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1. INTRODUCTION 

In a previous paper we have shown1 that in the case in 
which the metric tensor depends on only two variables 
the gravitational equations form a system which i s  inte- 
grable by the method of the inverse scattering problem. 
The case was examined in which one of the variables is 
the time and the other i s  spacelike; this corresponds to 
cosmological and wave solutions of the equations of 
gravitation. It was pointed out that there i s  no difficulty 
in applying this method also to the case in which both the 
variables on which the metric tensor depends a re  space- 
like, which corresponds to stationary gravitational 
fields. One possible interpretation of this case i s  that of 
a stationary gravitational field with axial symmetry. 
This class of solutions is important in the theory of 
gravitation, since it has a clear physical meaning. In 
this connection it is interesting to consider the case of 
axially symmetric stationary fields separately and to 
find the construction of the corresponding soliton solu- 
tions and their physical meaning. This i s  the purpose 
of the present paper. We shall also use this case a s  an 
example to carry to completion theprocedure which we 
described earlier' for constructing exact soliton solu- 
tions, and deal with one important point which was left 
there incomplete. We shall explain the essence of the 
question, f i rs t  introducing the metric and the corre- 
sponding Einstein equations. 

Having in view the application to the case of stationary 
axially symmetric gravitational fields, we write the 
metric in the form'' 

where the metric coefficients f and gab a r e  functions of 
only two variables, p and z. We use for the coordinates 
the notation (xO, x', 2, x3) = (t ,  cp, p, 2). Throughout this 
paper the five Latin indices a, b, c, d, f run through the 
values 0 and 1 and correspond to the coordinates t and 
4'. 

It i s  well known that in this case (by using the remain- 
ing freedom in the choice of the coordinates p and z )  we 
can, without loss of generality, impose on the two- 
rowed matrix g (with components gab) the following sup- 
plementary condition: 

det g=-pZ. (1.2) 

It is now easy to show that the Einstein equations (in 

vacuum) for the metric (1.1), (1.2) separate into two 
groups. The first  determines the matrix g and is of the 
form 

The second group of equations determines the metric 
coefficient f for a given solution of Eq. (1.3) and can be 
written in the form 

(In f) ,= f)- 'C( ' Ip)- '  Sp(C'-I-'), (1.4) 
(111 7 )  :=(?!I) - I  S P ( L ~ I ~ ) ,  (1.5) 

where the two-rowed matrices U and V a r e  defined a s  
follows: 

It i s  easy to see that if instead of p and z we introduce 
the pair of complex variables t = (z + ip) and q = (z - ip), 
then in the variables f and q the metric (1.1) and Eqs. 
(1.2)-(1.6) will be formally reduced to the same form a s  
we studied previously.' For this reason all  of the form- 
a l  side of the method for the case considered here can 
be obtained2' from the results of our earlier paper.' Of 
these results we shall present here only the basic points 
which a r e  necessary for a complete exposition, and 
shall not go into the details of the proofs. The details 
can be found in Ref. 1. 

Let us now turn to the point in the research which was 
not brought to completion in Ref. 1. As follows from 
what we have said, we can apply to the integration of 
Eqs. (1.2)-(1.6) the method given in Ref. 1, i.e., apply 
the method of the inverse scattering problem to the inte- 
gration of the matrix equation (1.3) and thus get the 
major part  of the metric coefficients, gab. There then 
remains, however, the problem of calculating the met- 
r ic  coefficient f, which i s  given in quadratures by Eqs. 
(1.4) and (1.5). 

In Ref. 1 it was shown by direct calculations that for 
the simple soliton solutions given there these quadra- 
tures can be performed completely (i.e., the integrals 
can be calculated explicitly), and the answer for the co- 
efficient f can be expressed explicitly in terms of the 
appropriate partial or  background solution of the prob- 
lem and elementary functions, i.e., qualitatively in the 
same way a s  the metric components gab. This suggests 
that the same will be true also on the general case of an 
n-soliton solution. I t  turns out that this is indeed true, 
and the metric coefficient f in the general n soliton 
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case, like the coefficients g,,, can be calculated alto- 
gether explicitly. The analysis for this point is given in 
Sec. 3 of the present paper. 

Finally, we point out that the question of the integra- 
bility of the equations of gravitation for the case con- 
sidered has also been investigated by Maison: who 
proved the existence of an L-A pair for the Einstein 
equations, though in a somewhat different way from that 
followed in Ref. 1 and here [cf. Eqs. (2. I), (2.2)]. 
Harrison3 found the ~ a c k l u n d  transformation for the 
Ernst equation corresponding to this problem. 

2. THE n-SOLITON SOLUTION FOR THE MATRIX g 

Using the results of Ref. 1 (as explained in the Intro- 
duction), we can easily find the L-A pair for the matrix 
equation (1.3) in the variables p and z: 

where the commuting differential operators Dl and D, 
a r e  given by 

2?? 
D,=ar-- ZAP a,, D?=ap+ - 

j k? fp2  h2+p? a^ 

and X i s  a complex spectral parameter independent of 
the coordinates p and z. It i s  not hard to verify that the 
conditions of compatibility of the equations (2.1) for the 
matrix function $(x, p, z) a r e  identical with the original 
equations (1.3) and (1.6), if we rewrite them, and also 
the conditions for their compatibility, in terms of the 
matrices U and V, in the same way a s  this was done 
previously.' The required matrix g is the value of the 
matrix $(X,p, z) for X = O :  

