
Spin-wave turbulence beyond the parametric excitation 
threshold 

V. E. Zakharov, V. S. L'vov, and S. S. Starobinets 

L. D. Landau institute of Theoretical Physics, USSR Academy of Sciences. Chernogolovka (Moscow District) 
Usp. Fiz. Nauk 114, 609-654 (December 1974) 

The nonlinear stage of the parametric excitation of spin waves in ferromagnetic dielectrics is reviewed. The 
main nonlinear mechanism which limits the amplitude of the exponentially growing waves is the "pairing" 
of waves with equal and opposite wave vectors, which leads to the violation of phase relationships. This 
effect is described in terms of a Hamiltonian which is diagonal in the wave pairs; The corresponding 
approximation is called the S theory. Within the framework of this theory, the distribution of the excited 
waves in k space is singular: the waves lie on individual lines or points. Consequences of the S theory and 
their experimental verification are discussed in detail. Collective oscillations of a spin-wave system and the 
origin of the observed self-modulation of their amplitude are also considered. 
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1. INTRODUCTION 

There has been increased interest during the last 
decade in phenomena taking place in nonlinear media 
,9~;ing ,the excitation and interaction in them of finite­
amplitude waves (see, for example, the review(' 1). One 
can even speak of a new branch of physics, namely, the 
physics of waves in nonlinear media, in which wave 
processes in plasmas, ferromagnets, hydrodynamics, 
and a large part of nonlinear optics are treated from a 
unff1ed point of view. A very common situation in non­
linear media is the simultaneous excitation and interac­
tion of many noncoherent oscillatory degrees of freedom, 
where the energy distribution of these degrees of freedom 
is such that the system is not in any sense close to the 
state of thermodynamic equilibrium. 

Such situations require statistical methods for their 
description, but are not fundamentally amenable to the 
traditional methods of statistical physics, and can be 
collectively described by the phrase "wave turbulence." 
When the phases of the individual waves can be looked 
upon as statistically independent (the minimum require­
ment for this is that the degree of nonlinearity is small), 
one speaks of weak turbulence. All other cases are clas­
sified as strong turbulence. From this point of view, 
"classical" turbulence must be looked upon as the limit 
of strong turbulence. The concept of "wave turbulence" 
(both weak and strong) defined in this way combines a 
multitude of different physical phenomena, the systemat­
ic study of which has only just begun. 

Wave turbulence usually appears as a result of the 
development of some kind of instability. The present 
paper reviews theoretical and experimental results 
on a particular type of weak wave turbulence which is 
the result of the development in the medium of paramet-
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ric instability (parametric resonance). A characteristic 
feature of this type of turbulence is that, in the simplest 
case, it is a purely dynamic problem, and considerable 
progress can be made toward its solution, The present 
review is largely concerned with the work of its authors. 
Other work is represented only to the extent to which it 
is relevant to the basic physical ideas developed in this 
review. 

Parametric instability appears during the periodic 
variation (in time) of the parameters of the medium, or 
during the propagation through the medium of large-amp­
litude monochromatic waves. Since all the experimental 
results which we shall describe are concerned with the 
parametric excitation of spin waves in ferromagnets, we 
have included the phrase "spin waves" in the title of 
the paper although this type of turbulence can be real­
ized in antiferromagnets, in plasmas, on the surface of 
liquids, and in other media. 

The phenomenon of parametric resonance in an os­
cillator with one degree of freedom was discovered at 
the end of the 19th century ~he Melde experiment) and 
was explained by Rayleigh [2 

• In the 1920s, parametric 
resonance was intensively investigated in connection 
with the newly developed subject of radio engineering. 
This period saw the development of the first paramet­
ric oscillators and amplifiers, and also the virtual com­
pletion (mainly by L. I. Mandel'shtam and his collabor­
ators) of the development of the nonlinear theory of 
parametric resonance in systems with a small number 
of degrees of freedom. 

The question of parametric resonance in a continuous 
medium arose in the 1950s in connection with the work of 
Bloembergen, Damon and Wang£31 on ferromagnetic res­
onance at high power levels. 
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This work lead to the discovery of "additional" (as 
compared with the case of small amplitudes) absorption 
of the energy of uniform precession of magnetization, 
which has clearly defined amplitude threshold. 

Suhl (4 J explained this phenomenon as parametric in­
stability of uniform precession to the excitation of a pair 
of spin waves with frequencies w1, Wz and wave vectors 
kt and k2. He was the first to formulate the conditions for 
parametric resonance in a continuous medium. In con­
trast to the previous condition for parametric resonance 
for an oscillator, namely, nwp = 2w, the new conditions . 
take the form 

(1.1) 

where wp is the uniform precession frequency. Since 
k2 =- k1, parametric instability results in the creation 
of a pair of waves with equal and opposite wave vectors. 
The number n determines the "order" of the instability. 

In 1960, Morgenthaler(sJ and, independently, SchWmann, 
Green, and Milano(eJ predicted (and this was subsequently 
confirmed experimentally) the phenomenon of "parallel 
pumping," i.e., the parametric excitation of spin waves 
by an alternating magnetic field with polarization parallel 
~ the direction of magnetization. In the course of the 
.!lowing years, parallel excitation became one of the 

main methods of generation of spin waves in ferromag­
nets. 

Studies of parametric instabilities in plasmas and in 
nonlinear optics began in the 1960s. In 1962, Oraevskit 
and Sagdeevf7 l used the example of Langmuir and ion­
acoustic waves in plasma to develop the theory of decay 
instability (first order instability) of finite-amplitude 
monochromatic waves in a nonlinear medium. For an 
initial wave of frequency w and wave vector k, this in­
stability leads to the excitation of a· pair of waves, the 
frequencies and wave vectors of which satisfy the con­
ditions 

(1.2) 

These conditions are an obvious generalization of 
(1.1) for ri. = 1 in the case of first-order parametric in­
stability. This instability can be looked upon as the co­
herent decay of the initial quanta (k, w) into pairs of 
quanta (k1 Wt, k2W2), and the relationships given by (1.2) 
can be regarded as the conservation laws for this decay. 

A Stimulated Raman scattering (SRS) and stimulated 
... andel'shtam-Brillouin scattering (SMBS) were predic­

ted and confirmed experimentally in optics at more or 
less the same time. These phenomena are in fact the 
decay instabilities of an electromagnetic wave, leading 
to the excitation of another electromagnetic wave and 
optical (in the case of SRS) or acoustic (in the case of 
SMBS) phonons (see for example[8 l). The conditions 
given by (1.2) have been referred to in nonlinear optics 
as the synchronism or locking conditions. 

A substantial number of papers on parametric insta­
bilities in continuous media have appeared in the litera­
ture in the course of the subsequent years (see the 
review£91). Published investigations have covered, for 
example, the parametric instability of a uniform elec­
tric field in plasma [lol, the second-order decay instabil­
ity of finite-amplitude waves (ul, and the instability of 
waves on the surface of a liquidL12-141 • The linear theory 
of parametric instabilities in uniform continuous media 
cari now be regarded as essentially complete. 
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The situation is quite different in the case of the 
nonlinear theory. Wave turbulence appears as a result 
of the development of parametric instability in a con­
tinuous medium (if the linear dimensions of the system 
are sufficiently large in comparison with the wavelength 
of the excited waves). However, the character of this 
turbulence is strongly dependent upon each specific sit­
uation, the form of the dispersion relation, and the 
nonlinear and dissipative properties of the medium, 
which are quite different in different cases, so that one 
can hardly hope to develop a general theory of wave tur­
bulence. Quite frequently, for example, in SRS or SMBS 
of electromagnetic waves entering a half-space, the 
turbulence cannot be looked upon as statistically homo­
geneous, and this introduces an additional complication. 

Nevertheless, it is possible to isolate a class of prob­
lems in parametric turbulence for which a general ap­
proach can be employed. This class includes cases 
where the excitation is produced by a spatially homo­
geneous field k = 0 or a wave with a long wavelength 
k « k1 , k2, so that turbulence may be looked upon as 
statistically homogeneous. A further requirement is that 
the dispersion relations for the medium should exclude 
first-order decay processes (1.2) for parametrically 
excited waves. It is precisely this situation which occurs 
in most experiments on the parametric excitation of 
spin waves in ferromagnets. It is important to note that 
these experiments belong to a class of the "purest" ex­
periments in the physics of nonlinear waves because of 
their relative simplicity (in comparison, for example, 
with plasma or nonlinear-optics experiments), and the 
high quality of the ferromagnetic single crystals em­
ployed. A particularly suitable medium for experimental 
study is the YIG crystal [the garnet (Y3 Fe5012)L 15 ' 16 l) 
which has many unique properties, including a completely 
ordered magnetic structure, high degree of uniformity, 
record value of the acoustic Q factor (107 at 106 Hz), 
and weak spin-wave damping. Most of the experimental 
data described in this review relate to YIG. 

Experimental data on spin turbulence have been 
accumulating since the beginning of the 1960s. First 
models were introduced at about the same time and were 
designed, above all, to account for the mechanism which 
restricts the growth in the amplitude of unstable spin 
waves. 

The first step in this direction was made in Slihl's 
paperl4 l where it was shown that the principal amplitude­
restricting mechanism in the case of excitation of spin 
waves by homogeneous precession of magnetization is 
the reaction of these waves on the pump, which leads 
to the "freezing" of the amplitude at the threshold level. 
However, attempts to explain the phenomena observed 
in the case of parallel pumping have encountered con­
siderable difficulties. The use of the various methods of 
restraining parametric instability, which were traditional 
for parametric resonance, in systems with a small 
number of degrees of freedom (nonlinear damping and 
nonlinear frequency detuning) has turned out to be in­
adequate. In most cases nonlinear damping is too weak, 
and too sensitive to the effect of the constant magnetic 
field, to explain the observed spin-wave level, whilst 
nonlinear frequency detuning does not, in general, res­
trict parametric resonance in a continuous medium, 
since it is always possible (whatever the amplitude) to 
find waves whose renormalized frequencies satisfy the 
resonance conditions exactly. 
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An important step toward an understanding of spin 
turbulence was made by SchlOmann (17], who drew at ten­
tion to the fact that the nonlinear interaction between 
the parametrically excited waves must be taken into 
account, and suggested that the main contribution to 
this interaction is due to nonlinear processes which 
satisfy the conditions 

(1.3) 

and do not take the waves out of parametric resonance. 
Bierlein and Richards (181 then showed that this type of 
interaction must be taken into account if one is to ex­
plain the observed frequency doubling for spin waves. 

In 1969, the present authors showedr 191 that processes 
of the type described by (1.3) conserve phase correlation 
within each parametrically excited pair of waves with 
opposite wave vectors, and lead to a self-consistent 
change in the resultant phase of the waves in each pair. 
This change in the resultant phase leads to a weakening 
of the coupling between the spin waves and the pump and, 
in the final analysis, to a restriction on their amplitude. 
The excite.d waves are then precisely those for which 
the renormalized frequencies satisfy exactly the para­
metric resonance condition. This "phase" mechanism 
of amplitude limitation is specific for continuous media 
and is realized in pure form only in systems with very 
large linear dimensions (in comparison with the wave­
length). It is the principal mechanism limiting the amp­
litudes of spin waves in the case of parallel pumping. 

Processes of the form described by (1.3) together 
with the necessary phase relationships are conveniently 
investigated by diagonalizing the Hamiltonian for the 
wave interaction, which is analogous to the BCS approxi­
mation in the theory of superconductivi tv. The theory 
based on this diagonalization procedure r20 1 was subse­
quently called the S theory. This theory and its generali­
zations subsequently resulted in considerable progress 
in the study of spin-wave turbulence. It provided a 
qualitative explanation of many of the observed effects, 
and gave satisfactory quantitative agreement with ex­
perimental data [21

- 241 • 

A serious test for S theory was the question of the 
auto-oscillation of magnetization during the parametric 
excitation of spin waves. As far back as 1961 Hartwick, 
Peressini, and Weissr251 discovered that parallel pump­
ing lead, under certain conditions, to the establishment 
not of a steady state·but to oscillations in the magneti­
zation about its mean value. During the subsequent years 
these auto-oscillations were intensively investigated and 
it was found that their properties, i.e., their amplitude 
and spectral composition, were very sensitive to all 
the experimental parameters, namely, the pump power, 
the magnetic field, the shape and size of the specimens, 
and so on, and this substantially impeded the interpre­
tation of these results. A particularly strange feature 
was the sensitivity to the crystallographic orientation 
of the magnetization of YIG (a crystal which exhibits 
weak cubic anisotropy). The intensity of the auto-oscil­
lations when the magnetization lay along the (111) axis 
exceeded by a factor of 100 their intensity when the mag­
netization lay along the (100) axis. Various mechanisms 
were then introduced to explain the origin of the auto­
oscillations (see Sec. 5 of the present review), but none 
of them succeeded in satisfactorily explaining this pheno­
menon. 

The S theory attributes auto-oscillations in magneti-

898 Sov. Phys.·Usp., Vol. 17, No.6, May-June 1975 

zation to the instability of collective oscillations of a 
system of parametric spin waves. They can be treated 
as "secondary turbulence" or "second-sound turbu­
lence" against the background of the stationary state of 
the parametrically excited waves. This has lead to. an 
explanation of some of the more important propertieS 'lrlt 
of the auto-oscillations and, in particular, their giant 
anisotropy in cubic ferromagnets [261

• 

When collective oscillations are stable, and do not 
.lead to auto-oscillations, they can be excited by com­
binational resonance between the pump and a weak sig­
nal of similar frequency. An experiment of this kind has 
been carried out[271 and demonstrated the reality of the 
collective oscillations. On the whole, the S theory and 
its consequences have enabled us to understand in gen­
eral terms, the properties of spin turbulence in ferro­
magnets, although further experiment s will undoubtedly 
reveal new phenomena which will require further im­
provements of this theory. 

As an example of this type of phenomenon we mention 
the hard excitation of spin waves in ferromagnets, dis· 
covered by Le Gall, Lemire and Sere(261

• This phenome­
non was subsequently found in antiferromagnets as wellr29 l, 
The S theory and its experimental verification is the main 
subject of the present review (Sees. 2-4). Section 5 is 
devoted to the further development of the S theory and, 
in particular, to its fundamentals. In the concluding sec­
tion, we discuss associated topics and possible future 
developments. 

2. PARAMETRIC INSTABILITY IN FERROMAGNETICS 

(a) Classical Hamilton formalism for ferromagnets. 
There are several methods of describing the spin-wave 
system of ferromagnets. The most highly developed is 
the method of second quantization, first used by Holstein 
and Primakoffr301 to describe the temperature dependence 
of magnetization near the absolute zero. In the case of 
parametric excitation of magnons, their occupation num­
bers turn out to be greater than unity by several orders 
of magnitude, so that it is natural to use the classical 
equations of motion for the magnetic-moment density 
to describe this phenomenon (see, for example/311): 

(2.1) 

where oW /liM is the variational derivative of the energy 
density of the ferromagnet and g is the gyromagnetic 
ratio. Suhlr41 was the first to use Eq. (2.1) for the analysis 
of the parametric excitations of spin waves and the asso­
ciated nonlinear phenomena. However, the parametric­
excitation problem is not peculiar to ferromagnets, and 
it is desirable to use a general approach, applicable to 
a broad class of weakly interacting wave systems. The 
most convenient method for this purpose is the classical 
Hamilton formalism. This is based on the canonical 
equations of motion 

oa (r, t) . M!C 
--a~-=-t1)(ii'"", (2.2) 

where Jt"is the Hamiltonian of the medium. 

