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§ 1. INTRODUCTION analog (a large fraction of these results is listed in the 
review articles3v4), but no regular integration method 

The purpose of the present paper is to describe a has been found. 
practical method (equivalent to the inverse scattering 
problem technique), allowing one to obtain explicitly 
large classes of new exact solutions of the vacuum Ein- 
stein equations for the case when the metric tensor de- 
pends only on two variables, if simple particular solu- 
tions of the equations a re  known. Moreover, if devel- 
oped further, the method allows one in principle to ap- 
proach the problem of finding, in a certain sense, "all 
the solutions" of the equations of gravity for the two- 
dimensional case under consideration, and may lead to 
a solution of the corresponding Cauchy problem. 

For  definiteness we assume that the metric tensor 
depends on time and on one spacelike variable; this cor- 
responds to wavelike and cosmological solutions of the 
gravitational equations. The case when both variables 
are  spacelike (corresponding to stationary gravitational 
fields) will not be considered separately, since the cor- 
responding solutions can also be obtained from the anal- 
ysis given here by imposing certain boundary conditions 
and carrying out the required complex transformations. 
Moreover, we limit ourselves to that special (albeit 
quite widespread) case of two-dimensional metrics 
where the interval has the form1': 

Here the functions f andgab depend only on the variables 
t and z. For the coordinates we adopt the notation (xO, 
xl, x2, x3) = (t, X, y, 2). In this paper the Latin indices a, 
b, c, d take on the values 1 and 2 and refer to the vari- 
ables x and y. We study this metric for the case of a 
vacuum gravitational field, when the Einstein equations 
reduce to the vanishing of the Ricci tensor. 

From the physical point of view the metric (1.1) and 
i ts  stationary analog have many applications in gravi- 
tation theory. Suffice i t  to say that to this class belong 
the solutions for  the Robinson-Bondi plane waves, cyl- 
indrical-wave solutions, homogeneous cosmological 
models of Bianchi types I through VII, the Schwarzs- 
child and Kerr solutions and their NUT-generalizations, 
~ e y l ' s  axially symmetric solution, etc. As applied to 
cosmology the metric (1.1) was discussed in a paper by 
Khalatnikov and one of the present  author^,^ where it was 
shown that such a two-dimensional metric describes a 
general cosmological solution of the Einstein equations 
with a physical singularity on portions of the so-called 
"long eras." In the paper of Gowdf the metric (1.1) was 
used to find new vacuum solutions representing closed 
cosmological models. Recently there has been consid- 
erable interest in inhomogeneous cosmological models 
containing singularities having simultaneously a space- 
like and a timelike character. Such models have re- 
cently been discussed on the basis of the metric form 
(1.1) in the paper of Tomita.' All this shows that, in 
spite of i t s  relative simplicity, a metric of the type 
(1.1) encompasses a wide variety of physical cases, and 
that a method for  integrating the corresponding Einstein 
equations could significantly move forward our under- 
standing of various aspects of gravitation theory. 

It turns out that this case can be successfully treated 
by means of the inverse scattering problem technique in 
i t s  modified form.%' Moreover, ~ i k h z l o v  and one of 
the authorsg have given a detailed exposition of this new 
method of integrating nonlinear differential equations, 
applied to a system which i s  quite close to the one to 

A metric of this kind was f i rs t  considered by Einstein which the matrix g,,(t, z )  is subject in the present paper. 
and Rosenl for a diagonal matrix gab, when the Einstein We explain the relation. The Einstein equations for the 
equations actually reduce to one linear equation in cyl- metric (1.1) a re  most conveniently investigated in light- 
indrical coordinates. The inclusion of the off-diagonal cone coordinates 5 ,  q defined by the transformation 
component2) g,, changes the situation radically, and con- 
verts the Einstein equations into a complicated essen- t=c-q, z=c+q. 1 

tially nonlinear problem. Equations for such a metric 
were f i rs t  considered by Kompanee t~ ,~  who noted some 

In the sequel we shall always denote by g the two-dimen- 

of their general properties. In the past twenty years sional matrix with elements gab [the two-diinensional 

various authors, using different simplifying a s s u m p  
block of the metric tensor (1.1)] and for the determinant 

tions. have obtained a number of exact nontrivial solu- 
we adopt the notation 

tions for a metric of the type (1.1) o r  i t s  stationary det g=aZ. (1.3) 
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The complete system of Einstein equations (in vacuum) 
f o r  the metric (1.1) decomposes into two groups of 
equations (cf., e.g., Ref. 5). The f i rs t  group determines 
the matrix g and can be written in the form of a single 
matrix equation: 

The second group expresses the metric coefficient 
f(t, z )  by quadratures in terms of a given solution of Eq. 
(1.4) via the relations 

(In a )  ,tt 1 
(In f) = - f - Sp A', 

(In a )  ,t 4aa.t 
1 (ha)'m + S p B 2 ,  (Inf).s=- 

( h a ) ,  4aa.- 

where the matrices A and B (introduced for the conve- 
nience of the subsequent analysis) a re  defined as fol- 
lows: 

It is easy to establish (cf. Ref. 5) that the integrability 
conditions for the equations (1.5) are  automatically 
guaranteed if g i s  subject to Eqs. (1.3) and (1.4). 

If one does not consider Eq. (1.5), the equation (1.4) 
has formally nontrivial solutions even if a! = 1. That was 
the system of equations for a matrix g (in general com- 
plex and nonsymmetric) which was investigated in Ref. 
9 where i t s  integrability was proved and a procedure 
was described for the determination of the soliton solu- 
tions. Physically, such solutions a re  related to two- 
dimensional classical relativistic models of the theory 
of chiral fields. However, this case (a! = 1) i s  not non- 
trivial when applied to a gravitational field described by 
the metric (1.1). It i s  easy to show (cf. Ref. 5) that the 
presence of the additional field component f(t, z )  related 
to the matrix g via the relations (1.5) leads for  a! 1 
only to the trivial solution, i.e., the Minkowski metric 
if one requires that the metric be  real  and have a physi- 
cal signature. 

