Dipole character of the collapse of Langmuir waves
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1. Langmuir collapse'? is an important mechanism where 7, = VT,/4we*n, is the Debye radius, take the
of energy transfer from Langmuir waves to plasma form
particles; a study of the structure of the plasma cavern
produced in the collapse is of great interest. It was re- AGY, + AW = div(a VD),
ported earlier!?+%} that in a number of cases it is pos- (1)
sible to have a collapse that has no spherical or (in the n, AP =0, & +n+ ivepR =0,

planar case) axial symmetry. The result of the present
paper is the establishment of the fact that the principal

role in the collapse is played by caverns that compress where & is the hydrodynamic potential.
in self-similar fashion, inside of which the distribution In the case of a small amplitude wave | V¥ |2« 1
of the oscillating electric charge has the character of | E|2/81<<m/M, the system (1) reduces to a singl:e
. . : . b
a dipole elongated in a plane perpendicular to the dipole equationm (static approximation)
moment.
Just as in_[”, we start from the system of equations

for the complex envelope of the high-frequency AG Y+ AY) + div(] vYPve) = 0. (2)
potential ¥:
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E 6= r (Ee ~iwyt E*e‘w,,‘> The system (1) conserves the integrals
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and the dimensionless density variation
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Here ¢ is the electrostatic potential and »; is the un- t=00 muxjee 2070 =005 | maxfeff=2123

perturbed plasma density.
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I =f1vela,
= 2 2 1 2 1 2
I, = fC AP +njv?I tgn +7(V¢) )ydr,
and the system (2) conserves the integrals I, and

1
I = J(1 8P ~ = | v¥[) dr.

Equations (1) and (2) have common stationary solutions
¥ = ¢ exp(id®t), and ¢(r) satisfies the equation

A(-A2¢ + A @)+ div(|ypi2ve) =0. (3)

Multiplying (3) by (rv¢*), adding it to the complex
conjugate, and integrating, we can establish that in the
two-dimensional case I; =0 for stationary solutions; in
the three-dimensional case I, =,

2. We present the results of some numerical calcu-
lations for the system (1) and for Eq. (2). We consider
the problem in a rectangular region on the (x, y) plane,
with boundary conditions of the second kind. The initial
distribution of the oscillating electrostatic charge p
= V¥ takes the form
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p(%,%,0) = p F(x, y)e' ™0

My oy <y,
vz, - -z ¥ ry-y,y
Fixoy) = {-s'% y>y,,  s=1- ___.,)
a b
0; Y= Yor 2 <0 (4)
X - x,
p,, m, 6, b are parameters, 9 = tan’! .
Y=%

In the case of the system (1), we assume in addition that

n(z,y,0) =~ | v,

n, (%9, 0 =0,

Such an initial distribution of the charge makes it pos-
sible to specify various initial configurations of the
cavern. In particular, a dipole elongated parallel and
transverse to the dipole moment, an axially-symmetri-
cal density well with a rotating field in the center (m=1),
etc. For arbitrary initial values in (4), the qualitative
character of the behavior of the solutions turns out to
depend only on the value of the integral I,. When I, >0,

a “spreading” of the initial distribution takes place. At
I,=0, the solution retains approximately the form of the
initial condition. At I, <0, both for Eq. (2) and for the
system (1), a collapse is observed in the form of an ex-
plosionlike growth of the Langmuir-wave amplitude and
of the frequency variation. In the collapse, just as in
the static case (2) and in the “acoustic” case (1), the
plasma cavern begins to contract rapidly in self-similar
fashion, and its shape is independent of the initial dis-
tribution (4). In the calculation process, the intensity of
the Langmuir waves in the center of the cavern increas-
es by several dozen times, without loss of accuracy.
Figures 1 and 2 show collapse in the static case of an
initially axially-symmetrical distribution with rotating
field (m=1).

3. In the planar case, Egs. (1) and (2) have no self-
similar solutions capable of accounting for the results

FIG. 3.
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of the numerical experiments. They do, however, have
asymptotic self-similar solutions whose accuracy im-
proves as the collapse point is approached.

In the static approximation, we seek such a solution
in the form

- Adei?, A= ¢(T(:t_))+ E r + e,

ff 'd)(_['(_”) £ o

(5)

¢ Iz_m

Here ¢(¢) is a real solution of Eq. (3), 7(,)=0, and

Z, is the collapse point. If ¢ is close to ¢, and ®(£) is
suitably chosen, the solution (5) in the principal orders
in 1/f satisfies Eq. (2). Substituting (5) in I, and recog-
nizing that [(v?¢ |12~ 11V¢ |“dE =0, we obtain in the
principal order in 1/ 'f

af’? - = const ,

L

f

a= [[2VO VS + dAD) — $2| yg |2(y@)2dE,
B=2f(E_yg)(ys)df

from which it follows that

fle) ~(e, - ¢)¥?.
A similar solution™? was constructed earlier in the
theory of self-focusing.

From among all the solutions of (3), there should be
realized in (5) a solution with a minimum of 7;. It can
be assumed that such a solution is of the dipole type—
the axially symmetrical solution has a large value of J;
owing to the condition ]¢,(0)=0 and owing to the non-
monotonic behavior of 1¢.(¥)12.

Within the framework of the system (1), an approxi-
mate self-similar solution can be obtained in the case
n>>1 by putting

¥, =iAl)V,

Assuming

Are) =

)

we obtain for ¢ and = the system of equations

1 r
=(t°—t)2n(t°—t) (6)

(¢,-2)2

divinve),

31 (7)
- An=Alyelt

Al-¢ + Ag) =

- dn
6n+ 6€ — 2ég———
+ 6¢ FY; + € 5585"35/8»

It was shown earlier®®! that the system (7) has no
axially-symmetrical physically reasonable solutions,
but this prohibition does not extend to distributions of
the dipole type.

Both the solution (5) and the solution (8) correspond
to “strong collapse,” i.e., to a finite Langmuir-wave
energy that falls in the singularity, and are in qualita-
tively good agreement with the results of the numerical
experiment.
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