In the case of ferromagnets, direct calculations showf321 

that Eq. (2.1) assumes the canonical form given by (2.2) 
when the following substitutions are introduced: · 

M.=!of -ga.a•. (2.3) 

In terms of the variables a, and a* the energy of the 
ferromagnet is a function of the Hamiltonian. The trans-
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formations defined by (2.3) are the classical analog of 
the Holstein- Primakoff transformation. [JoJ They were 
first used by Schlomann [171 in the present context. 

In a spatially homogeneous medium, the structure of 
the Hamiltonian can be substantially simplified by making 
use of the plane-wave representation 

Ok = J a (r) e-ikr dr. (2.4) 

Since in the case of parametric excitation of spin waves 
the deviation of the magnetic moment from equilibrium 
is small (gl al 2 « M), we can expand the Hamiltonian 

. into a series in powers of ak and ak. The quadratic part 
of the Hamiltonian£' is diagonal in k: 

For example 
1 

in a cubic ferromagnet magnetized along 
the (111) or \1QO)axis, 

Ak =gil- wl>JNz + Wex (ak)' + I B,. I+ aw.," 

Bk ={wM sin2 0e2t~, 

a={-~, Mi!(100): 

3 , Ml\(111), 

where wM = 4rrgM, H is the magnetic field, wex is the 
"exchange frequency" (hwex Rj kTc), Wa/g is the crys­
tallographic anisotropy field, 9 and cp are the polar and 
azimuthal angles defining the vector k in a spherical 
coordinate system whose z axis lies along M, and Nz is 
the demagnetization factor. 

The problem can be simplified still further by using 
the canonical transformation from circular variables 
ak to elliptic variables bk: 

Ok =u11A + VJ.b':.k, !Iii< 1'-1 VJ.I2 = 1, 

which must be chosen so that the quadratic part of the 
Hamiltonian becomes diagonal 

where wk = V(A~ -1Bkl 2)112 is the dispersion relation for 
the spin waves. In terms of these variables 

(2.5) 

For cubic ferromagnets 

This transformation is possible if IAkl > I Bkl, i.e., 
H > 47TNzM. In the opposite case, W2 (0) < 0 and the fer­
romagnet is unstable against the appearance of domain 
structure. 

It is obvious that the variables bk satisfy the Hamil­
ton equation 

• . Mit 
bk=-llibl::' 

These variables are the normal variables of the lin­
ear theory, and are particularly convenient for nonlin­
ear problems, Specifically "linear" difficulties asso­
ciated with this model of the medium are overcome in 
the course of the search for the variables bk. In terms 
of these variables, the linearization of the equations in 
motion is a fairly trivial task: 
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bk+iwk~=O. 

All the "linear" information which is essential for inves­
tigating nonlinear problems is contained in the disper­
sion relation for the waves. All the additional informa­
tion about the interaction between the waves is contained 
in the remaining coefficients of the expansion of Jf in 
powers of bk: . · 

QJ8 = al8"' + QJ8<3t + QJ8<4> + . . . (2, 7) 

The Hamiltonian£31 describes the three-wave processes: 

rf/C131 = ~ (Vf. 23brb2b3 + IC. c. ) f. (k, -k, -k3) 
I, 23 ' (2,8) 

+{ ~ (Uh3b1b,b3 +K.c.)i\.(kd·k,+k.), 
tU . 

whilst the Hamiltonian £'141 describes the fou~-wave 
processes: 

&!£"'={ ~ W12,,.b!b!b.b,i\.(k,+k.-k.-k,); ·. (2.9) 
12,34 

where b1 = bk1 and so on; V 1123 = V (k1, k2, k3). The coef- .: 
ficients V 1,23 1 U 123 1 W u,s• are symmetric with respect 
to the interchange of the subscripts on the same side of 
the comma. Since the Hamiltonian is Hermitian, we also 
have 

(2.10) 

The physical significance of each of the terms in the 
Hamiltonian can readily be understood by recalling that the 
canonical variables bk and b' are the classical analogs of 
the Bose operators. For example, the term proportional 
to V 1 , 2z describes, together with its complex conjugate, 
the interaction of three-waves of the form given by (1.2). 
Henceforth we shall assume, unless stated to the con­
trary, that processes of this type are forbidden by the 
form of the dispersion law in the region of k space in 
which we are interested. 

When an external energy source is present, i.e., the 
pump field h(t), the Zeeman component M ·his added to 
the energy of the ferromagnet. The Hamiltonian fp cor..:' 
responding to this interaction can also be expanded in 
powers of bk: 

QJ8 p = &'t~' + &'t~" + ... 
The first term is 

QJ8<~> = U (h,. + ihu) b0 + C .C. (2.11) 

and describes the well-known phenomenon of ferromag­
netic resonance which involves the excitation of homo­
geneous precession of magnetization with complex amp­
litude bo by the transverse magnetic field. The next term 
in the expansion,£'~2 >, is of .the greatest interest to us 
and describes the parametric excitation of spin waves 
by the longitudinal magnetic field (parallel pumping).: 

al8J," r-=+ ~ &'Cpk =} ~ (h (t) Vkb~b!.k+ c.c.), h= t:,. (2.12) 
k k . 

The mechanism responsible for the excitation of spin 
waves by an alternating magnetic field parallel to the 
magnetization can be understood in terms of simple 
geometric ideas. Because of the dipole-dipole interac­
tion and the crystallographic anisotropy, the magneti­
zation precesses at each point over an elliptic cone. 
Since the length of the vector M remains constant, the 
base of the cone is not a plane, so that we have an alter­
nating longitudinal component (the z component) of the 
vector M which varies at twice the precession frequency. 
It is clear that these oscillations can be excited by a 
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magnetic field of the necessary frequency, polarized 
along the z axis. 

In corpuscular language, the Hamiltonian given by 
(2.12) describes the decay of an external-field quantum 
(with zero wave vector and energy flwp) into two mag­
nons with wave vectors k and - k and equal energies 
nwk = fiw_k = 1/21iwp· We have omitted from (2.12) 
terms ~h(t)bkbk for which the laws of conservation of 
energy and momentum are not satisfied. 

The parametric excitation of spin waves by homogen­
eous precession of magnetization, which is described 
by terms of the form bobJ.tb.!k and b~bk_b~k (first and sec­
ond order Siihl ~rocesses), is included in the Hamilton­
ians £'<3 1 and£' 41 . The next expansion terms are of the 
form hbtbrbt, and so on. They describe explosive spin­
wave instabilities which are not of interest to us. 

(b) The equations of motion. Considera ferrop1agnet 
placed in an alternating magnetic field h(t) = he-lWpt 
which is polarized along the direction of magnetization. 
In this case, homogeneous precession is not excited and 
the Hamiltonian for the system is of the form 

Q!e = 2; wkbkb~ +} 2; (hVke- 1"'P1b~b~k+ C. C.) +QJetnh (2 .13) 
k k 

where £'int =£'<31 +£'' 41 . Since all parametric waves have 
close or equal frequencies (wk"" 1/2Wp), we can sim­
plify the interaction Hamiltonian Jt"int oy retaining in it 
only the four-wave terms describing the interaction of 
waves with conservation laws in the form 

(2.14) 

The latter do not, however, mean that the three-wave 
Hamiltonian can be ignored altogether. Its matrix ele­
ments are large in comparison with the four-wave case 
and, therefore, in general their contribution to the amp­
litude for the four-wave processes must be taken into 
account in the second order of perturbation theory. This 
leads to the renormalization of the matrix elements for 
the four-wave Hamiltonian: 

Wu,"' _,.. Tu, •• = Wu, .. +terms of the order of I V \'lo,P 

(see, for example/321). For cubic ferromagnets, both 
contributions to the coefficients T 12, 34 are of the same 
order of magnitude[221 . Therefore, the Hamiltonian des­
cribing the parametric interaction between the waves 
must be chosen in tlie form 

o76'tnt=} 2; Tt2.31bib:!b,b,l1(kt+kz-·ka-k4). (2.15) 
12,34 

It is of course necessary to take into account the in­
teraction between the parametric waves and the reser­
voir of the remaining spin waves and phonons. This in­
teraction leads to the damping of the parametric waves, 
which is usually taken into account phenomenologically 
by introducing a dissipative term into the canonical 
equations of motion: 

(2.16) 

There may be some doubt as to the validity of this pro­
cedure for the description of coherent wave systems in 
which phase relationships ate significant. This proce­
dure was justified in [331 for parametric waves with the 
aid of the diagram technique, and it was shown that the 
dumping rate Yk in (2.16) can be calculated from the 
usual kinetic equations. This does not apply, however, 
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when the wave damping is due to scattering by inhomo-
geneitiesY41 · 

Using the explicit form of the Hamiltonian given by 
(2.13), withJt'int given by (2.15), we can write the, dynamic 
equations (2.16) in the form '·' ' ' 

( ,:e +Y~+I~>k) bk+thVke- 1"P1b~k (2.17) 

=- 2; Tk,kt.k2,k 3~ 1~1bk,ti (k+k,-k2-k3). 

2, 34 

These equations form the starting point for the analysis 
of the behavior of spin waves beyond the parametric 
excitation threshold. 

(c) Excitation threshold and amplitude-limiting mech­
anisms. The parametric excitation threshold can be cal­
culated directly from (2.17). In the linear approximation, 
these equations split into independent pairs of equations, 
and when the "fast" dependence on time 

i(l)pt 

ck (t) = bk (t) e-.-
is eliminated, they assume the form 

(;1 +i'k+i ( ffik- "';) J ck+thVkc~k=O, 
i (hVk)*ck +[ ~ +yk-i ( ~>k- 7)] C~k =0. 

Assuming that ck, c_k ~ vk we have 

Vk= -yk+[!hVki2-(wk- "'; )"J"2
• 

(2.18) 

(2.19) 

(2.20) 

The minimum threshold co~responding to parametric 
resonance 

(2.21) 

is determined by the condition 

I hV~ I= y~, (2.22) 

which has the simple interpretation of an energy balance 
condition. In fact, the energy flux W. which is transferred 
from the pump to the pair of waves ± k is given by 

'V aa-ev~ . (hV • • ) 
r += --a1-=!<Dp kCkC-k-C.C. (2.2 3) 

= 21 hVk l ffiv I ck I' sin (ij;k -'h); 
where ck : I ckl ei<Pk, ifik = rpk + rp -k is the phase of the 
pair, ana ifik =arg(hVk>· On the other hand, the energy 
dissipated by the pair per unit time is given by 

At the threshold w. = W-. The maximum energy flux and 
the lowest instability threshold is obtained for the pair 
with the most convenient phase relationship 

(2.24) 

We then again obtain equation (2.22) for the threshold. 

The parametric resonance condition can obviously be 
simultaneously satisfied for a large number of pairs 
whose wave vectors lie on the surface (2.21). The mini~ 
mum excitation threshold h1 is obtained for pairs for 
which the ratio Yk/!Vkl is a minimum: 

I . i'k 
''= mmw. (2.25) 

For example, in the case of isotropic ferromagnets [s, 61 

(2.26) 

(the angles e and rp are, as before, the azimuthal and 
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polar angles in k space), and when Yk = y the first to be 
excited are the pairs with 0 = 11'/2, i.e., those on the 
"equator" of the resonance surface. When lhVk! > Yk• 
the amplitude of the pairs begins to increase exponen­
tially with growth rate (2.20). In particular 

ck{l)=ckexp (vkt-t ~k), 

C-k(I)=CtCXp (Vkt-1 ~k ), 

and it follows from (2.19) that 

- 2•1.:-"' 
. cos('Jik-'h)= :qwJ. (2.27) 

This means that, during the linear stage of parametric 
instability, a definite relationship is established between 
the phases of the waves in a pair. In particular, the phase 
relations given by (2.24) are satisfied in the case of the 
parametric resonance (2.21). The phase correlation of 
waves with equal and opposite wave vectors can be ref­
erred to as. "pairing" by analogy with superconductivity, 
However, in contrast to superconductivity, the physical 
reason responsible for wave pairing is the presence of 
the pum.P which picks out pairs of waves out of the initial 
phase chaos for which the instability growth rate is a 
maximum. We shall show later that phase correlation is 
complete during the nonlinear stage of instability devel~ 
opment. This means that although the quantity ck is 
random, the quantity ckc-k is dynamic, and 

(ckc•k l = cltc...k, (lj>k ) = 1i't· 

Let us now consider possil;lle nonlinear mechanisms 
which limit parametric,instability. The simplest mech~ 
anism of this kind is nonlinear damping, i.e., the depen­
dence of y k on the s~uares of the amplitude of the para­
metric waves lck( 2 r3 

'
361

: 

'\'1< =Yo+'ll 2} I ck·(• • 
. ·k' 

The stationary wave amplitudes are given by the well­
known energy balance condition hVk = Yk· We shall 
choose the following simple dependence for qualitative 
analysis: 

In that case , 

(2.28) 

and the phases iflk are found from the condition of para­
metric resonance (2,21), i.e., they are shifted by l/21T 
~elative to the pump phase, ln accordan9e with (2.24). 

Unfortunately 1 the simple nonlinear damping mechan­
ism is not adequate in most cases for the explanation of 
the observed level of spin waves (see Sec. 3 for further 
details). Other mechanisms may be based on the devia­
tion of the phase of the excited spin waves from the op­
timum phase for which oiflk = ¢k- ~k and sin 151/Jk = 1. 
This is essentially the mechanism put forward by 
Monosov[37J whQ assumed that auto-oscillations of mag­
netization play an important role in limiting the spin­
wave amplitude, and are frequently observed experimen­
tal,ly. If the auto-oscillations develop against a back­
ground of a state with sin o¢k = 1, they lead to a periodic 
or quasi-periodic variation in the angle ~l/lk and, on the 
average, reduce sin ol/!k and with it the energy flux from 
the pump to the spin-wave system. In actual fact, the 
auto-oscillations do not appear in many cases. However, 
even when they do appear, the mean value about which 
the oscillations with phase l/Jk take place is different 
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FIG. 1. Complex plane of the pump . 
vectors: hV-external pump, Sl:lckfle·¥-

1< • 

reaction field of the system of pairs, 
P-sclf·consistent pump. 

'' . 
from 1/21f, and the auto-oscillations have no' substantial 
effect on the spin-wave amplitudes[u, 33 1. 