In connection with this circumstance, the technique 
developed in Refs. 8 ,9  requires some generalization, 
since one cannot apply i t  literally to the problem con- 
sidered here. As will be seen in the sequel, the general 
idea of the method remains the same: i t  is based on a 
study of the analytic structure of the eigenvalues of 
some operators (as functions of a complex spectral pa- 
rameter A), operators which can be associated accord- 
ing to a definite law to the system (1.3), (1.4) (the so- 
called L-A pair). In particular, for solitonic solutions 
Eqs. (1.3) and (1.4) a fundamental role is played by the 
structure of the poles of the corresponding functions in 
the A plane. For  an a different from a constant the 
equations (1.3) and (1.4) require the introduction of 
generalized differential operators thus entering into the 
L-A pair, depend on the function a(6, q), and contain 
differentiations also with respect to the spectral param- 
eter. For  soliton solutions this leads to "floating" poles 
of the eigenfunctions, and instead of stationary poles 
A,, = const (as was the case in Ref. 9) we shall have pole 
trajectories X,(1;, 17). 

We t ry  to develop our analysis in such a manner that 

the reading of this article should not require turning to 
all previous papers, if one is interested mainly in the 
results  of the described method. 

02. THE INTEGRATION SCHEME 

We now pass to a systematic investigation of Eqs. 
(1.3) and (1.4). Taking the trace of Eq. (1.4) with ac- 
count of the condition (1.3) yields 

Thus, the square root of the determinant of the matrix 
g satisfies a wave equation (this result was already 
noted in Refs. 1 ,2 )  with a solution 

where a(6) and b(q) a re  arbitrary functions. For  the 
sequel we shall need a second independent solution of 
Eq. (2.1), which we denote by /3(5,q) and choose in the 
form 

It should be understood that the metric (1.1) admits in 
addition arbitrary coordinate transformations z' = f,(z 
+ t )  + f2(z - t) ,  t' = f,(z + t)  - f2(z - t )  which do not affect the 
conformally flat form of the metric f(-dt2+dz2) in (1.1). 
By an appropriate choice of the functions f, and f 2  one 
can bring the functions a(C) and b(q) in (2.2) to a pre- 
scribed form. If, for instance, the variable a!(f, q) i s  
timelike (corresponding to solutions of cosmological 
type5) the coordinates can be chosen in such a manner 
that a! = t, P = z. It i s  however more convenient to ca r ry  
through the analysis in a general form, without specify- 
ing the functions a(6) and b(q) in advance, and turning to 
special cases a s  the necessity arises. 

It i s  easy to see that Eq. (1.4) i s  equivalent to a sys- 
tem consisting of the relations (1.6) and two first-order 
matrix equations that define the matrices A and B. 
From Eqs. (1.6) and (1.4) follows the f i rs t  obvious equa- 
tion for A and B: 

The second one i s  easily derived a s  an integrability con- 
dition for the relations (1.6) with respect tog .  We ob- 
tain in this manner 

(here and in the sequel the square brackets denote the 
commutator). 

The main step now consists in  representing (2.4) and 
(2.5) in the form of compatibility conditions of a more 
general overdetermined system of matrix equations re- 
lated to an eigenvalue-eigenfunction problem for some 
linear differential operators. Such a system will depend 
on a complex spectral parameter (which we denote by A), 
and the solutions of the original equations for  the ma- 
tr ices g, A, and B will be determined by the possible 
types of analytic structure of the eignevalues in the A 
plane. At present there does not exist a general algo- 
rithm for the determination of such systems, but for  the 
concrete case of Eqs. (1.3) and (1.4) this can be done. 
For  this purpose we introduce the following differential 
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operators: 

where the symbol 8 with a subscript denotes partial dif- 
ferentiation with respect to the corresponding variable 
and X is a complex parameter independent of the coor- 
dinates C and q. It i s  easy to verify that the commutator 
of the operators D, and D, vanishes exactly when a sat- 
isfies the wave equation. Thus, taking (2.1) into account 
we have 

We now introduce the complex matrix function 
$(X, 6 ,q )  and consider the system of equations: 

in which the matrices A and B do not depend on the pa- 
rameter X and a re  real (the same requirements a r e  
satisfied, of course, by the real  function a). It then 
turns out that the compatibility conditions for the equa- 
tions (2.8) coincide exactly with the equations (2.4) and 
(2.5). In order to see  this i t  i s  necessary to operate 
with D, on the f i rs t  of the equations (2.8) and with D, on 
the second one, and then subtract the results. On ac- 
count of the commutativity of D, and D, we obtain zero  
in the left-hand side. In the right-hand side we get a 
rational function of X which vanishes if and only if the 
conditions (2.4), (2.5) a re  satisfied. It i s  easy to see 
that a solution of the system (2.8) guarantees not only 
that the equations satisfied by the matrices A and B a re  
true, but also yields a solution of the relations (1.6), 
i.e., directly the sought matrix g(b, q) that satisfies the 
original equations (1.3) and (1.4). The matrix g(C, q) is 
nothing else but the value of the matrix function #(A, L, q) 
a t  the point X = 0: 

Indeed, in this case the equations (2.8) for X = O  (for 
solutions which a re  regular in the neighborhood of X = 0) 
duplicate exactly the relations (1.6). The matrix g(L, q) 
must, of course, be real  and symmetric. Below we 
shall formulate for the selection of the solutions of the 
equations (2.8) additional restrictions that guarantee 
this requirement. 