The procedure for integrating the equations (2.1) pre- 
assumes the knowledge of some particular solution of 
the problem. Let go, U,, V ,  be some particular solu- 
tion of Eqs. (1.3) and (1.6), from which, with Eq. (2.1), 
the corresponding solution q0(k, p,  z) has been found. 
We then seek the solution for J ,  in the form 

and for x(X,p,z) we get from Eq. (2.1) the following 
equations: 

Now (as before1) it can be shown that to assure that the 
matrix g is real  and symmetric definite supplementary 
conditions have to be imposed on the solutions of Eq. 
(2.5). For the reality of g we have the requirements 

(a bar denotes the complex conjugate), and for g to be 
symmetric we require 

(a tilde indicates transposition). Besides this, compati- 
bility of Eqs. (2.7) with (2.3) requires 

where I is the unit matrix (here, and often from now on, 
we omit the arguments p and z of functions for simplic- 
ity). 

The soliton solutions for the matrix g correspond, as 
is well known, to the presence of pole singularities of 
the matrix X(X, p, z) in the complex plane of the spectral 
parameter X. Let us  consider the general case, in 
which the matrix x has n such poles, which we assume 
to be simple. The matrix X(X, p,z) can then be repre- 
sented in the form 

where the matrices R, and the numerical functions p,  
now depend only on the variables p and z. 

We note that in Ref. 1 an expression analogous to Eq. 
(2.9) was written in a form which obviously satisfies the 
condition (2.6) and which emphasizes the fact that com- 
plex poles (i.e., complex p,) of the matrix x can exist 
only a s  conjugate pairs. Of course these requirements 
still hold here, but experience shows that writing x in 
the form (2.9) considerably facilitates the calculations, 
which it is convenient to do by neglecting the conditions 
(2.6) and supposing (until the final form of the solutions 
is reached) that we have to do with n arbitrary complex 
poles X =  g, (k = 1,2, .  . . , n). After the final form of the 
solution is obtained it is easy to assure  that the matrix 
g is real  by imposing definite supplementary conditions 
on the arbitrary constants that appear in the solution. 
This procedure is possible with an even number of com- 
plex poles in the sum (2.9), and is of course equivalent 
to introducing the complex poles a t  the very s tar t  a s  
conjugate pairs. If, on the other hand, all  of the p, in 
the sum (2.9) a re  real ,  then all  of the matrices R, will 
also be real  and the matrix x then satisfies Eq. (2.9) 
automatically. 

Substitution of the expression (2.9) into Eq. (2.5) and 
the supplementary condition (2.7) completely determines 
the pole trajectories p ,(p, z)  and the matrices ~ , ( p ,  z). 
The numerical functions p,  a r e  determined from the re-  
quirement that in the left sides of Eqs. (2.5) there a r e  
no poles of second order a t  the points X =  p,. The result 
is that each function p,(p, z) (with each index k 
= 1,2,  . . . , n) satisfies a pair of differential equations 

whose solutions a re  the roots of a quadratic algebraic 
equation 

where w, a r e  arbitrary constants (in general complex). 

Accordingly, for each index k (i.e., for each pole) we 
have i ts  own arbitrary constant w,, which determines 
two possible solutions for the trajectory of the pole 
PAP,  2): 

ph-wk-z* [ ( w ~ - z ) ~ + ~ ' ]  ". (2.12) 

The matrices R, a r e  degenerate, and their compo- 

2 Sov. Phys. JETP 50(1), July 1979 V. A. ~elinskiTand V. E. Sakharov 



nents can be written in the form 

The two-component vectors mdk' a r e  found directly from 
Eqs. (2.5) by requiring that they be satisfied a t  the poles 
A =  p,, and the vectors nbk' a r e  then determined from the 
condition (2.7). The vectors mak' can be expressed in 
terms of the given partial solution for the "wave" ma- 
tr ix q0(X, p, z) taken a t  the value p, for the argument A. 
These vectors a r e  of the following form: 

where #il denotes the matrix inverse to ICI,. (Here and 
from now on summation i s  to be understood over re-  
peated vector and tensor indices a, b,  c, d, f, which 
run through the values 0 and 1. Summation over other 
indices occurs only when explicitly indicated.) In Eq. 
(2.14) the m z '  a r e  arbitrary constants. 

The vectors ndk' can then be determined from the fol- 
lowing n-th order system of algebraic equations: 

rh,n;l' =pl;lm:k' (go )  .., k, l= 1, 2, . . . , n, (2.15) 
1-1 

where the matrix r,, i s  symmetric and i ts  elements a r e  

[in these formulas go(p, z) is a given particular solution 
of the original equations (1.3)]. If we introduce the sym- 
metric matrix D,, inverse to the matrix r,,: 

P-* 

then we get from (2.15) for the vectors nbk' 

where 

According to Eqs. (2.3), (2.4), and (2.9) the required 
matrix g is 

Now, using Eqs. (2.13), (2.18), and (2.19) we get the 
metric components g,,: 

With the expression (2.21) the matrix g is obviously 
symmetric. Let us now consider the question of its 
being real. If a l l  of the functions p,(p,z) a r e  real, the 
components gab a r e  automatically real, if we take a l l  of 
the arbitrary constants appearing in the solution to be 
real. In fact, the particular solution q0(X,p, z) is always 
taken to satisfy the second of the conditions (2.6), and 
consequently rj0(X) is real  on the real  axis of the X plane, 
i.e., a t  the points X =  g,. It can now be seen from Eq. 
(2.14) that the arbitrary constants rn%) that occur in the 
vectors m6" must be taken real, and then the vectors 
mjk' will also be real. It then follows that a l l  the other 
quantities from which the matrix g is constructed a r e  
real. We now suppose that there a r e  also complex 

values among the functions p,, pz, . . . , p,. The condi- 
tions (2.6) then require that al l  the complex poles ap- 
pear only a s  conjugate pairs; for each complex pole 
X = p i ts  conjugate X = must also appear. Suppose 
there is such a pair of poles X =  pp  and A =  p,, with pa - 

