantity 
quasi-one-dimensional. In Langmuir turbulence the %(t) given by the formula basic mechanism for the interaction of the waves is the 
non-conservative mechanism of induced scattering of 
waves by ions. 

In an other important physical problem of the turbu- 
lence of waves on the surface of a liquid, the main wave 
interaction mechanism i s  their scattering by one 
another which sat isf ies the resonance conditions 

o ( k )  +" (kt) = o ( k 2 )  +"(k$), k+k,=kz+k,. (2) 

However, also in this  purely conservative case  the 
spectra a r e  often quasi-one-dimensional. Measure- 
ments in nature show (see,  e.g., Ref. 2) that the typical 
angular width of developed sea  swell is of the order of 

1 1 ~ 6  (k-k') =(akak.').  

This quantity is commonly called the quasi-particle 
number density in phase space. It sat isf ies the kinetic 
equation 

a ~ ~ ~ a t + r ~ n ~ = r ~ .  (4 

Here y, i s  the phenomenologically introduced damping 
of the wave and I, the collision te rm describing four - 
wave processes: 

1k=2nj ITxt,,t,t,lZ6(k+k,-k,-k,)6[o ( k )  + o ( k , )  

-o (It,)-o (k,)  ] [nk,nk,(nk+nr,) -ntnt,(nt,+ nr,) ldkidkzdk;. (5) 
20-30". An attempt to explain such a small  width of the 

If y, is negative in some region of k-space, i t  co r r e -  spectra stimulated the present paper. We show in it 
sponds to the instability of the medium for the genera- that conditions when the turbulence spectrum i s  quasi- 
tion of waves. Non-conservative mechanisms for the 

one-dimensional can easily be realized in the conserva- interaction of the waves can be taken into account by 
tive case (2). The kinetic equation describing the turbu- 

renormalizing y,: 
lence simplifies considerably for the quasi-one-dimen- 
sional case and this  enables u s  to calculate explicitly rk - rk+ f Vtr,nr,&. ( 6 )  
the form of the stationary spectrum. This result  i s  

In particular, for the induced scattering of Langmuir 
relevant not only for the conservative situation. In the 

waves by ions, the function Vkl is antisymmetric: problem of the Langmuir turbulence of an isothermal 
plasma allowance for only the single mechanism of in-  %I = - vk l t*  - 
duced scattering enables us to determine only the gross  If y,= 0, Eq. (4) has  the obvious conservation laws 
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N=J nrdk, P= knrdk, 

I-- o ( k )  n ~ d k ,  

which have, respectively, the meaning of the conserva- 
tion of total number of quasi -particles, momentum, 
and energy of the waves. We shall in what follows con- 
sider primarily the two-dimensional case-the gener- 
alization to the three-dimensional case is obvious. We 
denote by k the coordinate in k-space along the one- 
dimensional jet and by 5 the coordinate in the t rans-  
verse  direction. We now have for  the dispersion law 

We expand the kernel of the kinetic equation in the 
parameter t2/k2 and consider the zeroth and f i r s t  t e r m s  
of this expansion. We have 

6[o (k)+o(k , ) -o (k2) -o (ks )  1 = 6 [ m ( k ) + o ( k , ) - o ( k 2 ) - o ( k s )  I 
+[~(k)E~+s(kt)S1~-~(kz)Sz~-~(k3)f~~l6'[o ( k )  

+O ( k , ) - o  (ke) -o ( k J )  I+. . . . (9) 

We shall neglect the dependence on the t ransverse  co- 
ordinates in the matrix element Tkk,,kZk3 and put 

The zeroth approximation in t2/k2 thus corresponds to 
taking into account in (9) only the f i r s t  t e rm in the ex- 
pansion. In that case 

We can immediately integrate over dk2dk,. We note 
that the se t  of equations 

o ( k )  +o ( k , )  =o (k , )+m ( k J ) ,  k+k,=k,+k, (11) 

have just two solutions k, = k, k, = k, and k, = k,, k, = k. 
Using the symmetry propert ies of the kernel  T we have 

There is a logarithmic divergence in the integral (12) 
and must be cut off a t  I k - k, I - 5. [Our approximation 
does not hold in that region and i t  is impossible to ne- 
glect the (-dependence of w(k) and Tkkl+k3.] 