The procedure of integration of the equations under 
consideration assumes the knowledge of a t  least one 
particular solution. Let g,(b, 7) be  such a particular 
solution of the Einstein equations (1.3), (1.4) in terms 
of which by means of Eq. (1.6) one can determine the 
matrices A,(L, q) and B0(5, Q), and with the help of (2.8) 
one can obtain the corresponding function $,(A, b, q). We 
now make in the equations (2.8) the substitution 

Taking into account the fact that JI, satisfies the system 
(2.8), we obtain the following equations for the matrix 
x b ,  L, v): 

We now indicate additional conditions which need to be 
imposed on the matrix x in order  to assure the reality 

and symmetry of the matrixg.  The f i rs t  consists in re- 
quiring the reality of x on the real  axis of the X plane 
(the matrix J I  must also satisfy this condition). This 
implies 

(Here and in the sequel the ba r  denotes complex conjuga- 
tion. For  the sake of brevity we often do not indicate 
the arguments L and Q of the functions.) The second 
condition is l e s s  trivial and i s  related to the following 
invariance property of the solutions of the system (2.11). 
Assume that the matrix x(X) satisfies the equations 
(2.11). Replacing in i t  the argument X by a2/X we form 
the new matrix xl(X): 

xr (A) =g;-' (aZ/A)  go-i 

(the tilde denotes transportation of a matrix). A direct 
verification convinces us that the new matrix xl(X) also 
satisfies the equations (2.12) if g i s  symmetric. We 
shall assume xl(X) = x(X) which guarantees the symmetry 
of the matrixg.  Thus, this condition takes the form 

Moreover, i t  i s  necessary to require that for X-m the 
matrix x(X, 9 ,q)  tend to the unit matrix 

These relations imply 

g-x ( 0 )  go, (2.15) 

a result which also follows from the conditions (2.9)- 
(2.10). 

Thus, the problem now consists in solving the system 
(2.11) and in determining the matrix x satisfying the 
supplementary conditions (2.12), (2.14). It i s  necessary 
to note the following important circumstance. The solu- 
tion g ( f ,  q) must also satisfy the requirement det g= a'. 
We assume that the function a(b, q) i s  the same for the 
particular solution go and for the generalized g [a i s  a 
given solution of the wave equation (2.1)], and that by 
definition the particular solution also satisfies the re- 
quirement det g, = a'. Therefore, a s  follows from (2.15) 
one must impose on the matrix x yet another restriction: 
det ~ ( 0 )  = 1. It i s  more convenient not to worry about 
this condition during the calculations, and to use a sim- 
ple renormalization of the final result in order to obtain 
the correct  quantities. The latter  will be called the 
physical quantities. It i s  easy to establish the legitmacy 
of this procedure from Eq. (1.4). If we had obtained a 
solution of that equation with det  g #  a', the trace of 
(1.4) indicates that det g satisfies the equation 

If one now forms the matrix gp,: 

gm =a (det g)-'hg, (2.17) 

i t  i s  easy to see  that the latter again satisfies the equa- 
tion (1.40) and moreover the condition det g,, = a2. The 
matrices A and B a r e  also subject to appropriate trans- 
forinations: 
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where A and B are  defined in terms of g according to 
(1.6) and A, and B, are  defined by the same formulas 
but in terms of the matrix gp,. 

93. CONSTRUCTION OF THE SOLITON SOLUTIONS 

The solutions for the matrix x(X, E, 71) are  constructed 
by means of the method described in Refs. 8 and 9. In 
the general case the determination of x reduces to solv- 
ing the Riemann problem of analytic-function theory, 
which in turn reduces to the solution of a linear integral 
equation. We shall return to this in § 6 and show there 
that the solution is determined by the analyticity proper- 
ties of the matrix x in the complex X plane, and in gen- 
era l  represents the sum of a soliton part and a nonsoli- 
ton part. In this section and in 5 5 4, 5 we consider the 
purely solitonic solutions when the nonsoliton part i s  
absent. This problem does not require the use of the 
Riemann problem (in fact i t  is a trivial special case of 
the Riemann problem) and can be explicitly solved to 
the end. 

The existence of solutions of the soliton type i s  due to 
the presence in the A plane of points of degeneracy (non- 
invertibility) of the matrix X, i.e., points a t  which the 
determinant of x vanishes in such a manner that the in- 
verse matrix X" has at these points simple poles. Thus, 
the purely solitonic solutions correspond to the case 
when X-' i s  representable by a rational matrix function 
of the parameter X with a finite number of poles (we 
assume them to be simple) and which for  A - .o tends to 
the unit matrix, a s  required by the condition (2.14). The 
matrix x has the same properties, a s  can be easily 
seen from the supplementary condition (2.13). Indeed, 
(2.13) implies that if x has n poles at the points A =  
~ ~ ( 6 ,  TI) (k = 1, . . . , n) then X" also has n poles at the 
points v,(E, 7) where v, = a2/pk. Moreover, i t  follows 
from (2.12) that the poles of the matrices x and X-' a r e  
either on the real axis of the X plane, o r  a re  paired: to 
each complex pole ~r, (or v,) corresponds the complex- 
conjugate pole jTk (or 5,). For  uniformity in our calcu- 
lation we shall assume that the poles of the matrix x a re  
complex and that among them there a r e  no coinciding 
ones (the equations for the case when the poles are  on 
the real axis can be obtained by taking an appropriate 
limit). 

It follows that the matrix x has the form: 

where the matrices R, and S, (as well a s  the numerical 
functions p, and v, = (r2/p.,) no longer depend on A. The 
matrices S, can be expressed in terms of R, by means 
of the obvious relation XX" = I .  However, in the sequel 
we shall deal mainly with x and the explicit expressions 
for  S, will not be needed. 