= YP. To these poles there correspon vectors miP' and 
maa', which according to Eq. (2.14) a r e  given by 

A simple analysis shows that the matrix g will be real  
if for each such pair of complex-conjugate poles the 
arbitrary constant r n z )  and m z '  a r e  taken conjugate to 
each other. This means that the vectors m:#' and m6Q' 
corresponding to  each pair  of conjugate poles a r e  also - 
conjugate to each other [mia' = m6*'], since the function 
$,(A, p, z) satisfies the condition qo(3 = &(x). Accord- 
ingly, we can formulate the following rule that deter- 
mines the choice of the arbitrary constants m z '  in Eq. 
(2.14): To assure that the matrix g is real, it is neces- 
sary  to choose the arbitrary m g '  in Eq. (2.14) s o  that 
the vectors m:" corresponding to real  poles X =  p, a r e  
real  and the vectors m6P' and m?' corresponding to each 
pair of complex-conjugate poles X = g, and X =  p,= /iP are  
complex conjugate to each other. 

Satisfying the requirements that g be real  and sym- 
metric i s  st i l l  not enough. It must not be forgotten that 
g must also satisfy the supplementary condition (1.2). 
We now calculate the determinant of the matrix g. The 
form (2.21) is not convenient for this calculation, and 
we use a different representation of our solution. We 
note that the process of perturbing the background solu- 
tion go and obtaining from it the n-soliton solution g, a s  
described above, i s  formally equivalent to the introduc- 
tion of the n solitons one a t  a time successively. The 
first  step is to go from the background metric go to the 
metric g, containing one soliton, corresponding to the 
presence in the matrix x (which we at this stage call x,) 
only one pole X = p,. 

This one-soliton solution is easily obtained from the 
results  given above. The matrix x,(x) and i t s  inverse 
xf(X) can be written in the following form 

where the matrix P, has the elements 

and accordingly has the following properties: 

P,C-P,, S p  P , = l ,  det P,=O. (2.24) 

The quantities p, and m:' a r e  given by Eqs. (2.12) and 
(2.14) with k = 1. We now get for the matrix g,: 

g,=X, (0) go= [ I -  (p,'+p2) ~t-~ptlgo. (2.25) 

It i s  not hard to calculate the determinant of g,. Ow- 
ing to the general relation 

(which holds for an arbitrary two-rowed matrix F) and 
the properties (2.24) we get 
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and consequently 

det g,=-p2pl-' det go. 

We can now take the solution g, as a new particular o r  
background solution and repeat the operation of adding a 
soliton to it, that corresponding to the pole X = p,. TO 
do this we form the new background matrix function $, 
=x1q0, take i t s  inverse $il and calculate it a t  the point 
X = p,, and then find the corresponding vector M F ' :  

M!" = M$' [$ , -I  (pz, p, 2) 1- 

after which we construct the matrix P,, in analogy with 
Eq. (2.23): 

which matrix has the same properties (2.24) as the ma- 
tr ix P,. 

When we now construct the matrix x,(x) [this matrix is 
calculated from the same formulas (2.22), with the index 
1 replaced with 21, we get the two-soliton solution g,: 

Continuing this process, we get the n-soliton solution 
(2.21) in the form 

where all of the matrices P, satisfy the same conditions 
a s  the matrix P, does: 

P?=Pk, Sp P,.=l, detPk=O. (2.29) 

Naturally the explicit form of the matrices P, rapidly 
becomes cumbersome a s  k increases, and therefore this 
way of calculating solutions is less convenient than the 
one previously described. But the representation of the 
solution in the form (2.28) is useful for the study of 
some particular questions, and especially for calculat- 
ing the determinant of the matrix g. The important 
thing for this is only that the matrices P, have the prop- 
ert ies (2.29), not their specific form. The contribution 
from each factor in Eq. (2.28) to the determinant of g 
can be calculated trivially, and the result is 

det g = ( - 5 )  "pZ" ( fi pkc2)  det go. (2.30) 
& = I  

If we take the particular solution go a s  satisfying by def- 
inition the condition detg,,= -p2, then i t  follows from Eq. 
(2.30) that the number of solitons n must always be 
even, since an odd number would change the sign of 
detg  and violate the physical signature of the metric. 
Accordingly (in contrast with the case investigated ear- 
lier') on a physical background all stationary axially 
symmetric solitons (even those which correspond to 
real  poles X = p ,) can appear only in pairs forming bound 
two-soliton  state^.^' 

We still have to construct an n-soliton solution g 
which not only satisfies Eq. (1.3) but also the supple- 
mentary condition (1.2). We shall call such a solution a 
physical one and denote it by g'*h'. Constructing it is 

simple if we note that detg  for any solution g of Eq. 
(1.3) satisfies the equation 

p-'[p(ln det g), , I ,  ,+ (ln det g ) .  ,,=O. 

Then it is easy to verify that the matrix 

P h l - p  (-det g)-"'g (2.31) 

also satisfies Eq. (1.3), and also the condition det&ph' 
= -p2. Now supposing the number n of solitons is even 
and detgo= -p2, we get from Eqs. (2.30) and (2.31) the 
final expression for the metric tensor: 

where the matrix g is given by Eq. (2.21). 