We res t r ic t  ourselves in what follows to the simplest 
case n(k, 6 )  = n(k,  -5) corresponding to spectra which 
a r e  symmetric with respect  to the k-axis. Fourier  
traMsforming with respect  to 5 we then get after a few 
calculations the simple result: 

2 2 r::' = j ~ i ; ) ~ * ~ ~ d ~ = f i , ,  j vkk, (RIY-fik,o) dk,. (1 3) 

Here 

The quantity 

is the quasi-particle number density integrated over the 
transverse variable 5. From (13) it follows that 1::) 
= 0. The collision t e rm in the zeroth approximation 
(12), (13) therefore does not t ransfer  the quasi-particle 
number along the jet and accomplishes only a redistr i-  
bution of wave energy in the transverse direction. To 
establish the nature of this distribution we expand fib, 
in powers of y: 

Y2 ii,,= n,,exstdE=S nk,dg- T j  Ezn,,dt 

Here (<2)k= 6; and (54)b=Ab a r e  the second and fourth 
moments of the distribution ntt with respect  to 5. 
Equating t e r m s  my2 in the Fourier  t ransform of Eq. (4) 
(for the case where y k =  0) we get 

Equation (14) shows (since Vkk,>O) that the collision 
t e rm (12) leads t o  a broadening in angle of the wave 
spectrum. In this  connection the problem a r i s e s  of 
how, in general, spectra which a r e  narrow in angle a r e  
possible. One can construct the simplest model of a 
narrow spectrum by assuming that the damping in- 
c r eases  fast with increasing 5. Let, a s  5- 0, 

For  sufficiently smal l  5 the damping is negative, cor - 
responding to an instability. A stationary spectrum 
a r i s e s  because the collision t e rm "disperses9' the 
quasi-particles originating in the instability region 
5' <f dgk to the region of damping t 2 >  fk/gL. 

One can calculate the spectrum explicitly by expand- 
ing in the parameter  (In k2/6t)-' (for waves on water 
this  parameter  i s  of the order  of 1/3 to 1/5). With 
logarithmic accuracy we have 

-2nl T,, ,,Iz kZ 
t- loci l n - .  68% 

After Fourier  transforming with respect  to 5, taking 
into account the f i r s t  two t e r m s  of (15) and (16), Eq. 
(4) takes the form 

In the stationary case we have 

Equation (18) has an exact solution 

The undetermined quantity f k  must be found from the 
boundary condition Em = N,. We have 

(The obvious physical requirement fk> 0 for the exist- 
ence of a stationary solution in the model considered is 
once again clear  from this.) Finally we have 

fikV=NJch l yNk (Vkl2ga) ' " I .  (21) 
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Performing the inverse Fourier transformation we find 

We now have for the width of the spectrum (e2), 

The estimate (23) remains  valid in the three-dimen- 
sional case. 

In deriving Eqs. (21) to (23) we used the assumption 
that the [-dependence of y,, is much smoother than that 
of n,,. Indeed, in the opposite case  i t  is illegitimate to 
neglect high-order t e r m s  in 5 in  the expansion (15) for 
rat, additional t e r m s  appear in Eq. (17), and expression 
(21) will no longer be a solution. In that case  the angu- 
lar width of the spectrum will be'determined by the 
characteristic angular scale of the quantity ye. The 
solution obtained h a s  in  k-space a unique characteris-  
t ic  t ransverse scale (23). In the more  general case 
there may occur severa l  characterist ic  scales. We in- 
troduce in Eq. (4) an external force F,=Fk, s o  that i t  
takes the form 

In the problem of wind waves the external force F, cor-  
responds to that part  of the kinetic integral I ,  which 
was not taken into account by u s  ear l ie r  and which de- 
scr ibes  the effect of the isotropic high-frequency com- 
ponents. 