It can be seen from (3.1) and (2.15) that the solution of 
the equations (1.4) for the matrix g(E, 9) i s  

We now determine the matrix R, explicitly. For  this 
i t  i s  necessary to substitute (3.1) in (2.11) and to satisfy 
these equations at the poles A = p,(E, 9). F i r s t  of all i t  
can be seen that these equations determine explicitly the 
dependence of the position of the poles on the coordi- 
nates E and TI, i.e., the functions p,(E, 7). Indeed, the 
right-hand sides of (2.11) at the points A = p, have only 
first-order poles, whereas the left-hand sides D1x and 
D,X have second order poles. The requirements that 
the coefficient of the powers (A - F,)'~ vanish in the left- 
hand sides yields the following equations for the pole 
trajectories pk(S, 1)): 

These equations a re  invariant with respect to the substi- 
tution pk - a2/pk,  i.e., the function v, = a2/p, also satis- 
f ies (3.3). The solutions of (3.3) are  roots of the quad- 
ratic equation (in A). 

where w, a re  arbitrary complex constants. It i s  easy to 
see that for each given w, Eq. (3.4) yields two solutions: 
a pole ~ , ( f ,  9) for the matrix x and a pole v, = a2/p,  for  
the matrix x": 

Rewriting the equations (2.11) in the form 

A Ao - = (Dlx)x-'+x -x- ' ,  
A-a h-a 

B Bo - = (Dpx) x-'+x -x- ' ,  
r2+a h+a 

we note that in order that they be satisfied at the poles 
A =  p, i t  i s  necessary that the residues a t  these poles 
vanish in the right-hand sides of (3.6), since the left- 
hand sides are  holomorphic at the points A =  p,. This 
requirement leads to the following equations for the 
matrices R,: 

where use has been made of the relation 

ZX-' ( pk) -0, (3.8) 

following from the identity XX" = I  (considered a t  the 
poles A =  p,). It can be seen from (3.8) that R, and 
x-'(pk) are  degenerate matrices for which the elements 
can be written in the form 

then (3.8) signifies that 

m.'L'q.'L'= O. 

Here and in the sequel summation will be understood 
over repeated vector and tensor indices a, b, c, d 
(they take the values 1, 2). 

Substituting (3.9) into (3.7) we obtain the equations 
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which determine the evolution of the vectors miL': solution can be expressed in terms of the particular 
solution go, f,, as well a s  the quantities p,, m:" in 
algebraic form. 

44. SIMPLE SOLITONS 

A solution of these equations is easily expressed in 
terms of a given particular solution $J, of the equations 
(2.8). Introducing the matrices 

i t  is not hard to see that they satisfy the equations 

Thus, a solution of the equations (3.11) for  the vectors 
mjk) will be3) 

where the rn;:) are  arbitrary complex constant vectors. 

There remains the task of determining the vectors 
nAk) and thus the matrices R,. This can be done by 
means of the supplementary condition (2.13) that must 
be satisfied by the matrix X. Substituting (3.1) into 
(2.13) and considering the relation obtained in this man- 
ner at the poles of the matrix x (a2/X), i.e., a t  the points 
X = vk = aZ/y,, we reach the conclusion that the matrices 
Rk satisfy the following system consisting of n algebraic 
matrix equations: 

where k = 1,. . . , n. Substituting the expression (3.9) for 
the matrices R, we obtain a system of linear algebraic 
equations for the vectors nAw: 

" -L,' -(k) 
mb m". ( a ) . .  

+ c mb m. (gdcb cv~=-fi;v 
(go),. , Vk-Rl 

This completes the determination of the matrices R, 
and from (3.2) one can now find a solution for the metric 
tensor g(S, q). We also note that from Eq. (3.6) one can 
obtain explicit expressions for  the matrices A and B by 
equating the residues in the left-hand and right-hand 
sides of these equations a t  the poles A = a and h = -a. 
As a result we obtain: 

Calculating the traces Tr AZ and Tr  B2 we obtain from 
(1.5) the component f(b, q) of the metric tensor by quad- 
ratures. We note, however, that for those simplest 
solutions which we consider in the following sections 
the corresponding indefinite integrals encountered in 
the calculation off can be evaluated explicitly and the 

In this section we consider soliton solutions for  the 
simplest case: when the matrix x has only one pole. 
If there is only one pole i t  can be situated only on the 
real  X axis (a  complex pole has always a complex-con- 
jugate partner). 

All the results a re  easily obtained from the preceding 
general analysis. The position of the pole is determined 
by the equation h= p(S, q), where y is real and is ex- 
pressed in terms of a and P according to Eq. (3.5): 

here w i s  a real  arbitrary constant. For  p to be real 
the functions a and p must satisfy the inequality 

the sense of which will become clear later. The matrix 
x has the form 

X=I+2R/ (h-p) , R.ben.mb, (4.3) 

where the vectors ma and na a re  real. As follows from 
Eq. (3.12) and (3.141, the vector ma is determined by the 
equations 

in which the arbitrary constant vector mob must be taken 
to be real  and the matrix M will automatically be real 
on account of the conditions (2.12) and the reality of p. 
The vector na i s  easily obtained from (3.16) (assuming 
that all the quantities in them a re  real and taking into 
account the fact that there is only one pole): 

no- ( pz-a') mb(go) d2pm,md(go) .d. (4.5) 

Furthermore i t  i s  convenient to introduce the matrix P 
with the elements: 

From this definition i t  i s  clear that P has the properties 

Now it  i s  easy to express the matrices x and X" in 
terms of P: 

The equation (2.15) yields the matrix g: 

g =  I-p-p go, 
'-a2 ) ( pa 

whence (taking account of det go = a2) it  follows that 

det g=a'/pZ. 

Thus, our solution does not satisfy the necessary condi- 
tion det g=  az and we must renormalize it, going over 
to the physical values in which we a r e  interested, ac- 
cording to the procedure described a t  the end of § 2. 
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We will denote (as in O 2) all  physical quantities which 
yield the final result by the subscript '3h''. In agree- 
ment with Eq. (2.17) we have g,, = ka'lg and obtain f o r  
the metric tensor g,, 

an expression which satisfies both original equations 
(1.3) and (1.4). 