The deviation of l{lk from 1/21f and the restriction ori 
the spin-wave amplitude are due to the interaction be~ 
tween the spin waves. The phase correlation which is 
always present in a system of parametrically excited 
waves ensures that, even when the phases of the indi­
vidual spin waves are stochastic, the Hamiltonian des­
cribing their interaction contains a term which leads 
to the appearance of an "effective pump." This term 
can be taken into account by introducing the following 
substitutions in the linearized equations: 

hVk• ~ Px ~Wk+ ~ Skk'cx;c·k'• , ,, ... , ,(2.,~~) 

where S!Qt•= Tk,-k;k'-k! In the simplest case; where 
vk = v, l{lk = 0, and skk' "'s, symmetry considerations 
show that the phases,of all the pairs are equal, i.e., 
l/Jk =!{!and 

P=i!V +S L] I ck I' o:xp (- i>jl). 
k 

This equation is conveniently represented graphically on 
the complex plane of the pump vectors {Fig. 1). It is then 
important to remember that, ln the steady state, we have 
the excitation of waves which are in resonance with the 
resultant pump P, i.e., the vector Pin Fig. 1 should be 

· perpendicular to the vector Slilckl 2exp(-i!p). From the · 
Pythagoras theorem, · 

(2.31) 

and the energy balance condition I PI = y it follows that'" 
the total pair amplitude is · 

""lc.l' ~ Li t = I Sf • 
I( 

The phase iJ! can also be easily determined from Fig. • 
1; namely 

If we compare the second equation in (2.32) , 
with the energy balance __ condition (2.22) for honinter,:. · , 
acting waves, we see that wave pairing and the result-.', 
ing four-wave interaction lead to. the violation of the:· ·. 
phase matching between the pairs and the external · .'. 
pump (sin 1/> < 1 ), i.e., to a reduction in the energy flux 
into the system. · · · ~,;,! 

This limiting mechanism, which may be referred to 
as the phase mechanism, plays a determining role during 
parametric excitation of waves. We note that in previous 
analyses it was assumed that the parametric resonance 
conditions were staisfied exactly tor all excited-wave ' 
amplitudes. When wave frequency shift due to the non-' 
linearity is present, this is possible orilyfor a contln.: 
uous spectrum of the spin-wave system 1 and therefore, 
the phase mechanism is realized in pure form only in 
infinite media. · · 

(d) Nonlinear susceptibilities and ~ethods of mea~ur­
ing them. The most widely used method of experimental 
investigation of parametric excitation of spin waves is 
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based on the absorption of pump energy by the waves. 

We shall define the high-frequency nonlinear suscep­
tibility of a ferromagnet in the usual way, i.e., 

M. ((t)p) = xh, x = r.' + tx·. 

The imaginary part of the susceptibility x ", deter­
mines the absorbed power: 

w = "'; x"ht, 

If we use (2.23) to determine the energy flowing into the 
specimen from the surrounding pump field, we obtain 

x· =f :81Vk II ck It sin ($k -..Pk)· (2.33) 
k 

A similar expression is obtained for the real part of the 
susceptibility: 

(2.34) 

The behavior of the real and imaginary parts of the sus­
ceptibility beyond the threshold is very dependent on the 
amplitude- limiting mechanism. Thus, for the nonlinear 
damping mechanism, we have from (2.24) and (2.28}, 

x'=O, • 2V' h-l•t 
X =-,1---k-' (2.35) 

and for the phase mechanism, we have from (2.31) and 
(2.32)' 

(2.36) 

FIG. 3. Schematic illustration of apparatus for the parametric ex­
citation of spin waves. 

output of the resonator. This automatically takes into 
account the reaction of the spin waves on the pump, which 
is substantial near the threshold even for a small res­
onator filling factor. 

A typical experimental setup used to investigate . 
parallel pumping is illustrated in Fig. 3. The principle 
of this system is as follows. The undisturbed resonator 
(below the parametric excitation threshold) is usually 
matched to a waveguide in such a way that the resonator 
reflecUon coefficient is nearly zero. When the spin waves 
are excited, the Q is reduced and the natural frequency 
of the resonator Wo is shifted. This leads to the appear~ 
ance of a reflected field which can be used to estimate 
the magnitudes of X' and x". The quantity X" is related 
to the reflection coefficient r by the formula 

where A ., 2?T { h 2dV I ( h2dV is 'the res~nator filling rae-
Figure 2 shows graphs of the functions x'(h2

) and ip,.. · r'es 
x"(h 2

) for both cases. The fundamental difference between tor. Tuning to resonance (W= Wo) is achieved by a small 
the dissipative and phase mechanisms can be seen in the change in the oscillator frequency (or the natural ire­
behavior of x' (x' = 0 for the dissipative and x' ~ x" for quency of the resonator), using the minimum of the ref­
the phase mechanisms). The experimental data, which we lection coefficient. The size of this change, Aw = w -wo, 
shall review in detail in the next section, show that the yields directly the real part of the susceptibility. For a. 
real part of the susceptibility, x', is nonzero and can be number of reasons, the main ofwhich is the uncertainty 
of the order of or even greater than x". These facts tend in the measured coefficient A, the uncertainty in the ab­
to support the phase mechanism of amplitude limitation. solute values of x' and x" is usually of the order of 

Measurements of the magnetic susceptibility in the 
microwave band are usually based on the reaction of the 
high-Q electromagnetic resonator to changes in the 
state of the specimen which it contains. The resulting 
change in Q determines the imaginary part of the sus­
ceptibility, x ", and the change in the characteristic fre­
quency yields the real part x'. When compared with stan­
dard methods used irt magnetic-resonance experiments, 
the techniques used for measuring the nonlinear suscep­
tibilities in the case of parallel pumping which have a 
number of specific features. They involve the use of 
pulsed microwave oscillators, a broad range of fields 
in which energy absorption is observed, and the fact 
that X' and x" depend on the pump power. The last fact 
means that the generator power is not a good measure 
of the pump-field amplitude. The field in the resonator 
is more conveniently determined from the power at the 
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FIG. 2. Nonlinear susceptibilities x' 
and x" as functions of pump amplitude: 
l and 2-x' and x" for the nonlinear 
damping mechanism, 3 and 4-x" and x' 
for the phase limiting mechanism. 
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20-40%. 

Another method of observing parallel pumping was 
used in (391 and was based on the change in the magneti­
zation during the parametric excitation of spin waves. 
The change in the magnetization was recorded by a coil 
in which a voltage proportional to the time derivative of 
Mz is induced. 

We also recall the methqd of measuring weak, non­
equilibrium electromagnetic emission of spin waves at 
frequencies Wp or 1/2W reported inr401

• The interesting 
possibilities of this met~od insofar as spectral-width 
studies are concerned have not as yet been realized for 
parametric waves. Detailed information on the distribu­
tion of spin waves in k space could be obtained by study­
ing the scattering of light and of neutrons under the con­
ditions of parallel pumping. The many attempts made in 
this area (41

-
43 1 have not as yet lead to the expected re- . 

sults. 

3. THE STATIONARY POST-THRESHOLD STATE. 
THE S-THEORY AND ITS COMPARISON WITH 
EXPERIMENT. 

(a) Diagonal Hamiltonian and the equations of motion 
inS theory. We must now consider in greater detail the 
simplification of the Hamiltonian for the wave interac-
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tion, which was noted in the preceding section in con­
nection with the phase mechanism of amplitude limita­
tion. This simplification is analogous to the BCS approxi­
mation, and consists in the replacement of the interac­
tion Hamiltonian (2.15) by its diagonal part for the pairs 
of waves ± k. In terms of the "slow variables" (2.18), 
the diagonal Hamiltonian has the form 

d981nt = :z r~k·l ck I' I ck'[' :z Skk'ctc!:kCk•C-k•, 
kk' 

(3.1) 
kk' • 

where 

T kk' Tkk', kk' = f''k• 
Skk'"""' Tk-k, k'-k'= Sk, -k' = S~·k· (3.2) 

In the Hamiltonian -*'tnt we have only those terms 
which· either are independent of the phases [the first 
sum in (3.1)] or depend only on resultant phase 
'Vk = 'Pk + rp_k in the pairs. All the other terms which 
depend on the individual phases (or more precisely, on 
the differences 'Pk- rpk') are omitted. 

The physical meaning of the terms retained in (3.1) is 
clear from a consideration of the equations of motion 
for the amplitudes ck. Substituting the Hamiltonian (3.1) 
in (2.16), we obtain 

(3.3) 

These equations differ from the linear equations given 
by (2.19), which describe parametric instability, only by 
frequency renormalization wk -wk due to the first sum 
in (3.1), 

and the renormalizatH:m of the pump (2.29), which is 
described by the second sum (3.1). 

(3.4) 

If we substitute ck lcklei<Pk in (3.1), and evaluate 
ofPkfl'lt, we obtain e;at(rpk + rp_k) 0 which demonstrates 
the neutral stability of the phase difference within the 
framework of the theory using the diagonalized Hamil­
tonian (3.1). This was, in fact, to be e.xpected because 
the phase difference between progressive waves travel­
ling in opposite directions defines the position in space 
of the nodes of the resulting standing wave which, in a 
uniform pump field, is not fixed in any way. 

The neutral equilibrium of the phase differences en­
sures that they can be randomized by any small pertur­
bation, for example, by small random inhomogeneities 
or shape imperfections in the crystal. The reason why 
the phases become random can be found in the "residual" 
interaction which was not taken into account in the dia­
gonalized Hamiltonian (3.1). Moreover, this interaction 
leads to a certain correlation between the phase dif­
ferences in different pairs, but this correlation and the 
nondiagonal terms in the Hamiltonian fint remains small. 
A detailed discussion of this question, and a justification 
of the approximation in {3.1), is given in(33 l. It is shown 
in that paper that the approximation defined by {3.1) is 
satisfactory for external-field amplitudes up to 
h* ~ h1[ (kew /8k)/y ]112 where h, is the threshold ampli­
tude of the external field. In the case of parallel pump­
ing, this yields h* ~ 100h1 for YIG. 

The theory based on the diagonalization of the Hamil­
tonian, so that it takes the form given by (3.1), will be 
referred to as the S theory. This designation reflects 
the determining influence of the coefficients Skk' on the 
nonlinear behavior of a set of parametric waves. 
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Henceforth we shall suppose that the individual wave • 
media are random, and that averaging has been carried 
out over their ensemble. The turbulence is then des­
cribed in the language of correlationfunctlons 

(a~ta:.l = nko (k-k'), (atat•) ... oko (k + k'). 

The quantities nk and OJ.t have the dimensions of action 
(erg.sec). The equations for these quantities can readily 
be obtained by direct averaging of (3.3): 

(3.5) 

It follows that 

{ ! + 't'k} (nkn-k -I uk;j•) =~ 0, 

( %, + 2¥•) (n• -n-k) 0~ 

which show that arbitrary initial conditions relax in a 
time of the order of 1/y to a state {not necessarily a. 
stationary state) in which nk =ILk; I c;k/ "'nk. 

The condition lakl = nk means that the phases of wave 
pairs are fully correlated. In this case, we may write 

O'k nke-i111<. 

In terms of these variables, we can write (3.5) and the 
definitions given by (3.4) and (2.29) in the form 

dnk [ l (P• - i'fk) 2dl=nk -Y•+ m .e , 

d1J>k ::'2.. + Re (P*e-•>~>•) 
(3.6) 

"Ut= 2 k • 

wk wk+2 ~ 7'kk'nk~, .. 
Pk=hV•+ 2J Sk,.n,.e-ih·. 

(3.7) 

(3.8) 
k' 

It is useful to note that the variables nk and 'Pk are 
canonical, with the Hamiltonian given by 

dlt!s =2 iL; nk { ( t•l~o + .2; Tkk'l!k'- "'I ) 
k k' (3.9) 

-/- [hVkcos1Jlk+} .2; Skk'nk•COS(1jlk-'i'k·Jj} • 
k' 

In fact, it is readily verified that (3.6) is obtained by 
varying Jt's according to the rule 

(3.10) 

These equations show that (3.6) are Hamiltonian equa­
tions, so that the determination of the turbulence spec­
trum within the framework of the S-theory is a purely 
dynamic problem. 

(b) Ground state. External stability condition. We 
must now consider the stationary states of a system of 
pairs in which all the amplitudes nk and phases lPk are 
time-independent. Assuming that nk = q,k = 0 in (3.6), 
we immediately obtain the following condition for all 
points in k space for which nk = 0: 

2 (~ "'• ) 2 IP~tl'=i'k+ <UJ.--2- • (3.11) 

Before we analyze this result, we must note two general 
points. Firstly, it is clear that the pair amplitudes are 
nonzero only in a thin layer near the resonance surface 
2wk wp. This means that it is convenient to use the 
following coordinates in k space: K the deviation from 
this surface in the normal direction, and n is the coor­
dinate on the surface. 

Secondly, the coefficients in (3.6) which have the 
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dimensions of frequency (yk, hVk, ETkk1 nk, ESkkmke-ilbk1) pump are those for which the fr~quency detuning is 
are much smaller than the natural frequency wk. It fol- wk -1/2Wp = 0. The difference wk -1/2Wp is the fre-
lows that it is sufficient to take a dependence on K only quency detuning with nonlinear terms included. When it 
for (wk -1/2wp), and to replace all the remaining coef- is not equal to zero at points at which nk is localized, 
ficients by their values on the resonance surface, i.e., then there is region ink-space such that pairs con-
Y.a, hV,a, T.a.a 1, and S.a.a 1, respectively. tained by it are more strongly coupled to the pump than 

If we use the above approximation, we can readily 
find from (3.11) those values of K for which nK.a I 0: 

(3.12) 

Therefore, in the stationary state, the pair-amplitude 
distribution is singular: nK,a I 0 only on the two sur­
faces (3.12). However, there is an infinite set of such 
stationary states which differ both in the form of these 
surfaces and in the distribution of nK,a over them. In 
point of fact, the directions of i2 in which nK,a is zero 
can be specified arbitrarily. In reality, of all the sta­
tionary states, only those can be realized that are 
stable against small perturbations. The requirement 
of stability imposes a strong restriction on the class of 
possible stationary. states. 

It is clear that the study of the stability of stationary 
states within the framework of the diagonalized Hamil­
tonian divides into two independent problems: the prob­
lem of the internal stability against perturbations 

• the amplitudes and phases of existing pairs, and 
-rxternal stability against the creation of new pairs. 

External stability is the simplest to consider. Thus, 
we can use (3,3) to write down the equations for a pair 
of perturbation waves 

"'-. 
outside the surfaces (3,12). Neglecting the dependence 
of Pk and Yk on K, we obtain the following expression 
for the growth rate: 

which is analogous to (2.20). The growth rate v.a which 
is a maximum in lql (with fixed .a) corresponds to 
2wq = wp, i.e., it lies halfway between the surfaces 
(3.12): 

Vg = - Yn + I Po \-

The external stability condition, v,a s 0, can therefore 
be written in the form · 

On the other hand, it follows from (3.12) that IP.al ~ Y.a 
for those directions .a in which nKn I 0. Consequently, 
for these directions, the two inequalities are consistent 
only when IPnl = r,a. The two surfaces (3.12) then merge 
into one: 

(3.14) 

Therefore, for a given distribution of wave amplitudes 
over the angles, the condition of external stability com­
pletely removes the ambiguity in the choice of the sur­
face on which nk f. 0. This surface (3.14) will be called 
the "resonance surface," and the stationary state with 
external stability will be referred to as the "ground 
state." 