If the external force decreases  sufficiently weakly as 
5 - m we have for  large 5 

The quantity nkt can decrease relatively slowly a s  5 - m. We may assume the spectrum to be narrow in 
angle, if the integral lnk,d5 = Nk converges and i s  "con- 
centrated" on a scale 6,<< k. However, the integral 
152nk#[ may diverge o r  be "concentratedw on a scale 
8,>: tib, This  happens just in the case when yk, is given 
by Eq. (15)-the scale 8,  then is the same a s  the char- 
acterist ic  scale on which the function Fk, decreases. In 
the case when Fk,= F(k)/2a the spectrum can be found 
explicitly. The stationary Eq. (18) now h a s  the form 

The solution of Eq. (25) i s  a continuous symmetric 
function of y which has a t  y = 0 a discontinuity in the 
derivative such that 

I lim dfik,ldy I =Fk/2/2g. 
I'D 

When y > 0 

and from the condition on the discontinuity of the de- 
rivative and the normalization condition R,, = N, we find 

when F k >  0 a stationary solution exists, even iff, 0. 
For  the displacement a, we have 

The discontinuity of the derivative a t  zero  determines 
the asymptotic behavior of the spectrum Wk,-Fk/gk<' 
a s  5 - m. The quantity 

is infinite in this  case, o r ,  s tr ict ly speaking, is deter-  
mined by the cutoff boundary of the function F,,. 

Of course, the entire analysis in the logarithmic ap- 
proximation has  a meaning only if Tkk, + 0. 

$2. FIRST APPROXIMATION 

When calculating the next approximation i t  i s ,  in gen- 
e ra l ,  impossible to neglect the dependence of TtL,,k2k3 
on the t ransverse  coordinates. However, only 
allowance for the next t e rm in the expansion (9) of the 
frequency 6-function in powers of 5 leads to a princi- 
pally new effect. Therefore we shall consider only 
those terms.  We have 

The integration over two of the longitudinal variables, 
for instance, over k, and k,, can be performed in the 
same way a s  was  done in 61. However, the expression 
obtained i s  very complicated and we r e s t r i c t  ourselves 
to a simplified variant of the study. In fact ,  we evalu- 
ate the quantity aNk/at which is zero in the zeroth ap- 
proximation in t2/k2. Integrating over d<,  d t , ,  d5,, 
d5,, and after  that over dk,, dk,. we get 

where 

As  before, the right-hand side of Eq. (28) contains a 
logarithmic divergence for k = k,. This divergence 
must be cutoff a t  (k -k,)'-6;. With logarithmic accu- 
racy  we can write 

Here 

i s  the te rm caused by the pumping, the damping, and 
the external force. The quantity 62, must be determined 
from the zeroth approximation equation. After multi- 
plication by t2 and integration over 5 in agreement with 
Eq. (14), this  approximation takes in the logarithmic 
approximation the form 

In the conservative case when R, = 0, S, = 0, Eqs. (30) 
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and (31) conserve the integrals  of motion 

The integrals N and P in (32) correspond to  the con- 
servation of the number of quasi-particles and of the 
momentum of the waves, while the integral '8' is the 
energy of the waves, taking into account the <-depend- 
ence of wk. 

Kolmogorov-type solutions play a very important ro le  
in weak turbulence theory; for them the flux of one of 
the integrals  of motion is constant in the system con- 
sidered. We shall discuss for what circumstances 
Kolmogorov solutions can exist  for quasi-one-dimen- 
sional spectra. Let the solution be a wsingle-scale* 
one with respect  to the t ransverse  wave number [such 
as ,  e.g., solution (21) in $11. In that case the integral 
for S, converges a t  5 - 6, so  that S k =  62,R,. One must 
understand this  relation in the rough sense that R, . 
stands for different t e r m s  occurring in it. Indeed, i t  
now follows from Eq. (31) that in the stationary case 
Vkp,=Rk. 