From (4.3) and (4.8) we determine the matrices x and 
X-' at the points X =*a and, substituting in Eq. (3.17), 
we determine the matr icesA and B. We next use (2.18) 
to determine their physical values of A, and B,, that satis- 
fy Eqs. (2.4) and (2.5) and the relations (1.6) (withg re- 
placed by g,,): 

We now calculate the traces T r  Ah and T r  B% and 
substitute the results into the equations (1.5), thus ob- 
taining the physical value f,, of the metric component f. 
These rather lengthy calculations lead to a simple re- 
sult: the indefinite integrals which occur in the calcu- 
lation off,, in (1.5) turn out to be trivial and a re  easily 
calculated, and the final result is 

Here C i s  an arbitrary integration constant, a and b a re  
the arbitrary functions from (2.2), (2.3), and f, is the 
particular solution for the component f corresponding 
to the particular solution go (the function f0(5, 7) satis- 
f ies (1.5), whereA and B a re  replaced by A, and B,). 

The equations (4.1), (4.41, (4.6), (4.9), and (4.11) give 
the final solution of the Einstein equations for the case 
of simple solitons. In order to obtain concrete solutions 
one must substitute into these equations some concrete 
particular solutions. In order to illustrate the method 
we consider the simplest case when the particular solu- 
tion of the problem i s  the Kasner solution. It i s  easy to 
see that the equations (1.3) and (1.5) have the following 
exact solution: 

where Co is an arbitrary constant and s, and s, a re  
constants satisfying the condition s, +s ,  = 1, so  that they 
can be expressed in terms of one arbitrary constant 
parameter q: 

We now obtain from Eq. (2.8) the corresponding par- 
ticular solution for the matrix #,,. One can choose for  
i t  the matrix 

Substituting (4.14) into (4.4) we obtain the vector m, and 
then from (4.6), (4.9), and (4.11) we derive the explicit 
form of the solutions. We write out the final result for 

the special choice of coordinates when the arbitrary 
functions a ( t )  and b(7) have the forms: 

This choice means that 

(in these coordinates the solution (4.121, (4.13) takes on 
the usual Kasner form, and by means of a simple trans- 
formation of the time t i t  can be transformed to the 
standard synchronous form). 

After simple calculations we obtain the final form of 
the metric 

where C, and C, a r e  arbitrary constants, and the func- 
tion r i s  defined in the following manner: 

This i s  a solution of the cosmological type which cannot 
be called solitonic in the str ict  sense, since the velocity 
of the soliton here exceeds the speed of light. Indeed, 
let  us consider, e.g., the field component g,, and deter- 
mine the position of i t s  extremum with respect to the 
spacelike variable z for various fixed instants of time t. 
It can be seen directly that for any t the extremum will 
correspond to the same constant value of the function 
r = r, = const. Then Eq. (2.18) shows that the world line 
of the extremum has the equation z = t cosh(ro/2), and 
therefore the speed of this localized disturbance ex- 
ceeds unity. 

Thus, we a re  simply dealing with the time evolution of 
a given initial state of the field. The situation changes 
however if one se ts  C,<O in (4.17). Then the variable t 
becomes spacelike and z takes on the meaning of a time. 
Such a solution i s  already connected with cylindrical 
waves and t is the radial coordinate. If one takes the 
case when the t = 0 axis is free of singularities, i.e., if 
one chooses the Kasner indices in the form s, = 0, s, = 1 
(q = -1/2), then the extremum of the component g,, in the 
radial variable t also corresponds to the constant value 
r = r, = 2C,, the world line of the extremum has the same 
equation a s  in the preceding case, but now the velocity 
of the disturbance i s  smaller than one. Such a solution 
describes a cylindrical solitary wave incident on the 
axis and reflected from it. 

In both cases  the solution (4.17), (4.18) makes sense 
only for  z2 2 t2. On the light cone zZ = t2 the function r 
vanishes and the matrix g coincides with the unperturbed 
particular solution go. The solution for  g can also be 
defined in the region z2 < t2 using the following considera- 
tions, which have a general character and refer to all 
soliton solutions related to the real  poles of the matrix 
x(X, b, 7). A real  pole X = p is always given by the ex- 
pression (4.1) with a rea l  constant w. If, moving along 
the coordinate plane, we go from the region (4.2) into a 
region where (w - @)'< a2, the quantity k becomes com- 
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plex and a continuation of the function g into this region 
will be the solution corresponding to the two-pole situa- 
tion with A = p and X = F, where 

However, for  such a function we have I p l 2  = a2 and the 
poles a re  situated on the circle I A I 2 =  a2. As will be 
shown in the next section, the matrix x i s  identically 
equal to the unit matrix if i t s  poles a re  situated on this 
circle. This implies that in the region (w - ,3),< a2 the 
solution g remains unperturbed and coincides identical- 
ly with the particular solution go. The solution as a 

, whole, while remaining itself continuous, suffers dis- 
continuities of the f i rs t  derivatives on the light cone 
(w -@)'= f f Z  (one can see from Eqs. (2.2), (2.3) that this 
equation yields a pair of straight lines t = const and 17 
= const). This phenomenon requires, of course, addi- 
tional investigation and appropriate interpretation. We 
note that such discontinuities do not occur in the solu- 
tions correspond to a x matrix without poles on the real  
X axis. 