3. CALCULATION OF THE METRIC COEFFICIENT f 

It is also convenient to do the calculation of the coeffi- 
cient f in two stages. Fi rs t  we calculate the value off  
that follows from Eqs. (1.4) and (1.5) when we substitute 
in them the nonphysical solution g given by Eq. (2.21), 
which does not satisfy the condition de tg=  -pZ, and then 
use a simple procedure to find the physical value of the 
coefficient, f '*', which is obtained from these same 
Eqs. (1.4) and (1.5) when g'9h) is substituted in them in- 
stead of g. 

To calculate f we must determine from Eqs. (2.5) the 
matrices U and V, this can be done by equating the left 
and right sides of these equations a t  the poles X=ip and 
X =  -ip (cf. the analogous procedure in the previous 
paper1). Then calculating the traces Sp(U '-V2) and 
Sp(UV) and substituting them in Eqs. (1.4) and (1.5), we 
find f by direct integration. It is a remarkable fact that 
this integration can actually be carried out. The key 
point in calculating the coefficient f corresponding to an 
n-soliton solution i s  to determine it for a one-soliton 
solution (which coefficient we denote a s  f,), described 
by Eqs. (2.22)-(2.27). Having done the necessary cal- 
culations with the scheme indicated above (in analogy 
with the way this was done in Ref. I), we get the follow- 
ing result for the one-soliton solution: 

where C, is an arbitrary constant, fo is the particular 
(background) solution for the coefficient t, which corre- 
sponds to the solution go, and r,, is the single compo- 
nent of the matrix (2.16), which is all  that exists in this 
case (k = 1 and 1 = 1): 

( 1 )  rrc = (~1: + Pz)-lm.(ll (go) .bmb (3.2) 

(the vector m r '  follows from Eq. (2.14) for k = 1). 

The next step in the calculations i s  that, taking the 
solution gl, fl a s  a new particular solution and repeating 
the operation just performed (as was explained in the 
foregoing section in connection with finding the matrix 
g,), we get the coefficient f, that corresponds to the 
two-soliton solution with the poles A =  p1 and X =  p,. At 
this second step we already have to deal with only cal- 
culations of an algebraic nature, since the need for 
integration appears in the whole procedure only once, 
in the transition from the background solution go, fo to 
the solution g,, f,, which contains one soliton. 

4 Sov. Phys. JETP 50(1), July 1979 V. A. ~elinskiy and V. E. Sakharov 



Omitting the details of the calculation, we give only 
the result: 

fi=c,fop2pl'p2yp;+p2) -I (pa"+p2) -' (rllr22-rl?2). (3.3) 

Here C, is an arbitrary constant, fo is the same back- 
ground solution a s  in Eq. (3.1), and r,,, r2,, and T,, 
a r e  the components of the matrix (2.16). We now have 
three independent components of r,,, since the indices 
k and 2 can take two values, 1 and 2. 

Equations (3.1) and (3.3) suggest that in the general 
n-soliton case the coefficient f i s  given by the expression 

(where k ,  1 = 1,2 , .  . . ,n). Since we see  from Eqs. (3.1) 
and (3.3) that this formulat indeed holds for n = 1 and 
n = 2, we can prove that it holds in the general case by 
using the method of mathematical induction. This proof 
is given in the Appendix to the present paper, and shows 
that Eq. (3.4) i s  indeed correct  in general. 

Now we must determine the physical value f:"' of the 
coefficient, i.e., the value that would be obtained from 
Eqs. (1.4) and (1.5) if we substituted in them the physical 
matr ixg '~h '  of Eq. (2.32) instead of g. From Eq. (2.31) 
we get the obvious relations 

u ( ~ ~ L  pgjpPh)glPhL1 = U + [ I  - '!?p (In det g) , ] I ,  

flphL pgl:h$(ph)-l = V - II2p(ln det g) , , I .  

When we now substitute in Eqs. (1.4) and (1.5) the ma- 
trices u(vh' and V'D~' instead of U and V, we find that the 
physical coefficient f:vh' is given by the formula 

fPhL fnp7hQ-I, (3.5) 

where f ,  i s  the value of this coefficient which i s  given by 
Eq. (3.4) and the function Q is defined by the equations 

(In Q) , ,=l/Ap (In det g) . ,(In det g). ,, 

(In Q) , p='/ap[ (In det g) , ,Z- (In det g) , ,'I. 

On substituting here the expression (2.30) for detg  
(with the condition detgo= -pZ), we find that these equa- 
tions can be integrated easily, and the answer can be 
written in the form 

From this and Eqs. (3.4) and (3.5) we get the final ex- 
pression for the physical value of the coefficient f :  

k > l  

[C;vh' is an arbitrary constant]. 

For clarity we point out that the product 

is equal to 1 for n =  1, to ( p , - / ~ , ) ~  for n = 2 ,  to (p3-p2)' 

( ~ ( ~ - p , ) ~  (p2-p1)' for n = 3, and so  on. In deriving Eq. 
(3.7) we have assumed that no two of the quantities p,, 
p2, . . . , p, a r e  equal. 

Accordingly, the final form of the n-soliton solution 
can be written in the form 

-d~ '=f :~~) (dp~+ dz2) +g2h)dzadtb, (3.8) 

where f A p h '  i s  given by Eq. (3.7) and the matrix elements 
gF' a r e  determined by Eqs. (2.32) and (2.21). 

