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Explicit analytic formulae for two-dimensional solitons are given. It is proved that, unlike one-dimensional solitons,

two-dimensional ones do not interact at all.

Non-linear quasi-one dimensional waves (with y
much larger than x) in a weakly dispersive medium
are described by the Kadomtsev-Petviashivili equation

f1]:
O(uy + 6uu, +u,,,)/ox = — 302 2)?1(/2))/2 . (1)

The sign of the parameter —a? coincides with that of
the dispersion parameter 32 c/0k2. _

It was shown that eq. (1) could also be formulated
for the inverse scattering problem [2, 3].

It was already noticed [1] that plane solitons are
unstable under transverse perturbations in a positive
dispersion medium (exact solution of the stability
problem is given in ref. [4]). This observation led to
the speculation that there are stable two-dimensional
solitons localized in the x-y-plane [S] and their profiles
are numerically found [5].

In this paper we present analytic expressions for
two-dimensional soliton solutions in terms of rational
functions of x and y, as well as for arbitrary systems
of solitons. In our study of this problem we are largely
encouraged by ref. [6], where singular rational solu-
tions of the KdV equation are found.

We construct our exact solutions as follows [2].
The equation

K, x',y, )+ Fx,x',y,0)

X
+ [ Kex",y, 0 Fe", %', y,0dx"=0,  (2)

— 00

where F'is an arbitrary solution of the system of equa-
tions

2 2 3 3
QE.{.@_F'_.a_E:O’ E2:_'4.4a__F‘..|.4<?_Fv_=0’(3)
W a2 ax? ot ax3 ax"3

implies that function
u(X,y,f)=—2 aK(X,X,y,t)/ax (4)

obeys eq. (1). In particular, putting & = 1 and choosing
for F the form
N

F= nz_a cn(y5 t) exp(pnx + qn'x,) ’

where

(v, 1) = c,(0) exp[(—p2 + gDy — 4(p3 + )1 ,

we arrive at the degenerate kernel of eq. (2). With eq.
(4) we obtain
2

u=2—a—1ndetA, ®)
ax?
where 4 is an N X N matrix
+
Apm =8, tc,(v, 1) e(pn qn)x/pn tqm - (6)

This solution has first been found in ref. [2].. It des-
cribes the N-plane interaction and does not decrease
in directions in the x-y-plane.

Formulae (5) and (6) holds for arbitrary complex-
valued variables and parameters involved. Note that
after substitution y = iy one gets from the solution of
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eq. (1) with &2 = 1 a solution of eq. (1) with a2 = —1.
Convenient variables are p,, + g, = k,, P, — 4y = Vp
and c,,(0) = —a,k,,. In these variables 4 takes the form
K —Km

Yn = Vm
Apm = exp (‘ 7 X + 3 “Bum »

where

2a,K,,

B 6

nm = Onm —
Vn_Vm+Kn+Km

X exp{K(x — v,y — 33 + k)] .

Evidently, det 4 = det B.

Let us now take the limit for k,, = 0, expanding
a,=1 -k, + O(K,Z,). This results in det B =
M(—«,,) det B, where B is a matrix of the form (after
substitution y = iy)

Enm =8, —iv,y — &, — 3V%,l‘)

2
+(1_5nm)'vn__—vm . (7)
Thus, the function
u =292 In det B/ox? (8)

is a rational solution of eq. (1) with a? = 1.

In the general case this function is complex-valued
and singular. However, if for N = 2 we put vy = —v,
£, = £, we arrive at
det B=4(v; +7)) 2+ Ix —ivyy — & — 332,

i.e., u is a nonsingular and rea! function with good
behaviour at infinity, u ~ (x2 +y2)~1, It corresponds

206

PHYSICS LETTERS

14 November 1977

to the two-dimensional soliton with velocity v=
(vx3 Uy)y UX =3|V1|2,Uy=-—6 Im Vl. )

In general the case the soliton is nonsingular, pro-
vided that N =2k, and v, 5 = —V,,, Eup = &y e,
matrix B is of the block structure:

~ (VX
%)
A

where y is the matrix of the form given by eq. (7), n,
m < k and where X,,,,, = 2/(v,, + v,,)). Since this form
of B implies that det B> 0, the corresponding func-
tions are nonsingular.

The so constructed solutions describe collisions of
k two-dimensional solitons. The in- and out-fields at
x= 3Iv,-|2 t+xq,y=—61Imuy;t+y, provide evidence
of the above fact. These states are given by superposi-
tions of isolated solitons. A fascinating feature of our
solutions is that the corresponding phase shifts, familiar
from the scattering of one-dimensional solitons, are
exactly zero. Thus, two-dimensional solitons do not
interact at all.
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