8 5. TWO-SOLITON SOLUTIONS 

In this section we consider the next-complicated case, 
when the matrix x has a complex pole X = p. On account 
of condition (2.12) i t  must also have the conjugate pole 
A =  ji; we thus deal with two poles. The matrix x has the 
form 

According to (3.14) the vector m, is 

where mob is an arbitrary (now complex) vector. The 
matrix M i s  also complex. The vector na can be found 
from the equations (3.16), which a re  now two algebraic 
equations for na and Ea (as before, the index k takes on 
only one value). These equations have the following 
solution: 

where v =  a2/p. Substituting (5.3) and (5.2) into the ex- 
pression R,, =n,mb we obtain the matrix R and from Eq. 
(3.2) we obtain the metric tensor g. We can now calcu- 
late the determinant of g and obtain 

det g=a61p', (5.4) 

where p is the modulus of p expressed in the form 

p=pe*. (5.5) 

Thus, the physical solution g,, of Eqs. (1.3) and (1.4) 
will be 

gph=pza-kg, det g- =a'. 
Ph 

The final expression for g,, is: 

where the vectors na and ma a re  defined by Eqs. (5.2) 
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and (5.3). The function p is defined as before as the 
solution of the quadratic equation, in which w i s  now an 
arbitrary complex constant. Denoting 

we obtain for  the modulus p and the phase cp from (3.4) 
the following system of equations: 

cos cp  = 
(2wt-2B)p . 2wzp 

a"p" 'lncp=- a2-P2 ' 

from which we can see  that for w,# 0 the poles p and ii 
are  either always inside the circle I A I2 = a2 (p2 < a2), o r  
outside i t  (p2 > f f2) .  Fo r  definiteness we shall consider 
that the poles a re  inside the c i rc le  and p 2 1  a2. It can be 
seen from Eqs. (5.3) that as the poles tend to the cir- 
cumference p2 - f f 2  the quantity 1/A tends to zero like 
(p2 - 0,)' and the vector n, vanishes like p2 - a'. It then 
follows from Eq. (5.7) thatg,,-go. Thus, if the poles of 
the matrix a re  situated on the circle p2 = a2 the solution 
g,, remains unperturbed and coincides with the solution 
g o -  

Having obtained the solutions for g andg,, we can now 
(just a s  in the previous case) determine the matrices A 
and B from (3.17) and their physical values A,,, B,, 
from (3.18). Substituting the quantities T r  A; and 
T r  BL into the equations (1.5) we obtain the metric 
component f,, by quadratures. 

In order to illustrate the results we take again for  the 
particular solution go, Jl,, fo the Kasner solution (4.12)- 
(4.14) and consider only two special cases. The f i rs t  is 
the isotropic case, when s, =s, = 1/2, and the second i s  
flat space corresponding to s, = 0, s, = 1 (q = -1/2). 

If s, = s, = 1/2 we obtain the following solution for  the 
metric: 

-ds2=C,av'a-'Q(-dt'+dz2) +aQ- ' ( [p tH- (1 -0 ) '  cos 2~ 

+2p, ( l - a ' )  sin2 cp]dzZ+[p12H- (1-a)' cos 2rp-2p, ( I -a2)s in2 cpldy" 

- 2 p 2 ( l - a ) Z  sin 2cpdxdy). (5.10) 

Here we have introduced the notation: 

The quantities C,, p,, and p, a re  arbitrary constants re- 
stricted by the condition on p, and p, 

The functions p and cp are  determined from the equations 
(5.9) which involve two other arbitrary constants: w, 
and w,. 

If one picks the coordinates in analogy with (4.15), 
i.e., in such a manner that ff = t and w, - j3 =z ,  and if one 
analyzes the behavior of the field components gab as a.  
function of the spacelike variable z a t  different times t ,  
one can see that the solution (5.10)-(5.12) is of the two- 
soliton type and describes the interaction of two local- 
ized disturbances. For  any fixed time t the matrix g 
will tend to the unperturbed solution go = diag(t, t )  a t  the 
infinities z - *a,. F o r  all z we have g,, > t and g,, < t. 
For  sufficiently large values of t (t >> w,) each component 
gab has two extrema in the variable z, which a re  local- 
ized near the light cone z Z =  P. As t decreases these 
local disturbances s tar t  approaching one another, grow- 
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ing in amplitude. As t - 0 (a singularity of cosmological 
character) both disturbances in the components g,, and 
g,, fuse into one concentrated near the origin z = 0, 
reaching at this stage some finite amplitude. The dis- 
turbances in the component g,, do not fuse as t - 0, but 
approach each other to a finite minimal distance equal 
to 2w,. 

By amplitudes we mean the absolute values of the ex- 
trema (with respect to z )  of the components of the matrix 
(g - g0)gi1. One can prove that as t - co the soliton ampli- 
tudes tend to zero, and a s  t -0  i t  is easy to calculate 
them from the asymptotic form of the matrix g corre- 
sponding to the solution (5.10)-(5.12). If a = t and w, - /3 
= z, then as t -0 we getfor g [here we have in mind every- 
where the matrix gM, i.e., the one that appears directly 
in the physical solution (5.10)] 

where s = (1 +P,)/P,. 

We now consider the case of solitons on a flat back- 
ground, when s, = 0 and s,= 1 and when by means of a 
coordinate change the particular solution (4.12) can be 
reduced to the Minkowski metric. In this case the fol- 
lowing choice of the functions a ( f )  and b(q) turns out to 
be convenient: 

Whence, and from (2.2), we obtain: 

The equations (5.9) a re  simplest to solve for this choice 
of the functions a and B. For  the modulus p and the 
phase cp we obtain: 

sin' cp-ch-' t ,  cos' cp=thZ t, @=a' th' (212). (5.16) 

The calculations lead to the following interesting result: 

-ds'-o (-dt'+dz2) +o-I (y+al' sh' z) 
+o-l[y (2b, ch r-a, sh' z)'+shZ z(r2+a,'+b,')'1dy' (5.17) 

-2o-l[y(Zb, ch z-a, sh'z) +a, sh'a (P+al'i-bl') Idzdy, 

where we have used the notations 

m a r ' +  ( b r a ,  ch z)', y= (al'-bl'-m?) ch' t, 

r-n~,+[a,'-b,'-m,']'~ sh t, 
(5.18) 

and the quantities a,, b,, and m, are  arbitrary constants 
satisfying the requirement a: 3 bf + m:. We note that the 
constant w, i s  related to these variables by w: =a; - bf - mf. This solution can be obtained from the known 
Kerr-NUT solution by means of a complex coordinate 
transformation: 

where 8, r ,  cp, and T are  the Boyer-Lindquist coordi- 
nates. For  b, = 0 we obtain the Kerr solution in these 
coordinates with angle parameter a, and the mass  m,. 
The metric (5.17) then corresponds to the case a, hm,. 
This means that the Kerr solution can be obtained by 
means of the inverse scattering problem method dis- 
cussed here, and also directly, by starting from the 

very outset not with the metric (1.1) but with i t s  station- 
a ry  analog, and by choosing for  the particular o r  "back- 
ground" solution the flat space in spherical coordinates. 
Then the Kerr  solution will represent a double station- 
ary  soliton. 