4. TWO-SOLITON SOLUTION ON A FLAT 
BACKGROUND 

In this and the following sections we consider the ap- 
plication of the results  presented above to the case in 
which the background metric go, fo is flat and given by 
the interval 

That is, f, = 1 and go = diag(- 1, pZ) with the obvious prop- 
erty det (g,) = -p2. The matrix Vo is equal to zero, and 
for the matrix Uo we have Uo = diag(O,2). From Eq. 
(2.1) we get the corresponding solution for JIO(Xyp, 2) :  

which satisfies the requirement JIo(0) =go. From this 
and Eq. (2.14), using Eq. (2.11), we easily find the com- 
ponents of the vectors mdk': 

where c:~' and C:'' a r e  arbitrary constants. 

Now from Eq. (2.16) we get the elements of the ma- 
t r ix  rk,: 

From Eq. (2.19) we get the components of the vectors 
~ j & ' :  

Together with the .expressions (2.12) for the functions 
p k  we now have everything necessary for constructing 
n-soliton solutions on a flat-space background. 

Let us now consider the simplest case of all. As was 
already stated a t  the end of Sec. 2, solitons on a physi- 
cal background (with either complex o r  rea l  poles) can 
appear only in pairs. Consequently, the simplest case 
will be a two-soliton solution, corresponding to two 
poles, X =  p1 and A =  p,. It is not hard to show by direct 
calculation that what we have here i s  just the Kerr-NUT 
solution. In our previous paper1 it was already pointed 
out that a double stationary soliton on a flat background, 
corresponding to a pair of complex-conjugate poles, 
gives a Kerr-NUT solution with an "anomalously large" 
rotational moment (i.e., a solution without horizons and 
with a bare singularity). In fact, here we get precisely 
this situation for p2 = Fl. On the other hand, if both 
functions, p, and pz, a r e  real ,  the solution corresponds 
to the "normal" situation, with the singularity hidden 
from an outside observer by horizons. 

These assertions can be verified by direct calculation 
of the metric. Let us  represent the constant w, and wz 
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that appear in the relations (2.11) and (2.12) in the form 

where zl and o a r e  new arbitrary constants. We now 
introduce instead of p and z new coordinates r and 0: 

where m is an arbitrary constant whose meaning will be 
clear later. Then from Eq. (2.12) it is easy to express 
the quantities pl and p2 in terms of the new variables r 
and 0. In this calculation we can choose the signs in the 
formula (2.12) either the same for pl and p,, o r  else 
opposite. It is not hard to show that both cases  lead to 
the same metric (to within linear transformations of the 
two coordinates t, cp in terms of each other, and a triv- 
ial conformal transformation, multiplication of the in- 
terval with a constant). 

Let us consider f i rs t  the case of like signs. If we 
choose the plus4' sign in Eq. (2.12) for both values pl 
and p2, then substituting the expressions (4.6) and (4.7), 
we get 

From this [using the expression (4.7) for p ]  and from 
Eq. (4.5) we find the components of the vectors N:) and 
N:', and from Eq. (4.4) we find the matrix r,, and i ts  
inverse D,, (in this case k, 1 = 1,2). After this we get 
from Eqs. (2.32) and (2.21) the components of the met- 
r i c  tensor gdih' and from Eq. (3.7) the metric coeffi- 
cient f:*'. Substitution of these quantities in the inter- 
val (3.8) gives the final form of the solution, which can 
be reduced by simple linear transformations of the co- 
ordinates to the standard form of the Kerr-NUT solution 
in Boyer-Lindquist coordinates. 

Omitting details, we point out that without loss of gen- 
erality we can subject the arbitrary constants C;,) and 
Cjk' that appear in the expressions (4.3) for the vectors 
rn6" to two conditions: 

which a r e  equivalent to the requirement that the vari- 
able r indeed be the Boyer-Lindquist radial coordinate. 
We then introduce two arbitrary constants a and b de- 
fined by 

c,"'c,"'-c,'" c,("=-~, c,"' c:') +c:') 6' (4.10) 

From Eqs. (4.9) and (4.10) it follows that 

Now the metric (3.8) contains only the constants m, 
a, b and takes the form 

-ds2=oA-'drZ+od02-o-'{(A-n'sin2 8 ) d z Z  

- [4Ab  cos 8-4a sinZ 8(mr+b2) ] d ~ d q ~ +  [ A  (a  sinZ 0+2b cos 0)' 

-sin2 0 (rz+b2+a2) drpZ) , (4.12) 

where the variable T is connected with t (the original 
coordinate 2' = t) by the relation 

z=t+ 2a9,  (4.13) 

and the quantities w and A a r e  

o=i+ (b-a cos O)', A=ra-2mr+a2-b'. (4.14) 

It can be seen from this that the Kerr-NUT solution 
with horizons corresponds to real  poles X =  pl and X =  p,, 
since in this case the constant o is real  (m2+ b2 > a'), and 
the constants wl and w2 and the functions p1 and p2 a r e  
real  along with o. If the quantity cr is imaginary (m2+ b2 
<d), then the constants wl and w, and the functions pl  
and p2 a r e  complex and conjugate to each other. This 
case corresponds to a solution without horizons. Fur- 
thermore the metric (4.12) and the constants m,  a ,  b 
a r e  of course still real, but the original constants Ctk), 
a s  Eqs. (4.9) and (4.10) show, must be taken complex 
and related by C:'= cy', which, we see  from Eq. (4.3), 
means that also m~'=m6".  This agrees with the rule 
for choosing real  solutions with a complex-conjugate 
pair of poles that were formulated earl ier  in Sec. 2. 

