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The problem of a statistical description of a large number of solitary waves (solitons) on the basis 
of the Korteweg-de Vries equation is considered. The dynamics of soliton collisions is studied and 
it is shown that only paired collisions occur. Interaction with the nonsoliton part of the solution can
not change the amplitude or phase of the soliton. As a result the total soliton velocity distribution 
function does not depend on the time. A kinetic equation for solitons is derived in the form of a 
transport equation for the velocity distribution function. The instability of a system consisting of 
two periodic waves is studied on the basis of the kinetic equation. 

1. It is well known that one-dimensional linear waves 
in media with weak dispersion are described by the 
Korteweg-de Vries (KDV) equation (see, for exam
ple, [ 11 ) 

u, + UUx + u==O. 

The KDV equation has a solution in the form of a 
solitary wave or soliton 

(1) 

-y-; 
u = 3s/ch'-(x- st- Xo). 

2 
(2) 

which is determined by two parameters-the velocity s 
and the position of the center x0 (phase). The soliton 
is a stable formation and it is possible to raise the 
question of describing the interaction of a large num
ber of solitons distributed in some manner with re
spect to s and x0 • To this end it is necessary to study 
the dynamics of the collision of solitons. 

In the present paper we shall show that only paired 
collisions take place, and that there is no velocity ex
change between the solitons in these collisions. Thus, 
there is in principle no change in the summary (or 
average) distribution function of the solitons with re
spect to the velocities s. Nonetheless, the kinetics of 
a "soliton gas" is, as we shall show, not quite trivial. 
It is possible within this framework, for example, to 
investigate the instability of certain velocity distribu
tions of the solitons. We shall use the mathematical 
formalism developed for the KDV equation by Kruskal 
and his co-workers[ 2- 4 l and also by Lax[ 5J. A brief 
description of this formalism is given below. 
~ 2. We consider a self-adjoint differential operator 
Lt acting on the complex-valued functions <j;(x) 
(-oo<x<oo); 

A d' 1 
L, = dx'+Bu(x,t). (3) 

The operator Lt depends on the time t as a parameter. 
It was shown in[ 2' 5l that if u(x, t) is a solution of the 

KDV equation, then the operators Lt at different values 
oft are unitarily equivalent to one another. The spec
trum of the operator Lt is conserved in time, and its 
eigenfunctions <j;( x, t) (independently of the eigenvalue 
they belong to) satisfy the equation 

illjl = -4 (.!._)' ljJ -~( u~+~u) ljl. (4 ) 
iJt ox 2 ox ox 

Let u(x, t) tend rapidly to zero as 1 x 1 - oo. We con-
sider the scattering problem for the operator (3): 

ljl-+e-'•x+S,(t)e'•x, X-++oo, 

x-).--00. 

From (4) it follows that Dk does not depend on the 
time and, in addition, 

S,(t) =Si,(O)e'ik''. (5) 

Let the operator Lt also have N discrete eigenvalues 
1/n which, as already noted, are integrals of the mo
tion. The normalization of the corresponding eigen
functions is also conserved, and their asymptotic form 
at large I x I , 

depends on the time, with 

M,,(t) =M.(O) exp (4T]n3t). (6) 

Knowing Sk(t), Mn(t), and 1/n, it is possible to recon
struct u(x, t) at any instant of time, by solving the in
verse scattering problem. 

Let us construct the function 
1 ~ N 

F(x,t)=z;-J S,(t)eikxdk-_E M.'(t)e-v. (7) 

The quantity u(x, t) can be found by solving the 
Marchenko equation[6 • 71 relative to the function 
K(x, y, t): 

K(x, y.t) = F(x + y, t) + J K(x, s, t)F(y + s, t)ds, 

d 
u(x,t)= 12-K(x,x,t). 

dx 

From (5)-(7) it follows also that F(x, t) satisfies the 
linear equation 

oF o'F -+8-=0. 
ot ox' 

(8) 

(9) 

3. Let us consider the problem of the interaction of 
a finite number of solitons. Kruskal and Zabusky[Bl 
have shown that the amplitudes of the solitons are not 
altered by the interaction, but the phases are. Let us 
investigate the character of this alteration. 

We introduce the concept of a pure soliton solution 

538. 
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of the KDV equation as a solution for which Sk(t) = 0. 
We seek a solution of the KDV equation in the form 

K (x, y, t) = L, K.(x, t) e-•.•. 
n=t 

After substituting in (8) we have a system of linear 
algebraic equations 

K. (x t) = -M z e-• x _ M 'e-• "L:N Km (x, t)e-"m" 
' n n n n -----

m~t f]n + t]m . 