In conclusion we note that in the derivation of the 
metrics considered above we have also used linear 
transformations of the coordinates x ,  y (with constant 
coefficients). These have allowed us to remove some 
inessential constants and to simplify the solutions. 

5 6. ON THE CONSTRUCTION OF SOLUTIONS IN 
GENERAL 

Here we describe briefly a procedure of construction 
of solutions in the general case, when in addition to 
solitons there i s  also a nonsoliton part of the solution. 

We define the numerical function w(X, f ,  7) by means 
of the formula 

It i s  easy to see that, taking (2.2) and (2.3) into account, 

and consequently for an arbitrary matrix n(w) we also 
have D,n(w) = 0 and D,n(w) = 0. 

We now consider in the complex A plane the circle 
I A 1 2 =  ctZ and define on i t  the matrix function Go(A, C, v), 
which in general does not admit of analytic continuation 
off the circle, and depends only on the combination w: 

Putting A = ae i7  on the circle, verify that the argument 
of Go i s  real  and varies from - cu to +a. We require 

Moreover, we shall assume that the matrix Go is real 
and symmetric: 

Let JIo be a particular solution of the equations (2.8). 
We define on the circle I X  l 2  = a2 the new matrix func- 
tion G (A, 1; , 77): 

G(S, E, q) -$oGo$o-'. (6.6) 

Since Db 2Go(w) = 0, we have the relations 

One can now show that the determination of the matrix 
x is closely related to finding the solution to the follow- 
ing problem (the Riemann problem) from analytic func- 
tion theory. One is required to find the matrix function 
x1 holomorphic outside the circle I X  1 2 =  ct2, and the ma- 
tr ix function X, holomorphic inside the circle, with the 
condition that the functions x,, X, should satisfy on the 
circle the condition 

xI=x2G. (6.8) 

Moreover, one can always require that the following 
normalization condition hold: 
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If the matrices x1 and X, a r e  nonsingular in their do- 
mains of analyticity (i.e., their determinants do not 
have zeroes there), and have no poles, then the solution 
of the Riemann problem i s  unique. Acting on (6.8) with 
the operators Dl and D, and making use of (6.7), i t  is 
easy to derive the relations 

1 2 
( D , X ~  + - - X . A . ) X ~ - ~  I-u - (D1x2 +=xA) sl. 

(6.10) 
2 1 

(Dill + Fa X,BO ) x i 1  - ( ~ q ,  + - ,+,xso) %-I. 

Each of these four expressions is defined (by the way 
they were derived) on the circle ] X I 2 =  a', but the equa- 
tions (6.10) also determine their analytic continuations 
onto the whole complex X plane. Since in their domains 
of analyticity the matrices x,, X, a re  nonsingular and 
have no poles, the singularities exhibited by these ex- 
pressions are  obvious: the f i rs t  two have a pole a t  
X = a the latter two have poles at X = -a. This implies 
that the quantities (6.10) have the form 

where A and B a re  matrices which do not depend on A. 
But the equations (6.11) now coincide with the equations 
(2.11), and since the system (6.11) i s  compatible, the 
matrices A and B satisfy the equations (2.4), (2.5). The 
matrix x introduced before equals X, (it i s  holomorphic 
at the point A = 0 and tends to the unit matrix for A - .o) 

and the matrix 

is the metric tensor satisfying the equation (1.4). 

The matrices x1 and X, must also satisfy some addi- 
tional conditions similar to the conditions (2.12), (2.13) 
which follow from the symmetry and reality of the ma- 
trix Go and of the metric tensor g. These condition a re  
now: 

= g = ~ , ( a % ) g ~ $ ( h ) .  (6.13) 

Until now we have assumed that the matrices X ,  and ,yz 
a re  invertible in their domains of analyticity and have 
no poles there. The solution of this regular Riemann 
problem i s  reduced to a solution of a singular integral 
equation, as is well known. If one represents the in- 
verse matrices x;' and x',' in the form 

where the contour I' is the circle I x ~ ' =  ff2, and then 
substitutes these expressions into (6.8), one can see 
easily that the matrix function p(z) satisfies the equa- 
tion 

In this equation 

T- ( I -G)  ( I+G)  -I (6.16) 

is the Cayley transform of the matrix G; the points z 
and z' a r e  situated on the circle of radius a and the in- 
tegral i s  to be taken in the principal value sense. 

A solution of the equation (6.15) yields the purely non- 
soliton part of the solutions of the original equations 
(1.3), (1.4). In this case the meaning of the method con- 
s i s t s  in the fact that the equations (6.15) present con- 
siderably fewer difficulties than the original problem of 
integration of the equations (1.3), (1.4). 