The above result has a simple physical interpretation. 
It is clear from (2.20) and (2.21) that, during the linear 
stage, the waves which are most strongly coupled to the 
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the existing pairs, and we have the possibility of para­
metric excitation of such pairs. 

It is interesting to examine in detail how, during the 
development of parametric instability, the spin-wave 
state nk ~ O(k- ko), which is coherent in the modulus of 
k, arises out of the thermal noise nft = T/wk. We have 
investigated this problem [241 both analytically and nu­
merically on a computer. We found, in particular, that 
after a certain interval following the introduction of the 
pump, the distribution of waves over the modulus of k 
can be described by a gaussian, the width of which tends 
to zero as (tr112

• 

Our next problem is to investigate the distribution 
of pairs on the resonance surface {3.14). We shall in­
troduce the distribution function N,a which gives the 
"number" of pairs per unit solid angle. This function 
is defined by 

(3.15) 

The stationary equations for Nn and ~n which follow 
from (3.6}-(3.8) and (3.14) can be written in the form 

(Poei'l'g_iyn)Nn=O, Pa=hVa+} Sf1D•Na·e-i"¢n•drt'. (3,16) 

These equations do not as yet define unambiguously the 
distribution of Nn and 1{!0 because the surfaces· on which 
Nn = 0 can be chosen arbitrarily. The requirement of 
external stability will be shown in the next section to 
reduce substantially the class of possible solutions, 
and in a number of cases the stable distributions are 
unique. 

The condition of external stability can usefully be 
interpreted in terms of the following geometric ideas. 
The expressions y = Yn and P = Pn are the equations 
of surfaces ink space. Condition (3.13) means that the 
surface P lies wholly inside the surface y and touches 
it at points n at which the solution is concentrated. 
Since Vk = V -k and Skk' = Sk -k', both these surfaces 
have a center of symmetry. The y and P surfaces can 
touch either at a discrete number of points, or over a 
continuum, i.e., a line or even a piece of the surface. 
In the former case we have a finite number of mono­
chromatic pairs, and in the latter a continuous dis­
tribution of N,a. An intermediate situation is also pos­
sible in which the surfaces touch at an isolated pair of 
points and, in addition, along a certain line. The system 
then contains a monochromatic pair and a continuous 
background. We note that the question of the validity of 
the S theory in the presence of a small number of dis­
crete pairs requires special consideration, including 
the examination of stability within the framework of the 
exact Hamiltonian (see below). 

(c) Stage-by-stage excitation. We must now consider 
the distribution of parametrically excited waves over 
the resonance surface for different values of the exter­
nal field h, beginning with the threshold value. 

In studying the distribution N11 we shall largely con­
fine our attention to the axially-symmetric case which 
is realized in isotropic and cubic ferromagnets mag-

V. E. Zakharov et al. 904 



netized along the (11i) or (100)axis. The coupling 
coefficient is then given by (2.26), and the coefficients 
describing the interaction are given by 

Sllil'=S(O, 0'; (Jl-ql'), Tm:I'=T(O, 0'; q>--(Jl'). . (3.t7) 

It is clear from the axial symmetry that, in the sta­
tionary state, the amplitude of the pairs Nn = Na pis 
independent of the azimuthal angle rp. We shall dehne 
the amplitude Ne by 

so that 

N = J No dn ) No sin 0 dO. 

From the equations for nk it is also clear that the 
quantity Pitok is also independent of rp. Since Vk 
= Voe2ii/J [see (2.26)], we have 

'\fln ')lo, q>=IPB + 2q>. (3.18) 

These relationships enable us to eliminate the dependence 
on rp iri (3.t6), and write it in the form 

where 

(P8ei>~>a -iYa) No =0, 

Pa=Pae- 2''~'=hVe+ J Saa·Ne·e-i'l>a•sinO'fdO', 

2" 

~ S(\1, (I'; <p-<p')e 21l'l'-<~>')d(<J)-<p'), 
0 

(3.19) 

(3.20) 

To determine the distribution N e for small excesses 
above the threshold, we shall use the above geometric 
interpretation of the external stability condition (given 
by (3.t3)]. For very small excesses above the threshold, 
when the amplitudes N e are small, the surface I Pel is 
not very different from the hV9 surface which has a 
maximum on the equator at 9 t/21T. The curvatures of 
these surfaces (second derivatives with respect to 9) 
are also very similar. Hence it is clear that the sur­
faces of I Pol and Ye touch one another only along the 
line 8 = t/21f. This means that, for small excesses 
above the threshold, the distribution Ne is nonzero only 
along this line: 

No=N1o(e- ~)· 

For the integral amplitude N1 = ~lckl 2 and phase 1{! 1 

= iJIItzrr we can readily show, using (3.19), that 

where 

(3.2t) 

(3.22) 

The geometric ideas used above can readily be 
generalized to the case of an arbitrary dependence on 
Vn. It can be shown[zol that, in general, and when the 
excess above the threshold is sufficiently small, Nn 
is different from zero only at those points on the res­
onance surface where IVnl is a maximum. In the case 
of spherical symmetry, these are points of the entire 
surface, whereas for axial symmetry they are points 
on one (e = 1/211) or two lines. In the case of lower 
symmetries, this is one or a few equivalent pairs of 
points. It is interesting that the integral amplitude is 
not very sensitive to the degree of symmetry of the 
problem. It is given by (3.22) in which V 1 = max IV nl 
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and Su is the mean value of Snn' on a set of points 
where N;1 I 0. 

We shall show that the pair distribution function 
{3.2t), which is localized on the equator, conserves 
stability against pair creation at other latitudes up to 
sufficiently large excesses above the threshold. To 
show this, consider the function !Pel. From (3.19), 
(3.2t), and (3.22) we have 

!Pai'=N~(sa ~~ -Se,)
2

+ ~~ y;. 

It is clear that the state described by (3.2t) will be 
stable for !Pel2 < r~ for all e except for 0 = t/21f. The 
"second threshold" h = ha corresponds to the minimum 
value of h for which the surfaces !Pel andre touch for 
some value 9 82 not equal to 1/2rr. Therefore h2 =min 
he forB= 82where he is determined fromihe condition 
!Pel =r®. · 

I "V"- '!Vi 
'- h' [1 !!!. '16 1 :· ~ .] • ~- • + yf (S61V1-.SuVa) (3.23) 

For the simple assumptions re • r and S91 = 0 we find · 
that h~/h~ = 2 for 8z = 0. In reality, on the other hand,,· •, 
for cubic ferromagnets the function S9t is very different 
from a constant, and this leads to a much higher second 
threshold. 

Symmetry considerations show that Set :S(sin28), · 
Set(O) = o, i.e., 

Sa, = S1 sin' e + S, sin' e + ... (3.24) 

The expressions for the coefficients S1 , S2 are in general 
highly unwieldy. As an example, consider the expression 
for Set in the case where the wave vector of the para­
metric waves tends to zero[23 1. 

Sot=2ng•(::) {sin•a[~(N,-1) . 

+{ v 1 + (':::; )2 +{ v·-1_+_(_7--.~-:)-,2 sin4 a] (3.25) 

+sin2 2fl~ [,/1 + {~) 2 sin< (! ~ Wu Sin2 eJ}, 
Wp Jl . Wp ffip 

To estimate the height of the second threshold, we 
shall restrict our attention to the two terms in the ex­
pansion in (3.24) and substitute Yo = const. In that ease· 

(~~)2=1+11(s,ts•re.~soo. (3.26) 

From (3.25) we have for wM « wp 

s,+s.~zng•(::) 2 [N.-1+V1 + (-£;rJ. 
s. ~ 2ng' ( :; ) 

2 
( 4-2 ~: ) .. 

For example, for a YIG sphere with w,;,;wM = 1.9 we · 
have (hdh1)2

::; 3.5 (for 5.5 dB). The presence of only 
one group of waves for h1 < h < h2 on the equator of 
the resonance surface, and the threshold excitation of 
the second group well away from the equator for h = h 2 

enables us to speak of a stage-by-stage excitation of. 
waves during parametric instability. The step-by-:-step 
excitation of spectra which are singular in k space is · 
a characteristic feature of S theory. This type of ex-. 
citation of waves can be compared with the description 
of the origin of turbulence for small Reynolds numbers 
given by Landau ( 441

• The successive switching on of 
new groups of waves with increasing departure from the 
threshold is basically the same as the idea[uJ of an in­
creasing number of degrees of freedom as one approaches 
developed turbulence. 
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, tionary situation appears. The non diagonal terms in the 
Hamiltonian, which smooth out distributions which are 
singular in the angles, begin to play an appreciable role 
as the number of discrete groups of pairs increases. 

0 

-s'----:!o-~s--t.-±o­

P11,dll 

FIG. 4. Emission into the 'perpendicular' 
channel as function of pump power (YIG 
sphere, M II (I 00)). 

A direct experiment designed to establish the pres­
ence of the second threshold is described in l2 ll. It can 
be summarized as follows. The YIG specimen was 
placed in a resonator with two degenerate orthogonal 
modes, the magnetic field of which, hand h1, was res­
pectively parallel and perpendicular to the magnetiza­
tion M. The parallel channel was used for the paramet­
ric excitation of spin waves and the orthogonal channel 
for the detection of the emission from the specimen .at 
the pump frequency. A sharp increase in the radiated 
power into the perpendicular channel at about &-12 dB 
above the threshold was observed (Fig. 4), depending on 
the constant magnetic field, and the orientation and 
shape of the specimen. 

The resonator mode with polarization h l M was 
excited by the homogeneous precession of magnetiza­
tion which in turn is "unwound" by the parametric 
spin waves. This process is described by the Hamilton­
ian 

k 

in which uk = u sin 28ei.:P. Hence the power radiated into 
the transverse channel is given by 

pl.~ I 2.; Ukbkb-14 I'· 
k 

which vanishes when e 0 and e = 1/21T. The function 
P 1 (h) in Fig. 4 thus clearly shows that the only pairs 
excited in the interval Q-9 dB are those with 9 = l/2?T. 
The power P 1 emitted for large excesses above the 
threshold is naturally associated with the excitation of 
the second group of pairs with (} 1/211'. 

The second threshold can also be determined from 
certain indirect obse.rvations, for example, the charac­
teristic distortion of the top of the pump pulse, or the 
break on the curve showing the real susceptibility x' 
as a function of the pump power (see next section}. The 
series of thresholds discovered by PetrakovskH and 
Berzhansldi:', who used the distortion of the pump pulse,r451 

appears to have been connected with the step-by-step 
excitation of parametric spin waves. 

In conclusion, we must describe, at least qualitatively, 
the behavior of parametric spin waves for h > ha. We can 
readily verify that the state with two groups of pairs at 
latitudes 11 1 and 82 becomes unstable for a particular 
departure from the threshold h3, and a third group is 
created at the latitude e3. The next group appears at h4, 
and so on. The question as to what hapRens when h is 
increased still further is discussed in 201

• For large 
hjh, the distribution of N,o is very sensitive to the fine 
structure of the quantities V,o and S,on'· In some cases, 
a continuous distribution of pairs over the resonance 
surface is established, whilst in other cases the limi­
tation mechanism cuts off and an essentially nonsta-
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(d) Nonlinear susceptibilities. In Sec. 2 we noted 
that the main experimental characteristics of a system 
of parametric waves are the nonlinear susceptibilities 
x' and x"which are given by (2.33) and (2.34). In the 
case of axial symmetry, we have from (3.18) and (3.19) 

2 ~ValVa cus>Pe 

2f reNe 

h• 

2 S80.N&N8• cos (1Jle-'l>a·l 
(3.27) 

x'= " 

It is clear from these formulas that the imaginary sus­
ceptibility x" characterizes only the integral pair in­
tensity, whereas the real susceptibility x' is also a 
function of the phase relationships between the pairs. 
The quantity x' is thus a better characteristic of the 
system because it is sensitive to the details of the pair 
distribution in space, auto-oscillations, inhomogelleitiee, 
and so on. This is the reason for the considerable spread 
in the experimental values .of x' reported by different 
workers. Thus, for example, in one of the first papers[<sl 
it was reported that x'/x" ~ 0.1 for YIG, and that this 
ratio is not very dependent on the magnetic field. The 
low value of this ratio was used as a basis for the sug­
gestion that the limiting mechanism is some kind of 
nonlinear damping leading to x' ~ 0[35

'
381

• The beha­
vior of the spin waves beyond the parametric excita-
tion threshold is described in (371

• In particular, this 
monograph describes the "self-suppression" mech­
anism for the amplitude, but again assumes that 
x' lx"« 1. 

Subsequent careful studies of x' and x" showed, 
however, that in perfect single crystals, and in the 
absence of auto-oscillations, the quantity x~ is not 
small and may even exceed x"l23

' 
46l. 

Fignre 5 shows. the characteristic functions x'(h 2
) 

and x "(h 2) for a YIG sphere along the three principal 

x; z" · 
(lit) H (flo) 

NIT' 

FIG. 5. Measured real x' (dashed line) and imaginary x" (solid line) 
components of longitudinal susceptibility as functions of pump power 
for YIG sphere. 1-(1 00) orientation, 2-<111) orientation, 3-{ll 0) ori­
entation. Arrows indicate excitation thresholds for the auto-oscillations. 
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crystallographic directions: along the (100) direction 
when there are no auto-oscillations in magnetization, 
and along the (111) and (110) directions when there 
are strong auto-oscillations. It is clear that the auto­
oscillations in magnetization have no substantial in­
fluence on x ",but may reduce x' by a substantial 
factor. 1> This fact can be explained as follows. When 
the excess above the instability threshold is large 

sin 'I>~ h,fk {: 1, 

l cos 'I> 1 ~ 1 ( ~ ) 2 , 

i.e., the cosine of the phase shift for the pairs relative 
to the pump, which determines x', is near its extremal 
value. The development of auto-modulation which leads 
to a periodic variation in the angle IJ! does not affect 
the average of sin 1{1 but reduces the mean value of 
cos if! and at the same time the magnitude of the sus­
ceptibility x'. 

The fact that x' /x" ~ 1 is an unambiguous indication 
of an important phase mismatch between the pump and 
the spin-wave pairs, which follows from the s-theory. 
Comparison with the experimental dependence of x' and 
x" on h is greatly facilitated when the excess above the 
threshold is small (h < 2hl) and only the equatorial pairs 
with e = 1/21T are excited. In thi,s case, we have from 
(3.27) and (3.22) 

X" (3.28) 

Graphs of these functions are shown in Fig. 2. It is 
clear that there is a similarity between the theoretical 
and experimental curves. For example, in accordance 
with the theory, the curve showing x' cuts the x" curve 
at the maximum. The discrepancy between the theoret­
ical and experimental curves representing x'(h2

) for 
h 2 > 8 dB is naturally explained by the excitation of the 
second group of pairs which are not taken into account 
in (3.28). 