Let us now look a t  the second possibility for choosing 
the solutions of Eq. (2.11), the one that corresponds to 
using different signs in Eq. (2.12). Choosing the plus 
sign for p1 and the minus sign for p,, we get 

Calculations like the foregoing ones show that in this 
case we again arrive a t  a Kerr-NUT metric, the only 
difference being that instead of the variables 7 ,  cp we 
will now have certain new coordinates 7' and cp', con- 
nected with the original variables xO= t and x' = cp by a 
linear transformation different from that in Eq. (4.13). 
The new relations a r e  7 '= clt+ c,cp, cp '= c,cp, where the 
coefficients a r e  real  only if the constant o is real  (i.e., 
if p1 and p2 a r e  real), and become complex when o is 
imaginary. This means that for imaginary o the matrix 
is complex in the original coordinates t, cp; this is quite 
natural, since in this case,  a s  can be seen from Eq. 
(4.15), the poles A =  pl and A =  p2 do not compose a com- 
plex-conjugate pair. 

Besides this, the connection between the arbitrary 
constants Cik' and the parameters m, a ,  b a r e  now dif- 
ferent: 

but the relation (4.11) between o and the constants m, a ,  
b is sti l l  valid. 

In conclusion we point out that the only actual physical 
solution is that of Kerr ,  since the presence of the NUT 
parameter b makes the metric no longer asymptotically 
Euclidean and produces a number of nonphysical prop- 
er t ies  of the solution (the relevant analysis has been 
given by Misner4). 

5. THE nSOLlTON SOLUTION ON A FLAT 
BACKGROUND 

In this section we consider some general properties of 
the n-soliton solution, confining ourselves to one of i ts  
possible types. We shall assume that on the background 
of a flat space with the metric (4.1) an even number n of 
solitons a r e  introduced, corresponding to the poles 
X = pl, X = p2, . . . , X = p,. We divide a l l  of the functions 
pI, (k = 1,2, . . . , n) into pai rs  and introduce the Greek in- 
dex y, which will number these pai rs  and takes only the 
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odd values from 1 to n - 1: y =  1,3, .  . .n - 1. We thus 
have n/2 pairs of pole trajectories (p,, p,+,). 

To understand the physical meaning of the solution it 
is helpful to examine f i rs t  a special case which corre- 
sponds to a diagonal matrix g, i.e., to a static n-soliton 
field remaining after the rotation has been turned off. 
To obtain such a special case we set  all of the arbitrary 
constants CAB) in Eq. (4.3) equal to zero, and then all the 
mAk) also equal to zero. I t  now follows from Eq. (2.15) 
that all the nib)= 0 and the matrices R, as we can see  
from Eq. (2.15) take the form 

This means that all the matrices P, in the representa- 
tion (2.28) of the solution take the form 

in accordance with the conditions (2.29). Then from 
Eqs. (2.28) and (2.32) we get the following solution for 
the diagonal case under consideration: 

ghph)=p-* IIpk, g,(Ph)=~, g,(ph)--pz/g,6ph? (5.1) 
b-l 

The metric coefficient fjPb) can be found from Eq. 
(3.7); to do so we must calculate the determinant of the 
matrix r,, (with C i k ) =  0).  It i s  simpler, however, to 
determine fi*' directly from Eqs. (1.4) and (1.5), since 
the solution (5.1) i s  simple and easy to integrate. The 
result is 

b>l 

(5.2) 
We now determine from Eqs. (2.11) and (2.12) the 

functions p,, which we have arranged in the pairs (p,,  
p,,). Confining our treatment to the case when the 
signs in Eq. P2.12) a re  chosen differently for the func- 
tions of each pair, we have 

Instead of each pair of arbitrary constants w7 and w,,,, 
we introduce new constants z, and m y ,  setting 

If we now introduce n/2 pairs of functions r,(p,z) and 
8,(p, z) (giving to each pair of poles i ts  own "radial and 
angular coordinates") through the relations 

p=[r,(r7-2m,) 1"' sin 8,, z-z,=(rT-m,) cos el, (5.5) 

we get from Eq. (5.3) 

Using these expressions for p and p,, we get from Eq. 
(5.1) the component ,ygh' a s  the following product of n/2 
factors: 

For the case of the two-soliton solution Eq. (5.7) will 
have only one factor, the Schwarzschild expression for 
the coefficient gAth). Calculating from Eq. (5.2) the co- 
efficient fi9"' for this case and writing out the interval, 
we indeed get the standard expression for the Schwarzs- 
child metric with radial coordinate Y, and polar angle 
8,. This result also follows, of course, from the gener- 
a l  form of the two-soliton Kerr-NUT solution, given in 
the preceding section [case (4.15), (4.16)] with C:)=Crt 
= 0. 