We introduce A11(x, t) = Kn(x, t)e-1Jnx. The system 
is transformed into1) 

) ( " f, Am (x, t) 
A.(x, t exp 2t]n!;n)+ l...J --- = -1. 

f]n +YJm 
m=l 

(10) 

Here ~n = x- 41)~t- xn; Xn = -2 lnl Mn(O) 1. We note 
that 

d N 

u(x,t) = 12~ I: A.(x,t). 

The matrix 1/(1Ji + 1Jk) is positive-definite. There
fore the matrix of the system (10) is nondegenerate, 
and the same pertains to all other matrices appearing 
in this section. The solutions of the system (10) are 
bounded by a certain constant that does not depend on 
x or t. We arrange the eigenvalues 1Jn in increasing 
order and investigate the asymptotic form of the solu
tion of the system (10) as t - ± oo on the straight line 
x = 41Jk + x0 , where 1Jk is one of the numbers 1Jn. As 
t - + oo, the value of An tends to zero if n < k, and to 
a certain value Aho) that does not depend on the time if 
n ::=: k, where Ah0 > satisfies the system 

1 k-1 A(O) 

Af') ( exp(2t],s•)+-) +I: _m_ = -1, 
2tjk m~t l]n + l]m 

Am.. A!') 

I: l]n + t]m + Y)n + f]> = -1. 
m=l 

(11) 

In addition, as I x0 I - oo, all the Ah0 ) - const and ac
cordingly u(x, t) - 0. The next terms of the asymp
totic expression have an exponential character in time. 
Analogously, as t - - oo, we have An - 0 when 
n ::=: k and An- Ah0> when n < k. For Ah0 > we have 
the system 

• A~:> . At'> 
r:~n+l]m +-lJn+lJ• =-1 
•n=l 

(12) 

Shabat[ 101 showed that any purely soliton solution 
breaks up as t - ± oo into solitons moving with veloci
ties sn = 41)~. Thus, both the system (11) and the 
system (12) describe a soliton having the same velocity 
Sk = 41)k, but, in general, different phases 2>. To calcu
late the shift of these phases let us consider the inter
action 0f two solitons. This case corresponds to the 

!)The system of equations (I 0) (in a somewhat different form) was 
obtained in the paper of Kay and Moses [ 9 ] . 

2lThe solution of the systems (II) and ( 12) is a solution of the KDV 
equation and depends only on ~k = x-4??k2 t-xn, decreasing as I hi-> 00. 

Only a soliton with the parameter ??k can be such a solution. 

system (10) for N = 2, We have from the system (10) 

( ) d z, 
u x,t =12--, 

dx Z, 

1 1 2 
zl = e2T!l~l + e2112~2 + --+ ------' 

2t]t 2t]z f]t + t]z 

Z,=(e'"•'•+-1-)(e'"'''+-1-)- 1 t]z>f],. 
2tjt 2tjz ( l]t + YJz) 2 ' 

We choose M~ and M~ such that when t - - oo we 
have 

( ) 3 I h' fs, rS, 
u x, t -+ s, c z-<x- s,t) + 3sz/ch'z-(x- s,t). 

Here s1 = 41JL s2 = 41)~, As t - + oo we obtain 

( ) 3 I , r;; < > I , -ys; u x,t->- s,ch T x-s,t-6, +3s2 ch z-<x-s,t-62), 

6, = - _1 lnl'll' + 'llz I ' 
'llt . 'llt -11, 

6,=-1-lnl l]t+l]zl· 
t]z t]t-l]z (13) 

As a result of the scattering, the solitons acquire 
phases /:i 1 and /:i 2, with the faster soliton acquiring a 
positive phase and the slower one a negative one. 

Assume now that we have N solitons. The corre
sponding solution of the system (13) breaks up as 
t - ± oo into the same solitons. Obviously, as t - + oo 

the fastest soliton will be propagated in front, with the· 
solitons following one another in decreasing order of 
velocity. As t - - oo the arrangement of the soliton is 
reversed, and thus as the time changes from - oo to 
+oo every soliton will collide with every other one. If 
all the solitons are sufficiently far from one another, 
then the total phase shift of each soliton as it propa
gates along the entire straight line is equal to the sum 
of the phase shifts in paired collisions. We note, how
ever, that the solutions of the systems {11) and (12), 
which represent the limiting states of the soliton as 
t - ± oo, depend only on the amplitudes of the remain
ing solitons and do not depend on their positions, which 
are determined by their phases. Thus, the total phase 
shift of the soliton is equal to the sum of the phase 
shifts in paired collisions also in the general case, and 
it can be assumed in a certain sense that only paired 
collisions of the solitons take place. This explains to 
some degree the conservation of the amplitudes of the 
solitons: no velocity exchange takes place in paired 
collisions of any one-dimensional particles. 