Numerical calculations were carried out on a com­
puter in order to compare the S-theory with experi­
ments for large excesses above the thresholdl23 1. The 
first step was to compute the coefficients See' for par­
ticular experimental situations involving YIG. In this 
calculation, use was made of only the known values of 
the main .YIG parameters, i.e., magnetization, crystal­
lographic anisotropy field, and exchange field. The 
values of see' obtained in this way were substituted 
into the nonstatiomiry equation of motion (3.3), which 
was then solved on the computer by time iteration from 
the thermal noise level. The computed stationary values 
of the amplitude and phase for different excesses above 
the threshold were then used to determine x' and x" from 
(3.27). The results of these calculations are shown in 
Fig. 6 together with the laboratory data. It is clear there 
is not only a qualitative but also good quantitative agree­
ment between theory and experiment. 

Table I compares theoretical and experimental val­
ues of the maximum susceptibility xih =max X11 (h} for 
different cubic ferromagnets of spherical shape. We 
have measured the susceptibility of YIG by the standard 
methods described in Sec. 2. The quantity Xm for other 
crystals was measured with the same apparatus through 
a comparison with YIG. Theoretical values of x;, were 
calculated from (3.28): 

(3.29) 
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/' t /. 

FIG. 6. Numerical calculations of x' and' 
x~~' (solid lines). Broken line shows suscepti- ; 
bilitles in the model with a single group of 
pairs and 0 := Ym. Arrow shows the thresh­
old for the creation of the second group of 

1 

pairs. Points-experimental (YIG sphere, 
H Hc-100 Oe, M II 000)). 1-x', 2-x". 

/ 

o'----:-,-~lll~--;;,5,..... 

h'l'ni.dB 

TABLE I 

~4~0! ~B I z,:~,g, x;. -to:r 
Cry!tal -(1)~[/g, llA:""j"' llxl"'ri- Theozy 

Oe ment 

I. YaFc50!Z(\' IG) 1750 84 0.12 24±5 21 
2. Y 3Fc,,,,,s ... ,o .. 1500 8 0,36 23 22 
3. lliq.~C•2,,l'c.,,eV 1,40 1,, 6f>O 58 0.45 5 7.5 
4. Llo.~l'••1 ,,o. 3iiXJ 580 0,80 80 10 
5. NiFc20• 3200 400 U9 25 1U 

55 84 

which for cubic ferromagnets with axial symmetry 
(M II (111), { 100)) assumes the form [231 

Orien· 
tation 

{100) 
(\:}()) 

{100) 

<Ill) 
i!OO\ 
(Ill) 

x;;. = 8~ I N,--1+P {Wa/OlM~+ V(Olp/"'Ml"+ 1 I' <3-30) 

where we have substituted the expression V 1 and S1, 
and 

{
-8 for M!l(111), 

~""' +9 for MIJ(t00). 

It is clear from Table I that the simple formula given 
by (3.30) provides a good description of the absolute 
post-threshold susceptibility for a broad class of cubic 
ferromagnets. The discrepancy between theory and ex­
periment in the case of Ni Fe204 (the (111) orientation) 
is probably connected with. the fact that, in this case, 
the susceptibility maximum lies beyond the threshold 
for the second group of pairs, when (3.30) is no longer 
valid. 

The susceptibility Xm was measured inc471 for the 
uniaxial ferromagnet Baz Zn2 Feu014 with "easy plane" 
anisotropy, and the anomalously large result x~ = 0.2 
was obtained. Theoretical estimates of this parameter 
based on (3.29) using V 1 and 811 without taking into ac­
count the dipole-dipole in-teraction (for wM < wa, 
wp S wa) yields 

(3.31) 

If, followingl471, we assume for Ba2 Zn2Fe1~H that 
4M = 2850 G, wafg = 9900 Oe, and suppose that the · 
pump frequency is Wp/g = 6300 Oe, we obtain x;. = 0.1, 
which is in qualitative agreement with experiment. 

The sign of the real susceptibility x' is also of major 
interest. According to (3.28), the sign of x' is the same 
as the sign of Sw and for cubic ferromagnets is deter­
mined by the sign of the denominator in (3.30). In agree­
ment with experiment, theory predicts that for weekly 
anisotropic crystals (Nos. 1, 2, and 3 in Table I) 
x' > 0; for crystals with considerable anisotropy (Nos. 
4 and 5) x' > 0 for the (100) orientation and x' < 0 for 
the (111) orientation. · 
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(e) Effect of nonlinear damping. We must now consider 
the role of nonlinear damping of spin waves in the limi­
tation of their parametric instability. In a perfect crys­
tal, the damping of parametric waves appears as a re­
sult of the interaction with the thermal spin-wave reser­
voir, and is due to coalescence processes between the 
parametric wave and the thermal wave 

(3.32) 

or the decay of the parametric wave into two thermal 
waves: 

(3.33) 

where wko refers to the parametric wave, and wk, and 
Wk2 to thermal waves. Decay processes are allowed 
only for sufficiently short spin waves k > ks. The quan­
tity ks can be calculated by analyzing the dispersion re­
lation (2.6). For YIG it turns out that ks ~ 105 em_,. The 
damping rates due to these processes can be calculated 
from the kinetic equation for the thermal wave (see, 
for example / 311 ). These rates are given by 

'\'ko = 4n j /Vo•• )2 (nk,- nk,) ll (k0 + k,- k,) 6 (rok,- rok,- wk,) dk1 dk2 
(3.34) 

in the case of coalescence, and by 

'l'k.= 2n r I Vo••l' (nk, +nk,+ 1) ll (ko-k.-k,) ll(~. -wk,- wk,) dk,dk, 
J 

(3.35) 

in the case of decay. 

To calculate the linear damping, it is sufficient to 
substitute the thermodynamic equilibrium spectrum for 
nk in (3.34) and (3.35). The presence of parametric 
waves leads to a dependence of nk on their intensity. 

. This effect was discussed qualitatively by SchlOmann, {351 

', by Le Gall et al. [281 and by others. It was considered 
quantitatively in [481 and is the reason for the nonlinear 
damping of spin waves. When the magnitude of this 
effect is calculated, it is essential to take into account 
the fact that only a small fraction of the thermal waves 
interacts with the parametric waves. Their number is 
determined by the conservation laws (3.32) and (3.33). 
The change in nk in this region may not therefore be 
small. 

The character of the nonlinear damping depends on 
which of the three-wave relaxation mechanisms pre­
dominates. An unexpected result is that, in the decay 
part of the spectrum, ~here Yko is determined by co­
alescence processes, the differential nonlinear damping 
turns out to be negative: ay/aN < 0 (N is the number 
of parametric waves). In fact, in each coalescence event 
defined by (3.32), there is an increase in the number 
N2 of magnons in the region k2, and a reduction in the 
number N, of magnons in the region k1 • As a result, 
the difference nk - nk and also the damping rate Yk 
given by (3.34) az!e re;fuced. On the other hand, relax:~­
tion processes in a system of thermal magnons tend to 
return this difference to the thermodynamic equilibrium 
value. The competition between these processes deter­
mines the steady state value of Yko· To estimate it, let 
us write the balance equations in the form 

dN 
2dl = -1•N +pump , 
'dN ""'iJii-= -y,(N1 -N~)-yN, 

d~: = -y,(N,-N:)+yN, 

where N~ and N~ are the thermodynamic equilibrium 
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values of N, and N2. In the stationary state, N', =N2 =0 
and 

(3.36) 

According to (3.34), the damping of parametric wave~r , .. 
is given by y = c(N1-N2). Substituting (3.36) into this 
expression, we obtain 

(3.37) 

When the amplitude of the parametric waves is small 
(eN< y 1, y2), this expression assumes the simpler form 

l'""'i'o-t)IN, 1h=;i'oc( y: + "1
1
2

) • (3.38) 

It can be shown (481 that the following order-of-magnitude 
result is valid: c ~ )V) 2/Wk· This is in agreement with 
the estimate of the coefficients in the Hamiltonian for 
the four-wave interaction, S and T. 

The fact that the differential nonlinear damping is 
negative means that it does not reduce, but on the con­
trary, increases the amplitude of the parametrically 
excited waves. Thus, when ko < k8 , the limitation of the 
parametric instability occurs only as a result of the 
phase mechanism. 

It follows from (3.38) that the coefficient of negative 
nonlinear damping 7] 1 is proportional to the ratio of the 
damping of parametric and thermal waves, Yo/Y,,2. 
Analysis of (3.32) shows that when ko- 0, we have 
k1 ,k2 _oe and, as the damping of spin waves increases 
with increasing k, the influence of the negative nonlinear 
damping is unimportant when k << ks, whereas for 
ko ~ ks it is comparable in order of magnitude with the 
effects of phase interactions. When k > k8 , the decay of 
parametric waves comes into play, and we can readily 
show that it leads to positive nonlinear damping. The 
sign of the nonlinear damping is determined by the 
competition between coalescence and decay. It is shown 
inl4 s1 that when k::;:::, ks the resulting nonlinear damping 
is positive 

and provides a comtribution to the amplitude limitation,· 
which is comparable with the contribution of the phase 
mechanism. 

There is one further nonlinear damping mechanism, 
namely, the coalescence of two or more parametrically 
excited spin wave$. This was_put forward by Suhl and 
Gottlieb[36 l. It leac:ls to positive differential nonlinear 
damping. In the simple case of coalescence of two waves 

In general, this process may compete with the phase 
mechanism. It is allowed for wave vectors ko, k~ which 
are greater than some characteristic value k3m. For 
example, if ko and kb lie in the plane of the equator, 
then 

We note, however, that for cubic ferromagnets the 
coalescence of parametric waves is unimportant up to 
the threshold h2 for the creation of the second group of 
pairs for any k. This is expl:iined by the fact that the 
the first group of waves is excited exactly on the equa­
tor of the resonance surface (9 = 1/2rr), and the coef­
ficient 77kok0 is then identically zero (seel311). 
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FIG. 7. Imaginary susceptibility x" 
as function of pump amplitude, with 

, allowance for nonlinear damping, 11/ISI 
= -0.25 (nonlinear damping), 11/ISI = 0, 
11/ISI = 0.25, and 11/ISI = I (curves 1-4 
respectively). 

Nonlinear damping can readily be introduced into the 
S theory calculations. All that is required is to replace 
y by y + 71N. Figure 7 shows a graph of the function 
x '{h 2) for different magnitudes and signs of the para­
meter 71/S. Let us consider some of the characteristic 
features of these curves. 

When 71 > 0, the x" (h 2 ) curve has a finite slope at the 
threshold point, which is equal to VU7J, and the final 
value is given by x"("") = T/V~/77 2 + S~1 . It is interesting 
that when 71 <I Sui the maximum value of x" is depen­
dent on 71 and is given by (3.29). The nonlinear damping 
affects only the position hm of the maximum, which 
shifts toward greater h as 71 increases: 
hm = v'2'"h1ISul /I Sui -71. When 71 >I Sui the susceptibility 
x ,, increases monotonically with increasing h. 

It is interesting to note that, even when 1711 « lSI, 
T/ > 0, the susceptibility x' decreases rapidly (as com­
pared with the case 71 = 0) in a narrow region near the 
threshold, and the x'(h) curve has a zero tangent at 
h = h1: 

when 

, ·- 2SV• ( h-h1 )2 
X-~ -h-,-

(hV- y) ~ 2y11•;s•. 

It may be that this is the reason why nonzero values 
of x' were not established in [481 for YIG for excesses 
above the threshold less than ~ 1-2 dB. 

For T/ > 0 hard excitation of parametric waves takes 
place and is accompanied by a hysteresis of the func­
tion x"(h 2

). When I Til<< Su the reverse jump x~' amounts 
to half the direct jump x.: x:' = 1/2x~ = 2177/SuiX~· It 
occurs for the pump amplitude h. = h 1 IS 11 l/(S~ 1 + 7)

2
)
112. 

The phenomenon of hard excitation and the hysteresis 
of x" were discovered by Le Gall et al. [281 in single crys­
tals of YIG at wp = .9.8 GHz. The phenomenon was ob­
served for fields in the range Hz< H < H1; the decay 
processes were "released" at Hz and positive nonlinear 
damping was switched on, and for sufficiently large H1 
the effect vanished because the negative nonlinear 
damping was small. 

Negative nonlinear damping will also lead to a char­
acteristic dependence of x" on the constant magnetic 
field as shown in Fig. 8[381. As can be seen, the value 
of x" increases sharply at H = H1 and H = H2 • The func­
tion x"(H) exhibits an anomaly near H = H3M at which 
the coalescence of two parametric waves (k = ks1) comes 

· into play. Near H = H3M there is a narrow resonance 
minimum which goes over into a resonance maximum as 
the excess above the threshold increases. This is in 
conflict with the original theory of Siihl and Gottlieb 
which predicted a sharp reduction in the susceptibility 
for fields H < H3M due to the introduction of the three­
magnon coalescence mechanism. It is clear from Fig. 8 
that a small jump (10%) is observed only for large ex­
cesses above the threshold. These facts are readily 
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FIG. 8. M~asured x" as a function of 
the external magnetic field (YIG sphere, 
M II (I 00) ). Curves 1-5 correspond to 
0.5, 1, 2, 5, and 10 dB above the thresh­
old. 

understood within the framework of the foregoing dis­
cussion. Thus, for small excesses above the threshold, 
only waves with 8 = 1121T are excited and for these waves 
the coefficient V in (3,34), which describes the coales­
cence process, is equal to zero, as already noted. The 
slight spread of the distribution function No, which is 
due to inhomogeneities and other factors, leads to a 
finite but small value of 7)3 • The sharp increase in T/3 

occurs only when the field reaches the value H3M where, 
as can be readily verified, the integral iri (3.40) has a 
resonance peak which is connected with the singularity 
of the density of states for which the coalescence pro­
cess is allowed. The change in the sign of the resonance 
peak is explained by the fact that, for small excesses 
above the threshold, positive nonlinear damping reduces 
the magnitude of x ", and for large excesses it increases 
it (Fig. 7). It is also clear that the appearance of a jump 
in x" when the excess is greater than 8 dB is connected 
with the creation of a group of pairs with 8 f. 1/21T. 

4. COLLECTIVE EXCITATIONS AND AUTO­
OSCILLATIONS OF MAGNETIZATION. 

(a) The spectrum of collective oscillations. So far, 
we have confined our att'ention to stationary states of 
a system of parametric waves. In this section, we shall 
consider the behavior of the system as it departs from 
the stationary state. For the sake of simplicity, we 
shall initially neglect dissipation. The Hamiltonian of 
the system,¥, is then a constant of motion. Suppose 
that the perturbed-state Hamiltonian¥ differs from the 
Hamiltonian ¥o in the ground state. This means that the 
system can never reach the ground state, and since it 
has no other stable stationary states, it behavior will 
be essentially nonstationary. Two types of behavior are 
then possible: the system either executes small oscil­
lations about the ground state, or departs completely 
from it. We shall show that both types of behavior are 
possible in the case of parametric excitation of spin 
waves. 