On the other hand, the flux t e rm  in (30) is of the o r -  
der  of (6i/k2)Vkp, and hence i s  negligibly smal l  com- 
pared to the individual t e r m s  in R,. In the stationary 
case there follows now therefore only a balance equa- 
tion for the number of quasi-particles R,= 0. The flux 
of the number of quasi-particles along the spectrum i s  
then small. 

Let, however, the spectrum have two sca les  s o  that 
S ,  =L62,Rk where L >: 1 i s  a la rge  parameter .  In that 
case,  if Lk2/62,>> 1 we can neglect the t e rm  Rk in Eq. 
(30). The stationary Eq. (30) has  now the solution 

Here (02),= 6;/k i s  the square of the angular width of 
the spectrum. 

In the solution (33) Q has  the meaning of the flux of 
the number of quasi-particles in the region of smal l  
wavenumbers as k- 0 and T the meaning of the momen- 
tum flux in the region of la rge  wavenumbers as k-  m. 

The solution corresponding to  a constant energy flux i s  
not present as in the t ransfer  process  along the spec-  
t rum the energy is dissipated in the region of large 5'. 
A s  before, i t  is necessary for the determination of 
(e2), to use the zeroth approximation Eq. (17). An ex- 
ample of this  solution for which a Kolmogorov situation 
can be realized is given by Eq. (26). 

I 53. APPLICATIONS 
We consider physical applications of the resul ts .  

They a r e  the simplest for the Langmuir turbulence of 
a plasma. In that case a usingle-scalew situation is 
realized as the N ,  distribution is completely de ter -  
mined by a process of lower order  in comparison with 
the four -wave interaction-the induced scattering of 
Langmuir waves by ions. The four-wave interaction 
only determines the shape of the jet. We have for the 

mat r ix  element of the interaction (see Ref. 3) 

Here wp i s  the plasma frequency, n and T the electron 
density and temperature,  w2,= wf 1 + 3 ( k ~ ~ ) '  the Lang- 
muir  wave dispersion law, and G(w,k) the low-frequen- 
cy plasma Green function which is the dimensionless 
response of the ion density to  the slow external force. 
In the hydrodynamic approximation 

Here  c, and y, a r e  the ion sound speed and damping. 
The quantity Tkk, depends on the relation between the 
quantity ( k b ) '  and the rat io of the electron to the ion 
m a s s e s  m , / ~ i , .  In the case of most  interest ,  (kAD)' 
>: m,/m, ,  we can in the denominator of the Green func- 
tion neglect the t e r m s  w2 and y,c,k as k- 0, w-0  s o  
that G(w , k) = -1. In that case 

The induced scat ter ing changes the damping r a t e  which 
now has  the form 

Here  

The factor (k*k,)2/k2k: determines the main angular de-  
pendence of the growth rate.  When ( ~ x D ) ~  >: mg/mi  the 
"differential approximation" i s  valid in which 

We now have from Eq. (23) for  the angular width a 
transcendental equation 

the solution of which g ives  the answer when (8'), << 1. 

A s  r ega rds  wind waves on a liquid surface,  the situa- 
tion is more  complicated for  them since effective growth 
r a t e  for the instability and the damping r a t e  of the 
waves, determined by the interaction with the wind, a r e  
not known with sufficient accuracy. 

The magnitude of the instability growth ra te ,  given by 
Miles '  well known t h e ~ r y , ~  leads,  if one uses  the con- 
cept of a "one-scale" spectrum, to a value of the wave 
energy in the energy-carrying region which differs 
from the experimental data by one and a half o rde r s  of 
magnitude. This  fact, and a l so  a number of other con- 
siderations (shape of the frequency spectrum, nature 
of the dependence of the energy and wavelength on the 
temporal  dependence of the wind action) leads to the 
hypothesis that the narrow energy-carrying section in 
the spectrum of wind waves is "two-scale" in charac- 
t e r  and that in them there occurs  a Kolmogorov flux of 
the number of quasi-particles t o  the region of small  
wavenumbers. 
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