To interpret the n-soliton static solution with the 
"potential" (5.7) we must choose a suitable radial vari- 
able. Any one of the functions r,(p, z) could now serve 
a s  a radial coordinate, but it is most natural to define 
the radial variable in such a way that the dipole moment 
relative to it vanishes in the expansion a t  infinity of the 
Newtonian potential of the system in question. As i s  
well known, the Newtonian potential here is = 1 +g$h), 
and from Eq. (5.7) we have 

Let us try to define the "true" radial coordinate Y and 
polar angle 6 by relations of the same form a s  Eq. (5.5): 

p=lr(r-2m) 1"' sin 8, z-z,= (r-m) cos 8, (5.9) 

but with new constants m and z,, which a re  subject to 
definition. From Eqs. (5.9) and (5.5) we can find func- 
tions Y,(Y, 8) and B,(Y, 8) and obtain their asymptotic ex- 
pansions for r-a (in the first  approximation we have 
for Y - m simply Y, = Y and 8, = 0). Substituting these ex- 
pansions into Eq. (5.8), we find the expansion of the po- 
tential @, and from the condition that it must contain no 
dipole term we can determine the constants m and 2,. 
In this way we get 

and then the expansion for takes the form 

where q is  the quadrupole moment of the system. For 
the case of a four-soliton solution, for example, (where 
the index y takes only the two values 1 and 3) we have 

These results show that the n-soliton static solution 
i s  a localized perturbation in an asymptotically flat 
space. For a sufficiently remote observer such a field 
can be regarded a s  an external field produced by n/2 
localized axially symmetric structures, each of which 
has its own mass m and its  center of mass lying on the 
axis of symmetry a t  the point with coordinate z. The 
equations (5.10) show that the total mass of all these 
n/2 objects (or pairs of solitons) is equal to the sum of 
their masses, and the coordinate zo of their common 
center of gravity i s  given by the usual expression of the 
mechanics of particles. All of the multipole moments 
of the field can also be expressed in definite ways in 
terms of the constants my and z,. 

If we now suppose that in this system there appear 
"rotational motions either of the whole or  of the individ- 
ual elements" around the axis of symmetry, the result- 
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case will correspond to a nondiagonal metric with 
g,$h)# 0. In the special case of a two-soliton system 
considered in the preceding section, this change corre- 
sponds to the change from the Schwarzschild solution to 
that of Kerr. Just  a s  in that special case, we must also 
here assure that the solution with n solitons is asymp- 
totically Euclidean. In the two-soliton case this made i t  
necessary to se t  the NUT parameter equal to zero. 
This means that the off-diagonal component g$h' of the 
metric must decrease like r-' a s  r-00 [in the Kerr-NUT 
solution, g$h' - b cos8 + O(r") for r- w 1. Then the coef- 
ficient of r-I in g$"" gives the total rotational moment 
of the system. 

It is not hard to find the behavior of the components 
g 6;"' for r - in the general case of an n-soliton met- 
ric. As in the two-soliton case, we must introduce the 
notations (4.6) for each pair of constants w,, ray+, and 
for each pair of functions p,, pya we must introduce a 
pair  of "coordinates" r,, 8, by the formulas (4.7). After 
this we get from Eq. (5.3) expressions for p, and p,, of 
the form (4.15). At infinity all of the variables r,, 0, 
coincide, s o  that it is immaterial which pair we take a s  
spherical coordinates r, 8, if we a r e  concerned only 
with the first terms of the expansion for Y - m. 

Now from Eq. (4.3) we get the asymptotic form of the 
vectors m:", and from Eqs. (4.4) and (2.15), that of the 
vectors nib'. From these it i s  now easy to find the be- 
havior of the components g:;"'. The result shows that 
the asymptotic behavior of the metric coefficients g:Eh' 
for r - m  i s  precisely the same as in the two-soliton 
case: 

g~?~'+- l ,  gl?h)+r2sin28, g,(ph)+bl eos 8 + b l + 0 ( r - I ) ,  (5.12) 

where b, and b, a r e  constants which can be  expressed in 
terms of CAk' and Cik'. For the metric to be asymptot- 
ically Euclidean for r-- the parameter b, must be 
zero, which gives a supplementary condition connecting 
the constants Cik': 

After this the constant b, can be eliminated from the 
asymptotic form of the metric coefficient ,y,$"' with a 
linear transformation of the form t = t ' = b,q. 

APPENDIX 

We shall now prove the validity of Eq. (3.4). As was 
already stated in Sec. 3, we have only to show that it 
holds for the case m + 1, on the assumption that i t  holds 
for the case m. We suppose that we have some solution 
g,, f,, Ilr, of our problem, and on it a s  background we 
construct a solution g,,, f,,,, I&,, by introducing m 
solitons corresponding to poles X =  p,,,, X =  pna, . . . , 
X=p,+,. We assume that for such a "case m"Eq. (3.4) 
is true, and consequently the coefficient f is of the form 

where C,,, is an arbitrary constant and D,,, is the de- 
terminant of the matrix r,,,,, (relative to the indices 
k ,1=1,2  ,..., m). 

Here and for what follows we have adopted the following 
conventions about indices: n and m a r e  given constants; 
the let ters k and 1 a r e  used to denote running indices 
which go through the values 1 ,2 , .  . . ,m;  and the Greek 
letters (1, p denote indices (appearing later) that go 
through the m + 1 values 0,1,2,. . . ,m. 

As we have already said, 

The vectors m ~ ' k '  in Eq. (A.2) a r e  constructed accord- 
ing to the rule (2.14): 

( n t h )  ("+R) 
ma =mco [$,,-'(pn+r, p, 2) lea. (A.4) 

Let us now consider that the solution g,, f,, ICi, was ob- 
tained f rom another solution f,-,, by adding to 
it one soliton, corresponding to the pole A =  y. In this 
case, according to Eqs. (2.22) and (2.25) we have 

v . = [ I +  (pn2+pZ)  pn-'(A-pn) -'p,]$.-t, 

q, - ' = I ~ ~ ; ' , [ I -  (p, '+pZ) ( p 2 + h p , ) - ' P , ] .  (A.5) 
g,=$,(O) = [ I -  (p ,=+p2)  y"-zP.lg,-l. (A.6) 

The matrix P, i s  constructed f rom &,, and gn-I accord- 
ing to the law (2.23): 

~ , = l , ' "  calb(n'llt(n' ( g n - 0  3 (A.7) 

where the vector I, is  given by the expression 
-1 

~ " ( ~ ) = l , ~ ( ~ '  [IP ,,-, (p" ,  p, 2) I<". (A 8) 

Besides the vector 1;' we need the vectors 16"'k' ( k  
= 1,2, .  . . , n), which a r e  given by 

where mz+b'  a r e  the same arbitrary constants a s  appear 
in Eq. (A.4). 