Since we shall eventually have to compare theory 
with experiment, let us begin by considerin~ the cubic 
ferromagnet magnetized along the (111) or ~100) axes. 
For excesses above the threshold which lie below the 
second threshold, the spin waves are excited in the 
plane of the equator in the ground state. 

Let ak be the deviation of the complex amplitudes 
Ck from the ground state (3.21), (3.22), and let us iso­
late in the s-theory Hamiltonian (3.9) the part Jt"(O) 

which corresponds to the ground state, and the parts 
£<1 1 and.Jt"<z> which contain the linear and quadratic terms 
in a. Using the equations of motion, we can readily ver­
ify that the ground state is an extremum: 

OJe!ll = 0. 

The part of the Hamiltonian which is quadratic in small 
perturbations, assumes the form 

OJeCZ) = 2N 1 2 { 2 r [Scpcp•ei(cp-cp') + T cpcp'ei(cp'-cp)] Ctcpc4· dcp dcp' 
( n) J 
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(4.1) 

where we have replaced summation by integration and 
T cpcp' = Tkk', Scpcp' = Tkk'• for 8 = 8' = 1/27T, ikl= ik'l =ko. 
Transforming to the Fourier components 

2n 

Clm=-1- J a ei(m-t)q>dm 2n '1' ·r 
0 

and using the axial symmetry of the situation 

we obtain 
00 

QJ£< 2>=Nt 2J [2(Tm+Sm)ama:O+(Tma.,.a_m+C.C.)], (4.2) 
m==-oo 

where 2
> 

2n 

Tm= 2~ J T(<p)e-irn'l'dtp, 
0 

2n 

S,.= 21n J S ('I') e-;(m-2)'1' drp. 
0 

(4.3) 

The Hamiltonian (4:2) can be diagonalized with the aid 
of the linear canonical transformation. Diagonalization 
is possible if 

~;l =(T,.+S,.)'-Ti.,=S,.(2T,.+Sm)>0-

In this case, the Hamiltonian .tf<z> can be written in the 
form 

'Q!e(Z) = Lj± Qm~m~:;,. (4.4) 

It is clear from (4.4) that the quantity 

Qm = ±2Nt YS,. (2T,. + S,.) 

is the frequency of collective oscillations in a system of 
spin waves. When Sm (2T m + Sm) < 0, this frequency 
is imaginary. This indicates that the ground state is 
unstable against the excitation of exponentially growing 
oscillations (internal instability, see Sec. 3). 

The canonical transformation uniquely determines 
the sign of the frequency nm of collective oscillations. 
This sign can be determined from simple considerations. 
When ITml « ITm + Sml, the canonical transformation 
is such that the sign of nm is the same as the sign of 
Sm + Tm. As Tm increases continuously, the sign of 
nm remains the same. It changes only after nm passes 
through zero. Wfi then have ITml = ITm + Sml, and fur­
ther increase in Tm is accompanied by the onset of in­
stability. Thus, the signs of nm and T m + Sm are always 
the same. 

The fact that nm is negative means that the energy 
of the spin-wave system decreases as a result of the 
excitation of collective oscillations. The energy of the 
system increases in the course of their relaxation. 
This is not inconsistent with the conservation of energy 
because the system of parametrically excited waves 
receives its energy from the pump. 

The quantities Sm and Tm can be calculated for a 
cubic ferromagnet in the symmetric directions (111) 
and (100). It turns out that they differ from zero only 
when m = 0, ± 2. The coefficients Sm and Tm corres­
ponding to these modes arei2sJ 

So=2ng•(:;)"[V :t +1+N,,-1J.. (4.5) 

To= So+ 2ng2,(N,,-1), (4.6) 
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{
-8 for M!l(i11), 

~= +9 for Mll(100), 
(4.7) 

T ±z=2ng2 
( ;~ )

2 
[R,,-1+ y ( =~ )" +1], 

S±z=2ng'[(N,,-1)u~+ ;~ u±], 

(4.8) 

(4.9) 

where 

u±""' }{Vi+~ =1=1). N,, ... w,,(ak)'+~ =~. 
These formulas show the dependence of the frequency of 
collective oscillations on the experimental conditions, 
namely, the excess above the threshold, pump frequency, 
magnetization, external magnetic field, shape of the 
specimen, and crystallographic anisotropy. 

We must now consider the effect of the damping of 
spin waves on collective oscillations, especially since 
the damping Yk may be of the same order as the fre­
quell{!y nm. 

Linearizing the equations of motion (3.3) with respect 
to a, against the background of the ground state (3.22), 
and assuming that a,a• ""exp(-iQt), we obtain a set of 
algebraic equations which are homogeneous in a ,a*. 
The condition that these equations are consistent, de­
termines the frequency and damping of the collective 
oscillations: 

(4.10) 

This formula leads to the' important conclusion that 
the criterion for internal instability on the m-th col­
lective mode is independent of the amount of damping 
and is determined, just as in the conservative case, 
by the condition 

S,. (2Tm + Sm) < 0. (4.11) 

Within the framework of the S theory, the collective 
oscillations of a system of parametric spin waves are 
spatially homogeneous. When spatial dispersion is taken 
into account, each normal mode corresponds to a whole 
branch of nm (K), where (4.10) defines the gap. Spatially­
inhomogeneous collective oscillations 
i'J11 ,{J¢ ""exp[(Kr -nmt)] have a definite analogy with 
second sound. In contrast to the usual second sound, a 
gas of thermal magnons in a system of parametric waves 
exhibits oscillations not only in the number nk of pairs, 
but in their phase ¢k as well. 

The spectrum Om (K) of these waves is investigated 
in(491

• In the simple case when K II M, 

Qm(x) = -iy± Y[2(Tm+Sm)N,+w" x; r -4T~N:-y•. 
where w" = 8 2W/Ilk~. Possible forms of the function 
nm(K) (withy= O) are shown in Fig. 9, The region of 
negative values corresponds to the instability of the 
ground state. We note that, for large K, collective os­
cillations are always damped, i.e., nm(K) =-iy 
+ (w"K 2/2). 

FIG. 9. Possible variants of the collective 
oscillation spectrum ('Y = 0). For n 2 < 0 the 
ground state is unstable. Curves I and 2 cor­
respond toT m + Sm > 0; curves 3 and 4 cor­
responds toT m + Sm < 0. 
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(b) Resonance excitation of collective oscillations. 
The collective oscillations discussed above are seen 
experimentally as low-frequency (0 R~ sec- 1

) oscilla­
tions of the longitudinal magnetization Mz. Pulsed ex­
citation of these oscillations can frequently be observed 
during the transient state after the end of the pump pulse. 

The resonance method is the most convenient way of 
exciting collective oscillations. The procedure is to 
apply to the ferromagnet both the pump field h(t) ~e-iwpt 
and a weak field hs ll M with frequency close to wp, i.e., 
ws = wp + ~ [271

• Calculations reported in, (271 based on 
the equations of motion (3.3), show that the susceptibility 
"wp+il resonance frequencies, namely, i~ = ±no which 
comcide, as expected, with the natural frequency of the 
zero mode, no, in the absence of damping: 

"'. _ • (..!:_.)2 2y2 (Qa-J-02+4Q(To+S0)NJ 
""'r+~>- X . ~;, (U~-O'l'+4v•o• · 

For large excesses above the threshold, when 
n~ » Y

2
, the line shape is nearly Lorentz ian, with width 

equal to the spin-wave damping y. At resonance, the 
susceptibility is given by 

(4.12) 

The fundamental point is that the susceptibility may 
turn out to be negative. This corresponds not to absorp­
tion but to amplification of the weak signal. It follows 
from (4.12) that absorption occurs at the frequency 
wp + ~, and amplification at the mirror frequency 
wp-n. 

The appearance of amplification can be regarded as 
a consequence of decay instability of the ground state 
(with the "slow" frequency equal to zero) into electro­
magnetic radiation (with slow frequency n) and a col­
lective oscillation with characteristic frequency no. The 
law of conservation of energy in this process is 
0 -n +no. Amplification therefore occurs at the fre­
quency -'-no, which corresponds to (4.12). In this lan­
guage, absorption is a consequence of the decay of the 
weak signal into the ground state and the collective 
mode with the conservation law n 0 + no. 

The collective resonance was observed experimen­
taily in£271 in single-crystal YIG. Good quantitative agree­
ment between theory and experiment was noted. In par­
ticular, the dependence of the susceptibility to a weak 
signal on the pump power (Fig. 10) was found to be in 
good agreement with (4.12) right up to the first threshold 
(h/h1)

2 = 8 dB. It was also noted that the collective res­
onance can be used as a convenient and relatively simple 
method of measuring the spin-wave relaxation time. 
Measurements show that, in accordance with the theory, 
the resonance absorption linewidth is practically inde­
pendent of the pump power, and is in good agreement 

z:;~~ndjx:'? 
I* 

12 -

f{J 

·o 

Oz•adlll 
hyilf,dB 

FIG. I 0. Measured susceptibility for a 
weak signal as a function of pump power 
(YIG sphere, M II 000)). 
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with the values of ')' obtained from the threshold for 
parallel excitation[271• ' · · · 

(c) Auto-oscillations of magnetization. It is well known 
that, in the case of parametric generation of spin waves, 
the stationary state is frequently not established, and the 
magnetization executes complicated auto-oscillations 
about some mean value. 

The main experimental facts on these· auto-oscilla­
tions, obtained for high-quality YIG crystals under par-
allel excitation are as followsl37

' 
50

' 
51 1: ·· .. 

(1) The auto-osclilation frequencies lie,in the range 
between 104 and approximately 107 Hz (depending on the 
pump power and the constant magnetic field)~ For a'' 
small excess above the threshold, the auto.:. oscillation 
spectrum consists of a single line. As the power level · 
increases, there is an increase in the number of lines 
which also shift toward higher frequencies. For large 
excesses above the threshold, noise-type spectrum is 
observed. 

(2) The threshold for auto-osCillations is usually very 
low: 0.1-1 dB relative to the parametric excitation 
threshold, with the exception of small wave vectors 
(H > He) where the auto-oscillation threshold is appre- · 
ciably higher. The threshold also rises when internal 
inhomogeneities are. introduced into the crystals (s

2 l. 

(3) Giant crystallographic anisotropy in auto-oscil­
lation properties, which substantially exceeds the ani­
sotropy in the spin-wave spectrum, has been observed. 
Thus, the auto-oscillation intensity in YIG when the mag­
netization lies along the < 111) axis exceeds the intensity 
for the (10o) axis by a factor of roughly 100. 

The physical nature of these auto-oscillations is one 
of the basic problems for the parametric excitation of 
spin waves. '· 

Various hypotheses have been put forward in this 
connection. The simplest hypothesis( 531 is that several 
discrete frequencies corresponding to the natural os­
cillations of the crystal are present in the spectrum of 
parametrically excited spin waves. Beats between these 
frequencies lead to the appearance of the auto-~scilla­
tions. This hypothesis explains [ss 1 a number of experi­
mental facts (the dependence of the auto-oscillation fre­
quency on the magnetic field and the crystallographic 
orientation of magnetization), but it totally ignores the 
dependence of the auto-oscillation frequency on the 
pump power, and the question of the origin of the few 
discrete frequencies~··we note that the s-theory pre­
dicts the existence of the single frequency 1j2wp in 
the stationary state. · 

Another group of hypotheses is based on the effect 
of excited waves on magnetization (see, for example, 
the paper .by Green &: Schl0mannl 541

). If the mean mag­
netization of the crystals follows the amplitude of the 
spin waves with a certain delay, then the auto-oscUla­
tions in magnetization may build up in thecrystal. 
Monosov's monographc371 is written from this point of 
view and is based on the phenomenological equations of 
Bloch and Bloembergen. In fact, however, the appear­
ance of the auto-oscillations can be influenced only by 
the inertia of the thermal spin waves with frequency of 
the order of wp· This problem should be solved with 
the aid of the K:inetic equation for the waves. So far, 
it has not been solved. Nevertheless, it might be 
expected that, in most experimental situations, the ef­
fect of inertia can be neglected. 
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The auto-oscillations find a natural explanation 
within the framework of the S-theory as the result of 
the instability of the stationary state against the exci­
tation of collective oscillations, which was described 
in Sec. 4(a). If the instability conditions Sm(2Tm +Sm)< 0 
are satisfied for at least one mode (of number m), the 
system of parametrically excited spin waves has no 
stable stationary state within the framework of the S 
theory. There are then two conceivable possibilities: 
either the system is brought out of the region within 
which S theory is valid (this should be accompanied by 
a strong increase in the amplitude of the excited waves), 
or the oscillations should settle down around the sta­
tionary state. These oscillations (if they develop) are 
observed experimentally as auto-oscillations of mag­
netization. General considerations suggest that the 
auto-oscillations may be both regular and random. In 
the latter case they can be looked upon as "secondary" 
turbulence with time scale much greater than the scale 
of the "main" turbulence (the period of the spin waves). 

It is clear from (4.10) that the Instability of the sta..: 
tionary state is purely aperiodic (Re Urn = 0) and, there­
fore, the secondary turbulence is strong. This means 
that the analytic solution for the nonlinear stage of de­
velopment of collective instability and the description 
of secondary turbulence (if it appears) are extremely 
difficult to obtain. Computer simulation of secondary 
turbulence would therefore seem to be useful. This 
however requires an inordinate amount of machine time 
and is hardly practicable in a real situation, for example, 
in YIG. This forces us to turn again to a numerical ex­
periment, using simple models of the ground state. 

A numerical experiment on the excitation of auto­
oscillations was described in[26 l. It was based on the 
two-beam model in which it was assumed that the spin 
waves were localized around two fixed angles fi 1 = 1/27T 
fi2 = 1/4fi. The coefficients So and P 0 were chosen to be 
close to those calculated for YIG, with the magnetic 
field along the (111) axis (see below), so that the in­
stability conditions were satisfied for the zero mode. 

The numberical experiment showed that steady auto­
oscillations of amplitudes and phases were established 
in this model (Fig. 11). The dependence of the frequency 
in these auto-oscillations on the pump level is qualita­
tively in agreement with the analogous result usually 
observed experimentally. The above model was also 
used to carry out an experiment simulating the develop­
ment of collective instability for m f 0. The behavior 
of the resultant amplitude during the nonlinear stage of 
development of the instability was investigated. This is 
interesting because there is no change in the resultant 
amplitude during the linear stage. we chose beams with 
81 == fi2 = 1/27T and 'P2 = cp 1 + 1/27T. The experiment 
showed (Fig. 12) that states were established in which 
both the sum and the difference of the wave amplitudes 
underwent oscillations. The oscillations in the ampli­
tudes appear as a result of the interaction between col­
lective modes with different m. 