4. In the general case, Sk(t) ~ 0, and theoretically 
there remains the possibility of change in the amplitude 
and phase of the solitons as a result of their interaction 
with the "non-soliton" part of the solution. We shall 
show that this does not take place. We represent the 
function F( x, t) in the form 

F(x, t) = F0(x, t) + F,(x, t), 

F,(x,t) =-I: M.'(t)e-"n", 

1 ~ . 1 ~ 
F,(x, t) = -s S,(t)e''" dk = -s S.(O)e""'+""dk. (14) 

2n_oo 2n -~ 

Both F 0 and F 1 satisfy Eq. (9). Let u(x, t) lt=o be a 
sufficiently smooth function that decreases rapidly as 
I xI - oo, The same is valid also for the function 
F1(x, t) lt=o· For t - + oo and x > 0 we obtain from 
the integral (14) the estimate 
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(15) 

Let us estimate the correction to the purely soliton 
solution as t - + oo: 

N 

K(x, y, t) = ~ K,(x, t)e-•n• + 6K(x, y, t). 
n=l 

We put 
~ 

6K(x, y, t)-J bK(x, s,t)Fo(Y + s, t)ds = 6G(x, y, t), 

For BK we have 
N 

6G(x,y,t)=F,(x+y,t)+ ~K,(x)J e-•n•F,(y+s,t)ds. (16) 

We neglect here the term proportional to F 1 BK. For 
BG we have the estimate 

lllGI<-c (1+~ IA.(x)l )<_::_exp{-~.::_}, (17) 
f 1h ~ 'Y)n t'!a 3f6 t 112 

since all the An are bounded when - oo < x < oo, We 
seek the solution of (16) in the form 

,.. 
bK(x, y, t) =~IlK,. (x, t)e-•.• + 6G(x, y,t). 

We obtain 

{j·A.e''•'• + ~N 6A,. ~s --'-- = e'n" llG(x, s, t)e""' ds = j •. 
,~ 1 TJn+TJm 

For fn we have the estimate 

c, { 1 x'1•} Ifni <-exp ---=- . 
T]nt'f, 3y6 t'f> 

(18) 

At any straight line x = At + x0 the coefficients of the 
matrix of the system (18) tend to constant values as 
t - oo, and the right-hand side vanishes like 

thus, An - O, including the case when .\ = 47Jk· It 
follows therefore that 

6K(x,x,t)= ~M,(x,t)-+0 

On any straight line x = .\t + x0 as t - oo, 

From the foregoing proof it follows that an arbitrary 
solution of the KDV equation tends to a pure soliton 
solution as t - + oo, Similar reasoning proves that as 
t - - oo any arbitrary solution of the KDV equation 
tends to a purely soliton solution, and obviously to the 
same solution as when t - + oo, Thus, the "nonsoliton" 
part of the solution does not change the amplitude and 
phase of the solitons and does not influence the process 
of their scattering. 

5. Let us consider now the propagation of an indi
vidual soliton in a "gas" (the interaction with the non
soliton part, by virtue of the foregoing, can be 
neglected). Interaction with other solitons leads to a 
change in the average velocity of the solitons as a re
sult of the successive jumps of the phase in the colli
sions. We introduce the distribution function f( 17, x 0 ) 

of the solitons with respect to the parameters 17 and 
the positions of the centers x0 • We then obtain for the 

velocity of the "trial" soliton 

Here 47] 2 = s( 11) is the velocity of the soliton with 
parameter 1J in "empty" space. 

Formula (19) takes into account the paired collisions 
of the solitons and is valid under the condition that the 
correction to s(17) is small, i.e., under the condition 

J f(TJ)dTJ « T]o, (20) 

where 1Jo is the characteristic value of the parameter. 
Condition (20) is the criterion by which a "gas" of 
solitons can be regarded as rarefied, 

The KDV equation admits of a solution in the form 
of a wave constituting a periodic sequence of solitons 
with a period much larger than the dimension of the 
soliton. Such a wave can be visualized as a monochro
matic "beam" of solitons. If the soliton parameter is 
7Jo and the period of the wave is L, then the distribu
tion function corresponding to the wave is 

/(TJ)=Il(T]-T]o)/L (L>-1/T] 0). 