Now from Eq. (A.4), (A.5), and (A.7) we can obtain an 
expression for the vectors m?+b' in terms of the vectors 
1; ' and I$"': 

("+I) - ("+*) ma - 1. - (E,,,")-' E ~ , ~ . J ; * ' ,  (A. 10) 

where we have introduced the matrix En,,,,, (a, P 
=0,1,2 , . .  . ,m): 

Then, substituting Eqs. (A.lO) and (A.6) in (A.2), we 
find an expression for the matrix r,+k,n+l in terms of the 
matrix En+,,, ,: 

From Eq. (A.12) it follows that the determinants of the 
matrices En,,,, and rn+k,n+l a r e  connected by the rela- 
tion 

det En+,, "+@=En,  det m + ~ ,  "+,. (A.13) 

Now from Eqs. (3.1) and (3.2) we bet a connection be- 
tween f ,  and f,,: 

fn=Cnfn-iE., npp l lL(pnz+~2) -1  (A .14) 

(C, is an arbitrary constant). Substituting this expres- 
sion in Eq. (A.l) and using Eqs. (A.3) and (A.13), we get 
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This result, together with the expressions (A.8), (A.9), 
and (A.ll) for the matrix En+,,,, i s  nothing other than 
the formula (3.4) itself, except that it is for the "case 
m + 1, " with the solution gn+,, A,, I),,, being obtained 
from g,,.,, A,, by adding m + 1 solitons to the latter. 
This analysis completes the proof that Eq. (3.4) is valid. 

''A system of units is used in which the speed of light is equal 
to unity. ?he interval i s  written in the form -ds2 =g,&id~h, 
where g,, has the signature - ++ + . 

')We may indicate that the formal transformations from the 
variables l, q, a, p and matrices A, B which we used pre- 
viously to the variables p, z and matrices U, V of the present 
paper are of the form f = (z+ip)/2, q =  (2-ip)/2, ru = i p ,  P = z ,  
A=-U-iV, B=-Ut iV.  

3'Nevertheless we can obtain physical solutions with an odd 
number of solitons, but for this it  is  necessary to take a 
background solution with a nonphysical signature, for which 
detgo= p2. 

4'We point out that the indicated choice of "signs" here has a 
precise meaning only for sufficiently large positive values of 
the variable r and real  values of the constants wi and w,. In 
the general case there is only a choice of one branch or  the 
other of the solution of the quadratic equation (2.11). 
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Preliminary results are reported on the determination of the upper limits of the cross sections for 
production of superdense nuclei, by detection of their unusual decays occurring with times in the 
millisecond range. A special mode of bubble-chamber operation is proposed. It is shown that by use of 
this technique it is possible to determine comparatively simple cross sections at the level 
10-33-10-35 cm2 per nucleus. 

PACS numbers: 23.90. + w, 27.90. + b, 29.40.F~ 

In recent years, especially with the appearance of 
A. B. Migdal's theory of the pion condensate, great 
interest has arisen in the search for superdense nuclei. 
It is expected that they can have a very large binding 
energy, and therefore it is  possible in principle to ob- 
serve the decays of such nuclei, which occur with a 
large energy release. On the other hand it is  known 
that for decays of ordinary nuclei in the case when the 
decay electrons a re  relativistic we have the relation1 
7, - 1/~2,, , where 7, is  the lifetime of the nucleus and 
Em,, is the maximum energy of the decay electrons. If 
we assume that this relation will be satisfied also for 
decays of superdense nuclei, then for a maximum de- 
cay-particle energy Em,, =18 MeV, 7, will be 1.6 times 
less than the lifetime of N+* and will amount to  4 . 7  
nsec, and for Em,, = 36 MeV 7 ,  =0.2 nsec, etc. Mea- 
surement of these lifetimes and decay energies can be 
carried out very satisfactorily by means of bubble 
chambers. 

The advantages of the bubble-chamber technique a re  
a 4a geometry, the possibility of detecting decay parti- 

cles of various types (e*, y, heavier particles), the ac- 
curate measurement of their energies, and also the 
possibility of observing "explosions" of superdense 
nuclei which result in s t a r s  recorded in the chamber. 
A major advantage of this experimental arrangement 
is the absence of any ordinary physical process imitating 
the effect. 

Up to the present time there has been no experimental 
proof of the existence of superdense nuclei. Kulikov 
and Pontecorvo2 presented some data obtained by an 
electronic technique on determination of the upper lim- 
its of the cross  sections for production of superdense 
nuclei, a s  a function of their lifetime. It is evident 
from these data that the region of lifetimes 7,a 5 msec 
has not yet been investigated. 

The experiments described in the present paper were 
intended to  search for unusual decays, which can arise 
from superdense nuclei, with energy more than 16.4 
MeV (the maximum energy of the decays known up to 
this time) and occurring with lifetimes 0.5-1000 msec. 
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