The numerical experiment based on the above models 
thus shows that, within the framework of the S theory, 
the development of the internal instability of the ground 
state does indeed lead to auto-oscillations. The proper­
ties of these auto-oscillations, i.e., the dependence of 
frequency and spectral composition on the pump power, 
are comparable with the properties of auto-oscillations 
observed in laboratory experiments. Thus, both numeri-
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FIG. 11. Time dependence of 
pair amplitude along beams for 
them= 0 mode instability. N1 and 
N2 represent the two beams with 
e = Y:,rr and e = Y..7T. J1Jll1 

o s 10 t5 trt 

FIG. 12. Time dependence of 
resultant pair amplitude along the 
beams for the m = 2 mode instabil­
ity. 

0 10 10 zyt 

cal and laboratory experiments show that the develop­
ment of auto-oscillations has no substantial effect on 
the mean level of parametrically excited waves. The 
numerical experiment shows moreover that, during 
the development of instability, the zero mode pronounced 
oscillations in the resultant amplitude. Smaller oscil­
lations in the resultant amplitude which are accom­
panied by a reduction in the measured x" are found for 
higher-mode instabilities. It is interesting that the ap­
pearance of the auto-oscillations in the numerical ex­
periment is usually accompanied by a reduction in mean 
value of x'. This has also been observed in laboratory 
experiments. · 

The above result can be used to predict situations in 
which auto-oscillations should be observed in a real 
experiment. We have calculated Sm and T m for YIG 
using (4.5}-(4,8) for a typical experimental situation: 
N2 = 1/3 (sphere), w2 = 9.4 Hz, k == 0 (H ==He), 
wM = 4.5 Hz, Wa = 0.23 Hz (room temperature) (Table II). 

It is clear that not only the magnitudes but also the 
signs of the coefficients depend on the direction of mag­
netization. Substituting the tabulated data in the insta­
bility criterion (4.11), we can readily verify that in the 
"easy'' direction (111) we have an instability for the 
zero mode, whereas in the "difficult" direction ( 100) 
all the modes are stable in"lhis situation. In the experi­
ment with H =He, in the difficult direction the auto­
oscillations are in fact absent up to hz ~ 6-7 dB, which 
corresponds to the second threshold. On the other hand, 
in the "easy" direction there are strong auto-oscilla­
tions virtually immediately after the threshold h/37 l. 

The condition for the appearance of the auto-oscil­
lations in different experimental situations was analyzed 
in detail in[ss] where use was made of the graphical 

·representation of the instability criterion (4.11) in the 
form of a phase diagram. Using the expressions for So 
and To given by (4.5}-(4.7), we can co~truct the lines 
So= 0 and 2Po +So = 0 on the Wp/WM, Nzo plane, which 
represents the boundaries of the instability region for 
the zero mode (Fig. 13). The unstable "phase" lies 
between these curves. Similarly~ one can construct 
phase diagrams on the Wp/WM, Nz2 plane, which rep­
resent the instability regions for the m = 2 and m = -2 
modes (Fig. 14). 
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TABLE II. The Coefficients Sm and T min units 
of 21Tg2 for YGI 

Orientation I To I So I Tz~T-21 s, I B-z 

(100) 0.28 0.52 

I 
0.11 

I 
0.01 -0.36 

(111) -0.75 0.30 0.05 0.01 -1.27 

-I 0 

FIG. 13 riG. 14 

FIG. 13. Phase diagram for them= 0 mode. Regions I and III cor­
respond to the stable phase; strong auto-oscillations develop in region II. 

FIG. 14. Phase diagrams for them= 2 and m = -2 modes. Them= 2 
mode is stable in region I and the m = -2 mode in region II. 

By varying the experimental conditions, for example, 
by varying the temperature, the specimen shape, and 
so on, it is possible to move the point on the phase dia­
gram corresponding to the given experimental situation 
and, in the course of this, the boundaries of the insta­
bility region may be intersected. 

In an experiment in which measures have not been 
taken to increase the sensitivity, one usually observes 
the only zero-model instability which leads to very 
strong auto-oscillations of magnetization. The results 
of such experiments (w = 9.4 Hz and T = 300°K) with 
pure YIG single crystafs and YIG crystals doped with 
scandium (which reduces the anisotropy field) are sum­
marized in Table III. 

The phase diagram in Fig. 13 shows points repre­
senting the experimental situations defined in Table III. 
It is clear that strong auto-oscillations are observed 
in those and only those situations where the represen­
tative point enters the instability region. It is inter­
esting that points 2 and 8 lie near the instability boun­
dary and cut this boundary after a small change in the 
temperature. For example, for point 2 calculations 
show that this occurs for T »J 330°K, whereas experi­
ment shows that the oscillations occur for T ~ 360°K, 

Experiments performed with increased sensitivity 
showed the presence of weak auto-oscillations in those 
cases where the theory predicts instability for the 
m =- 2 mode and stability for the m = 0 mode 1551. Fig­
ure 15 shows the dependence of the threshold for weak 
auto-oscillations on the constant magnetic field for this 
particular experimental situation. It is clear that the 
auto-oscillations appear in two magnetic-field intervals. 
The appearance of the auto- oscillations in region I is 
explained in a natural fashion by the phase diagram 
which shows the instability region form = -2 (Fig. 14). 
This diagram gives the trajectory of the representative 
point as the magnetic field is varied. The initial point 0, 
which corresponds to k = 0 (H =He), lies in the stable 
region. As H is reduced, the wave number increases, 
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TABLE Ill 

I 
I YIG+Sco 

Crystal YIG: ~=1.9. ~-0.05 ., "'• 
filM WM .::1?.. = 2,2,--0.005 

(J)M roM 

No. ofexpt. 
Demagnetizing 

factor (Nz) 
Orientation of 

magnetization 
Strong auto-

oscillations 

1 2 
0 0 

(111) (100) 

Yes 

nyn!,.;, ,dB 

/0 

6 

No 

3 4 
1/3 1/3 

(111) (100) 

Yes No 

5 6 7 8 9 
1 1 0 1/3 I 

(111) (100) (100) (100) (100) 

No No Yes Yes No 

FIG. I 5. Weak auto-oscillation threshold vs. constant-magnetic field 
(YIG sphere, M II (I 00)). 

and the 0 -1 trajectory cuts the stability region. The 
theoretical width of the instability region for YIG. at 
room temperature is 350 Oe. The experimental width 
of region I in Fig. 15 varies somewhat with the shape 
and size of the specimen and lies in the range 15G--250 
Oe. The Width of this region decreases with decreasing 
temperature, and disappears altogether at temperatures 
below 275°K. This is explained by an increase in aniso­
tropy and magnetization, which shifts the initial point on 
the phase diagram along the 00 line (Fig. (14). It is 
clear that the trajectory corresponding to changes in H 
at low temperatures does not cut the instability region 
for them =-2 mode. 

Auto-oscillations in region II in Fig. 15 have a more · 
complicated origin. The limits of this region coincide 
with the field interval in which one observes hard para­
metric excitation of spin waves due to negative non­
linear damping (sec. 5). The conditions for the appear­
ance of these auto-oscillations are analyzed in[481 in 
terms of the kinetic equation. 

In conclusion, we must recall that the simple theory 
of auto-oscillations discussed in this section predict 
that the threshold ha for the auto-oscillations coincides 
with the parametric excitation threshold h1 and that the 
frequency of the auto-oscillations is zero for h = ha· 
Experiment shows, however, a finite threshold for the 
auto-oscillations and a nonzero initial frequency. In 
single-crystal YIG, the threshold for the auto-oscilla­
tions is usually 0.1-1 dB, and the initial frequency does 
not correlate with the size of the threshold and varies 
in the range 104-10 5 Hz,[37

' 
511 depending on the constant' 

magnetic field. These facts can be explained by the in­
fluence of weak nonlinear damping which has no substan­
tial effects on the magnitudes of x' and x"' by the rres­
ence of random inhomogeneities in the crystals[49 

, by 
the absence of exact axial symmetry, by the reaction of 
the specimen on the resonator[ 561 , and so on. Further 
theoretical and experimental studies of the auto-oscil­
lations will be necessary to establish the relative con­
tributions of these mechanisms. 
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5. OTHER PROBLEMS IN SPIN-WAVE TURBULENCE. 

(a) Effect of random inhomogeneities. The elemen­
tary theory of the nonlinear stage of parametric exci­
tation of waves (the S theory) described above is only 
the first important step along the way to an understand­
ing of the phenomena which occur in real crystals during 
parametric resonance. A relatively large volume of data 
has now accumulated on the way in which parametric 
excitation of waves is affected by factors which have not 
been taken into account in the simple S theory. These 
results were obtained with the aid of a formalism which 
is occasionally quite complicated and cannot therefore 
be outlined in the present review to the same degree of 
completeness as the S-theory. The present section is 
concerned with a very brief review of these results, 
and most of the material is theoretical. Experimental 
studies of phenomena outside the framework of the S 
theory are only just beginning. 

We start with the influence of random magnetic in­
homogeneities on the parametric excitation of waves. 

With very rare exceptions, real ferromagnets con­
tain various types of magnetic inhomogeneities, including 
random distributions of magnetic ions over the crystal 
lattice sites, impurities, nonmagnetic inclusions, surface 
roughness, polycrystalline structure, and so on. These 
inhomogeneities are known to lead to the very effective 
two-magnon relaxation process which conserves the 
frequency but not the momentum of the magnons. The 
nature of the magnetic inhomogeneities and their in­
fluence on the ferromagnetic resonance linewidth were 
investigated extensively in many papers (see, for exam­
ple, the monograph by Sparks[ 57 l and the paper by 
SchH:imann[aoJ in the case of unstable homogeneous sec­
ond-order precession. In this case, the frequency of 
homogeneous precession is equal to the frequency of 
parametric spin waves, and the spin waves which arise 
as a result of the two-magnon relaxation of homogeneous 
precession (wo - wk) are involved in the four-magnon 
parametric process (2w 0 -wk + w_k) as well. Paramet­
ric waves therefore reach a substantial excitation level 
and produce an effective reaction on the homogeneous 
precession even before the instability threshold. This 
phenomenon leads to a "spread" in the threshold even 
in the case of a small number of inhomogeneities. 

In the case of unstable homogeneous first-order pre­
cession and parallel excitation, the frequency of the 
parametric spin waves is equal to one half of the pump 
frequency and there is no spread in the threshold. This 
does not mean, however, that inhomogeneity has no 
effect on the threshold or the behavior of spin waves 
beyond the threshold. 

The effect of inhomogeneities on parallel excitation 
is discussed in a large number of experimental pa-

(61 1 . pers . The expenments were largely performed on 
polycrystals. They showed that a reduction in grain size 
to a value of the order of the parametric wavelength 
leads to a substantial increase in the threshold. The 
results are usually treated in terms of simple represen­
tations: the parallel excitation threshold is determined 
from the formula 

h, I Vk I= Yk + Yk!mp• (5.1) 

where Yimp is the damping rate for the spin wave due to 
scattering by grain boundaries and Yk is the damping 
rate due to intrinsic relaxation processes. 

Sparks' book[ 571 contains a criticism of this approach, 
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which can be summarized as follows. Two-magnon pro­
cesses do not remove energy from the parametric-wave 
system and, therefore, the energy balance condition for 
them has the same form as before, i.e., (2.22), but this 
condition takes into account only the intrinsic damping.,·: 
Yk· However, the effect of the inhomogeneities is that · · 
the normal modes are no longer plane waves, but some 
linear combinations of them, and these are in fact ex­
cited by the pump. To determine the threshold, one must 
obviously average the balance condition (2.22) over the 
waves which make up the normal mode with the minimum 
threshold. In our notation, the Sparks threshold formula 
takes the form 

h,J IVa I No sin a dB~ J roNa sin a dO. (5.2) 

It predicts that h, is a slow function of the inhomogeneity 
density. In fact, in the limiting case of a highly inhomo­
geneous medium, the parametric waves fill the entire 
resonance surface wk = 1/2wp uniformly. It then fol­
lows from (5.2) that 

h1 J Vo sin OdO = J y0 sin 0 dO. (5.3) 

Substituting YO = const and v9 from (2.26) for isotropic 
ferromagnets, we obtain h1 = 3V/2y, i.e., there is an 
increase by a factor of l. 5 in the threshold as compared 
with the homogeneous case. 

The threshold for the parametric excitation of spin 
waves in a medium with random inhomogeneities is 
discussed in [341 subject to the approximation Yimp « w. 
It is shown that the inhomogeneities not only spread out 
the pair distribution function, but violate the strict phase 
correlations within each pair: (ckclt) > CkC-k) (the bar 
represents averaging over the impurity ensemble). This 
weakens the interaction between the spin waves and the 
pump, and leads to an additional increase in the threshold 
over and above the increase predicted by the Sparks for­
mula (5.2). For low impurity densities (nmp « y), the 
spread is D.9 ~ (Yimp/r)112

, and the threshold is 

(5.4) 

The logarithm in this formula appears because loss-of 
energy from the equator becomes. important in this 
limit as a result of the two-magnon scattering. 

When Yimp » y, the distribution No clearly becomes 
isotropic, and the threshold amplitude is determined 
from the expression 

n/2 

h: J Vtsin 9 dB= i'i'!mp· 
0 

(5.5) 

Therefore, the magnitude of h1 in this case is greater 
by a factor of (nmp/r)112 than predicted by (5.3) because 
the latter does not take into account the violation of the 
phase correlation. When (5.4) and (5.5) are compared 
with experiment, it must be remembered that they are 
not valid if the size of the inhomogeneities is much 
greater than the spin wavelength. 

The post-threshold behavior of spin waves in a fer­
romagnet with random inhomogeneities is also dis­
cussed in [341 within the framework of the S-theory. The 
inhomogeneities lead to an increase in the stationary 
level of wave limitation by a factor of nkbYimpiY· This 
effect is also explained by a reduction in the pair phase 
correlation due to the two-magnon scattering. The quan­
tity OK is not substantially altered because the ampli­
tude limitation conditions for large excesses above the 
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threshold lpJ « hV remains in force even in the presence 
of inhomogeneities. This ensures that the nonlinear sus­
ceptibilities given by (2.33) and (2.34) are not very sen­
sitive to inhomogeneity density. A serious comparison 
between the conclusions given in (34 1 and experimental 
data has not as yet been carried out. 

(b) Initiation and fine structure of parametric tur­
bulence. All real systems exhibit thermal fluctuations, 
and there is considerable interest in their behavior 
during parametric excitation of waves. It is clear that, 
as the instability threshold is approached, there is an 
increase in the level of fluctuations in the system. Be­
yond the instability threshold there are at least two 
possible cases: either the fluctuations in the region of 
k space near the instability wave vector ko increase to 
the macroscopic level, in which case a wave packet is 
produced with a certain width K, or we have a state which 
is singular in k and the fluctuations become frozen at a 
certain level. The appearance of the singular state can 
be compared with a phase transition of the second kind, 
for example, condensation of a Bose gas, or a transition 
to the superconducting state. 