When two such soliton waves interact, the solitons of 
one of the waves collide in sequence with the solitons 
of the other, as a result of which the wave velocities 
become renormalized. Let the periods of the interact
ing waves be L 1 and L 2 and let the soliton parameters 
be 1J 1 and 1]2 ( 1J 1 < 1] 2 ). We have for the renormalized 
velocities 

- - 4 2 4 ( z ') l T]t + T]z St- 'Y)t ---'r]z -f], n--, 
T],L, T]z-T]t 

(We note that the renormalization of the wave velocity 
as a result of the interaction of its own solitons is ex
ponentially small like exp ( -Lq). We can consider the 
interaction of a large number of periodic waves ana
logously. 

6. Formula (19) makes it possible to write a kinetic 
equation for solitons. Inasmuch as when solitons col
lide with one another their parameters 17 remain un
changed, the following continuity equation should hold 
for the function f 

aJ a 
c;-+-.-,'i(TJ)/ = 0, 
ut dx 0 

(21) 

where 8(17) is given by (19). This equation, obviously, 
conserves the quantity 

We note that the fact of conservation of <I> ( 17) should 
take place also for any more exact theory, since it 
follows directly from the general Kruskal-Lax theory. 
Indeed, the quantity <I>(1J)d1J is the number of discrete 
eigenvalues of the operator Lt contained in the interval 
from '1 to 17 + d 1J, and by virtue of the conservation of 
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the spectrum of the operator Lt it should be a con
served quantity3 >. 

We note also that since only paired collisions exist, 
the kinetic equation (21) is valid with exponential ac
curacy with respect to the rarefaction parameter 
f f(7))d7)/7) 0, since the higher-order terms of the ex
pansion in this parameter, which corresponds to many
particle collisions, are identically equal to zero. 

By way of an example of an application of (21), let 
us consider the stability of a system with two interact
ing periodic waves. We seek a solution of (21) in the 
form 

n 1 (xo, t) n,(xo, t) 
f(TJ, x,) = -L~l ~6(1']- T)t)+ -----z;;--li(TJ- T)z). 

We have 
Dn, () 
-0~+ ;--(41'] 12 - q,n,)n, = 0, 
ul uX0 

iJn2 iJ 
-~~ + -:;-(411,' + q,n,)n, = 0; 

dl ux, 

4 ( 2 2 112+11, q,=-L llz -ll,·)ln~--, 
llt 2 1']2-1']1 

4 ( 2 2 112+11, 
q,=~-1']2 -11, )ln---. 

1']2£1 YJ 2 -1'] 1 

Linearizing n1 = 1 + 15n1, n2 = 1 + 15n2 and putting 
6n1, 6n2 ~ e- iwt+ikx, we get 

( - : + 4T),'- q,) (- : + 41] 22 + q,) + q,q, = 0. 

Considering waves with close amplitudes, such that 

41'],2 - q, = 41'),' + q, =So, 

we verify that there is instability with an increment 

3lThe kinetic equations obtained in [ u· 12 ] for solitons differ from 
(21) and do not have the property of conserving the total distribution 
function. The discrepancy is due to the fact that an incorrect approxi
mation was used in [ 11.12 ] for the solution of the KDV equation. In the 
cited papers, the solution was approximated by a linear superposition of 
solitons [ 11 ] or of periodic waves [ 12 ] with slowly varying parameters. 
Since the soliton collisions are rare, a fictitious small parameter was ob
tained in the problem, with respect to which expansion was carried out. 
However, because of the strong nonlinearity of the problem, the func
tion u(x, t) differs strongly from a superposition of solitons in regions 
where the solitons collide and in which the entire effect "accumulates." 
In these regions it is necessary to use the exact solution of the KDV 
equation, as was done in the present paper. 

w/ k=s, + ryq,q,. 

Similar instabilities can arise also for systems made 
up of three and more periodic waves. The development 
of such instabilities leads to regular or quasiregular 
oscillations of the soliton-gas density. 

Since no redistribution of the energy over the 
degrees of freedom takes place when the solitons col
lide, the kinetics of the soliton gas differs in principle 
from the usual kinetics of waves in nonlinear media and 
is "reversible." It is not clear at present whether this 
property is exclusive for KDV systems or whether it 
takes place also for some other nonlinear systems. 

In conclusion, the author thanks A. B. Shabat for 
certain valuable remarks. 
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