If the Riemann problem i s  not regular and the ma- 
tr ices x1 and X, a r e  degenerate (noninvertible) in their 
domains of analyticity, s o  that x;' and x;' have pole sin- 
gularities there, the solutions will also involve solitons. 
The method exposed here also generalizes without diffi- 
culty to that case. In this case the right-hand sides of 
the expressions (6.14) fo r  the matrices x;', xi1 will con- 
tain an additional term: the matrix U(X, 1 , q )  of the form 

which also enters  a s  an additive term into the expres- 
sion in parentheses in Eq. (6.15). In this case one has 
to add to the equation (6.15) a system of equations which 
determine the matrix S,(f, q) (v, a re  the same functions 
a s  in the purely solitonic case), but this system contains 
(linearly) also the contour integrals which occur in 
(6.14) considered a s  functions of A at the poles X = v,. 
The derivation of these equations i s  simple and i s  based 
on the same method a s  used for  the determination of the 
matrix Rk in the soliton case described above. The form 
of this complete system of equations will not be given 
here. We only indicate that the equations which deter- 
mine pure soliton solutions follow from it  in the special 
case when the matrix G i s  identically equal to the unit 
matrix. If G = I  i t  follows from (6.16) and (6.15) that 
T=O, p =  0. 

We also note that the soliton of the general system of 
equations for @-*m tends to a purely solitonic one. 
Indeed, since the matrix Go is given on the circle 1X 1' 
=aZ, we may se t  in i ts  argument w A =  aef7.  Then w 
= (YCOSY+@ and for @-*m we obtain w-*m, but on ac- 
count of the condition (6.4) this implies Go - I  and from 
(6.6) i t  follows that G -I. But according to what was 
said above, for G - I  the solution goes over into a soli- 
tonic one. A similar phenomenon occurs for  0 -*a 

also. 

'We use a system of units where the speed of light is  one. 
The four-dimensional metric is  written in the form - d 2  
=gikdxid@, where gi, has the signature (- ++ t). 

2 ) ~ n  the language of weak gravitational waves this corresponds 
to the appearance of a second independent polarization state 
of the wave. For a stationary analog of the metric 0.1) 
such a generalization means (under reasonable boundary 
conditions) that rotation has been included. 

'In reality, in the solution (3.14) for the vectors mik)  there 
may also be arbitrary complex factors depending on the 
index k and the coordinates t ,  q .  However, such factors 
reduce to an inessential renormalization of the vectors m f )  
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Quasiparticle excitations in a rotating nucleus 
I. M. Pavlichenkov 
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A method is developed for solving the Hartree-Fock-Bogolyubov equations for the rotational states of an 
axially deformed nucleus with large angular momentum. The method is based on the quasiclassical 
approximation and uses a one-dimensional realization of the group SU(2). Rotational states of two 
intersecting bands (the ground-state band and a band based on a two-quasiparticle excitation from the 
subshell with maximal j on the Fermi surface) are found in the zeroth approximation in the interaction 
between them. The point of intersection of these bands corresponds to vanishing of the energy of the two- 
quasiparticle excitation. The energies of neutron quasiparticle excitations in the i , , , ,  subshell are calculated 
in the model with rectangular potential well. The results of the calculations agree with the experiments. 

PACS numbers: 21.60.Jz, 21.10.Re 

81. INTRODUCTION 

Investigation of rotational excitations is an effective 
method for studying the structure of nuclei. For  exam- 
ple, the existence of pairing correlations i s  most clear- 
ly manifested in the value of the moment of inertia of 
the nucleus.' Investigation of the lowest states (up to 
spin I= 10) of rotational bands made it possible to es- 
tablish the degree of adiabaticity of the rotational mo- 
tion. It was shown that the distortion of the rotational 
spectrum in even-even nuclei is due to the interaction 
of the rotation with the quasiparticle degrees of free- 
dom.' The parameter of this interaction is the ratio 
a! = j , S 2 / ~  of the energy of the Coriolis interaction of a 
pair to the correlation energy A  ( S 2  is the rotation fre-  
quency of the nucleus and j, is the single-particle 
angular momentum of a nucleon on the Fe rmi  surface). 
The parameter a! is A ' / ~  (A is the number of nucleons 
in the nucleus) times greater than the parameter of the 
interaction of the rotational motion with the vibrational 
motion.' 

In experiments in recent years  on the excitation of 
rotational levels in reactions with heavy ions in rota- 
tional bands there has been discovered an S-shaped 
dependence of the moment of inertia on @, this being 
observed at spins I - 12-16. This anomaly of the rota- 
tional spectrum is known in the English literature as 
backbending. The numerous attempts to explain this 
phenomenon reduce ultimately to two alternative hypoth- 
eses: 1) The backbending a r i se s  as a result  of a phase 
transition a t  large angular momenta due to the vanishing 

of the pairing correlation4 of the anisotropy along the 
directions of the symmetry axis of the axially deformed 
nucleus5; 2) the backbending is due to the intersection of 
the ground-state band with a band based on a two-quasi- 
particle excitation whose angular momentum is aligned 
along the rotation axis of the nucleus. In the literature, 
this band has been called the superband. The model 
was proposed by Stephens and Simon.' 

Intersection of bands belonging to different phases 
also occurs in a phase transition. However, the upper 
parts  of the intersecting bands are absolutely unstable 
and cannot exist in nuclei. Upper and lower levels of 
intersecting bands on both sides of the intersection 
point have now been found experimentally7 in the nuclei 
GdlS4, DylS6, and Erle4. The difficulty of detecting upper 
levels due to their being weakly populated in electro- 
magnetic E2 transitions can be successfully overcome 
if the method of direct Coulomb excitation i s  used. As  a 
result, i t  can now be regarded as a reliably established 
fact that there i s  no phase transition in the backbending 
region 

On the other hand, the nature of the superband has not 
yet been sufficiently well established. In the model of 
Stephens and Simon, it is a band based on an excitation 
whose angular momentum is completely decoupled from 
the deformation. Such bands really a r e  observed in 
transition nuclei with small  deformation. However, 
backbending a lso  exists  in strongly deformed nuclei. 
This forces u s  to look for  a more general explanation 
of the phenomenon. We see  such an explanation in the 
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