A phase transition is a change in the state of a sys­
tem due to its instability forT< T1 , where T1 is the 
transition temperature. This results in the appearance 
of long-range order in the system, and the order para­
meter is a function of temperature of the form (T1-T)112, 
When a stationary spectrum is established in the form of 
one angular pair of waves against the background of 
fluctuations, we again observe long-range order, i.e., 
the phase coherence of waves forming the pair. If we 
continue this analogy with phase transitions, we can 
compare the pair amplitude with the order parameter, 
and the temperature with the pump power. Near the 
phase transition, the fluctuations also undergo a rapid 
increase and it is precisely the behavior of fluctuations 
for T - T 1 which determines whether or not the phase 
transition will take place. 

We shall now describe the behavior of fluctuations 
during the parametric excitation of waves. Well away 
from the excitation threshold (hVk < Yk) the fluctuations 
can be described in terms of the linear approximation. 
The pump field produces a deviation of the wave dis­
tribution function ilk from the thermodynamic equilibrium 
value nit: 

(5.6) 

where 

(5.7) 

The formula given by (5.6) may be regarded as the res­
onant response of the system under the conditions of 
parametric excitation to a random Langevin force which 
represents the interaction between the system and the 
thermostat. Thus, the application of the pump and the 
random force results in the appearance of a wave packet 
wi~h maximum at wk = 1/2wp and frequency width vk. 
It IS clear that as hVk -Yk, the distribution width 
Vk- 0 and the integrated fluctuation intensity in a par­
ticular direction increases as v0, where vn is the value 
of vk on the resonance surface. 

The behavior of the fluctuations near the threshold 
and when hVk > Yk must be described by the nonlinear 
equations. It is shown in [s2 J that the character of the 
"phase transition" is very dependent on the quantity fJ, 
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i.e., the dimensionality of the distribution nk in the 
ground state of the S-theory. When c5 = 0, the waves are 
located at a pair of points, and when fJ = 1, they lie on a 
line (this case is usually realized in isotropic ferro­
magnets). Finally, when c5 = 2, they lie on a surface in 
the k space. 

The singular distribution of parametric waves, which 
appears for h > h1, modifies the fluctuation damping rate 
in the neighbourhood of the resonance surface. It turns 
out that in the diagonal-Hamiltonian approximation the 
fluctuation intensity is given by (5.6) as before, except 
that wk is now replaced by wk and hVk by Pk. Iri the 
linear approximation, their contribution to the renor­
malization of frequency and pump need not be taken 
into account. It is then clear that vn = 0 at those points 
on the resonance surface where the parametric-wave 
amplitudes are nonzero. In the neighborhood of these 
points 

(5.8) 

where V g is the group velocity and Kl and K11 are the 
deviations of the wave vector k across and along the 
resonance surface respectively. 

The spread in the singular distribution will obviously 
occur for {J = 2 or 1 if the integrated fluctuation intensity 
given by (5.8) becomes infinite. This formula is then no 
longer valid, and we must take into account the contrib­
ution of fluctuations to the self-consistent pump and the 
renormalization of the frequency. 

When li = 2 the integral converges as K"j{. Calcula­
tions show that this is accompanied by the establishment 
of the Lorentz distribution nk, the width of which 
v = K 11 Vg decreases with increasing excess above the 
threshold. At the threshold v = ~ 112y where 
~ = (27T) 2k~n~Vg1 is a small parameter characterizing 
the effect of thermal fluctuations. Order-of-magnitude 
calculations show that~ Rl lko(T/Tc) ~ 10-2-10-3. In 
these expressions l is the lattice constant and Tc is the 
Curie temperature. For excesses above the threshold 
that are not too small h -h1 > h1e, we have 

When c5 = 1, the thermal fluctuation divergence is 
logarithmic and the distribution width v is exponen­
tially small1621 . The integrated fluctuation intensity is 
finite for one pair ( {J = 0) and it is only in this case that 
one might hope for the appearance of a state which is 
singular in kin the presence of thermal fluctuations. 
However, calculations show162' 631 that these hopes are 
unjustified because, as a rule, the ground state is un­
stable against the excitation of spatially-inhomogeneous 
collective oscillations. The nonlinear stage of develop­
ment of this instability will be described in the next 
section. · 

It is important to note that, in addition to the broad­
ening in k, the distribution function for the parametric 
waves has a finite spectral width c.w. In the diagonal­
Hamiltonian approximation [33 1 

t>w= v~. 
y 

The multifrequency character of parametric turbulence 
is a consequence of the fact that the Langevin random 
force to which the parametric waves are the response 
has a broad frequency spectrum. However, all this is · 
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valid only so long as we need not take into account the 
nondiagonal terms of the Hamiltonian which have been 
neglected and which were shown inl331 to lead to a sub­
stantial change in the random -force spectrum. In par­
ticular, in addition to the Langevin random-force fL (k) 
with a white spectrum there is an additional random 
force fk(k, w) with a narrow spectrum whose width is 
of the order of the spectral width of the parametric 
wave packet, t.w, and a maximum at the frequency 
1/2wp. The square of its amplitude is proportional to 
SN3 I t.w where N is the integrated wave intensity. At a 
certain critical pump amplitude 

h* -h,l:::! h,t;'l5 ( ~ ) '15 ~ w-•~z, 

the "intrinsic" noise level f~ is comparable with the 
thermal noise level fi,. When h?, h*, the system of 
parametric waves becomes unstable against the "buck­
ling" of the frequency spectrum. In fact, a random re­
duction in the spectral width t.w of the packet gives rise 
to a narrowing of the spectrum of the random force fs 
and an increase in its amplitude. This enhances the 
reduction t.w, as a result of which the force fs becomes 
even "narrower and stronger" and so on. The contrac­
tion process continues so long as the distribution widths 
of these parametric waves and of the intrinsic noise 
spectrum do not vanish. This process cannot occur in 
the direction of increasing widths of these distributions. 
This is prevented by the resonance character of the ef­
fect of the pump. 

We thus see that, when h = h*, we have a phenomenon 
which is analogous to a phase transition, i.e., the ap­
pearance of a "condensate." A new packet of waves ap­
pears against the background of the above multifrequency 
parametric turbulence, with the same spread in k but 
oscillating at the strictly fixed frequency 1/2"'rJ. Analysis 
of this transition is a very complicated task. If may be 
that this is a phase transition bf first order but close to 
second, i.e., when h = h* the single-frequency turbulence 
appears suddenly, but the size of this jump is small. 
When h > h* the amplitude of the single-frequency part 
of the turbulence N s is found to increase, rapidly 
reaching the asymptotic value given by the S theory: 

SNs >:::: Vh'V2
- y', 

whereas the multifrequency part rapidly decreases and 
may be looked upon as fluctuations against the back­
ground of the single-frequency turbulence. The spectral 
width of these fluctuations is of the order of 

, v2 ( y h'-h[ ) 2/3 
u.W=-~J' -----

y k 0 V g h[ • 

Here v is the width of the distribution over the natural 
frequencies on both the multi- and single-frequency 
parts of the turbulence. 

In addition to fluctuations at frequencies close to 
1/2wp there are also fluctuations due to thermal exci­
tation of collective oscillations (cf. section 4(a)), which 
lie at frequencies separated from 1/2wp by an amount 
of the order of SNs » t.w. 

The above picture of the initiation of single-frequency 
turbulence refers only to the case where the ground 
state is stable against the excitation of collective oscil­
lations. It is well-known that, in the opposite case, auto­
oscillations are produced and can be looked upon as 
giant fluctuations, destroying the single-frequency tur­
bulence and leading to strong multi-frequency turbulence 
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with the spectral width of the order of SNs which is equal 
to the width of the region excited in k space. 

(c) Strong turbulence and self-focusing of narrow 
parametric-wave packets. We shall now consider the 
situation where the excitation threshold is a minimum 1 

for a single pair of waves. This occurs, for example, 
when spin waves are excited by homogeneous precession 
in the case of second-order instability (2wk = 2wp) 
and for parallel excitation in uniaxial ferromagnets 
with "easy plane" anisotropy. It follows from the S 
theory (seer201

) that, in this case, a monochromatic 
standing wave which is coherent throughout the crys-
tal will be excited below the second threshold. This 
wave can be used to amplify and excite hypersonic 
waves, to modulate light, and so on. However, a neces­
sary condition for the realization of the single-mode 
state is that it must be .stable. In the nondecay part of 
the spectrum the main ·processes leading to instability 
are the following four-wave processes l62

' 
63

1: 

(5.9) 

(5.10) 

The process defined by (5.10) describes the interaction 
of pairs and corresponds to the diagonal Hamiltonian 
(3.1). The process defined by (5.9) defines the insta­
bility of one wave and was previously ignored on the 
ground that in the case of a large number of waves it 
has a high threshold because of the randomization of 
the individual phases. 

The instability growth rate for the processes (5.9) 
and (5.10) is very dependent on the sign of the coef­
ficients S and T of the Hamiltonian. For small K we 
must have S > 0 and T > 0 for stability. However, even 
when these conditions are satisfied, perturbations with 
K ""Ko may turn out to be unstable, where 

w"X~= Y (hV)2 -y2
• (5.11) 

To ensure stability for these values of K, we must satisfy 
the additional requirement 0 < hV -y ~ y(y/w) 2(S/T)4 

which defines a very narrow interval of pump intensities h. 

The nonlinear stage of development of the instability 
of one pair was investigated in [64

' 
651

• The basic feature 
of this problem is the narrowness of the wave packets 
excited in k space, which has meant that the problem 
could be described in the language of wave envelopes. 
The simplest variant of the nonlinear behavior of the 
system is its transition into_ one of the possible sta­
tionary states which take the form of a periodic modu- · 
lation wave A(r -Vt), which is either at rest or moves 
with constant velocity. Analysis of the stability of such 
waves in the case of small modulation depth suggests 
that all the stationary states are unstable and, therefore, 
the nonlinear behavior of the system is essentially non­
stationary. Such a state is highly turbulent and can be 
represented by a stochastic superposition of envelopes 
propagating mainly in the direction perpendicular to ko. 
The modulation depth is of the order of unity, and the 
characteristic wavelength is ~ Ko

1
• The average level 

of the resulting turbulence turns out to be of the order 
of the pair amplitude inS theory. The modulation, pic­
ture changes substantially over a period of the order 
of [ (h V)2 - y2]~~~ 2 

An interesting phenomenon occurs against the back­
ground of this turbulence, namely, the collapse of the 
standing-wave envelopes. It turns out that deep modu­
lations A(r, t) are not dissipated but contract ill such 
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a way that the amplitude at the center of the packet 
rises rapidly and is restricted by the nonlinear damping 
to a level much higher than the mean turbulence level. 
This can be compared with self-focusing in nonlinear 
media in optics, which in certain cases leads to the col­
lapse of a beam in a finite time[ss, s7]. 

Computer calculations show[osJ that, when the excess 
above the threshold is small, these collapse regions are 
practically unnoticeable, and for h ~ 3h1 practically 
every amplitude maximum with collapse. The energy 
dissipation in these collapses leads to an effective non­
linear damping described by y (N) ~ y + 1]N, 1] ~ I Sl. 

A promising experimental method of studying strong 
turbulence is measurement of the spectral density of 
electromagnetic radiation emitted by a ferromagnet 
at frequencies around wp and 1/2wp· In the absence of 
the collapses} the spectral width of the emission is 
~[ (hV )2 

-y
2 )1 2

• The appearance of collapses, on the 
other hand, is accompanied by a substantial broadening 
of the emission spectrum, which can probably be used 
as a means of detection. 

6. CONCLUSION 

The results summarized in this review show that 
substantial progress has now been achieved in the un­
derstanding of the phenomena which occur in ferromag­
nets in the case of parallel excitation of spin waves. 
Physical ideas developed in this connection are also 
valid for a number of other similar problems. 

This refers above all to nonlinear phenomena in the 
case of "transverse" excitation of spin waves, i.e., 
the parametric excitation of spin waves by homogeneous 
precession of magnetization. In the simplest case of 
first order instability and ferromagnetic resonance 
(wa ~ wp ~ 2wk) the main nonlinear mechanism is the 
reaction of spin waves on homogeneous precession[22 l. 

Well away from the resonance, the phenomena which 
occur during transverse excitation are essentially sim­
ilar to those found for parallel excitation. It is shown 
inl221 that the interaction of the waves with one another 
is appreciable even at small excesses above the thresh­
old. All three nonlinear damping mechanisms discussed 
in Sec. 3 play an important role in this connection. A 
substantial volume of experimental data is now avail­
able in this field, but detailed comparisons with the 
theory are inhibited by various complicating factors. 

In particular, even in the linear approximation, the 
dependence of y on() and lkl means that the question as 
to which waves are excited first is difficult to answer. 

For second-order instability, Wo ~ wp = "'k• two­
magnon scattering plays an important role in addition 
to the above factors and must be taken into account at 
the same time as the pair interaction. For large ex­
cesses above the threshold, this is accompanied by 
phenomena which are not as yet understood, for ex­
ample, the "valley" on the resonance curvel 681

• 

The phenomena observed in the course of parametric 
excitation of spin waves in antiferromagnets are at 
least in principle, much richer because of the presence 
of several spectrum branches. 

Cubic antiferromagnets with weak anisotropy, and 
uniaxial antiferromagnets of the "easy plane" type, are 
of parti~ular interest and have been investigated by 
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Seaveyr691
, Borovik-Romanov and Prozorova hol, and 

Ozhogin l71 l. It is shown in [n, 731 that all the predictions 
of the S theory are fully applicable to antiferromagnets. 
The interpretation of experimental results is compli­
cated by the fact that defects play an important role in 
typical experimental situations involving antiferromag:. 
nets. 

An interesting and important range of problems is 
associated with the study of the parametric excitation 
of waves in media with large scale (in comparison with 
the wavelength) inhomogeneities. In this case, we have 
an additional "linear" limiting mechanism because of 
the loss of energy to the region with the higher threshold. 
This mechanism was investigated in detail in[74 l in the 
case of waves in plasmas. It is also important to note 
the interesting phenomenon of parametric echo which is 
observed during transverse excitation in weakly inho­
mogeneous ferromagnets. A qualitative explanation of 
this phenomenon is given in [751

• It would be interesting 
to elucidate the role of wave interaction using short 
intense pump pulses. Studies in this area may be of 
practical importance in the sense that they may lead to 
the development of amplifiers, amplifying delay lines, 
and other devices for pulse shaping. 

The importance of the theory outlined in the present 
review extends beyond the framework of ferromagnet­
ism. It is, essentially, the general theory of parametric 
excitation of waves in nonlinear media with a nondecay 
spectrum. In particular, it is valid for certain problems 
in the physics of plasmas, (761 and can be used to inves­
tigate the parametric excitation of waves on the surface 
of a liquid. It is therefore hoped that this theory reflects 
many of the essential features of turbulence established 
in an unstable continuous medium when the excess above 
the threshold is not too large. 

!)We note that the dependence of x' and x" on h2 found in [46 I is quali- · 
tatively in agreement with Fig. 5 for all excesses above the threshold 
with the exception of the -1-2 dB region near the threshold. 
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