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We show that the tails of the single-point velocity probability distribution function (PDF) ar
generally non-Gaussian in developed turbulence. By using instanton formalism for the rando
forced Navier-Stokes equation, we establish the relation between the PDF tails of the velocity
those of the external forcing. In particular, we show that a Gaussian random force having correla
scaleL and correlation timet produces velocity PDF tails lnP syd ~ 2y4 at y ¿ yrms, Lyt. For
a short-correlated forcing whent ø Lyyrms there is an intermediate asymptotics lnP syd ~ 2y3 at
Lyt ¿ y ¿ yrms. [S0031-9007(97)04610-3]
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Early experimental data on skewness and flatness
the velocity field prompted one to believe that the singl
point velocity probability distribution function (PDF) in
developed turbulence is generally close to Gaussian [1
A possible reasoning may be that large-scale motio
(that give the main contribution into velocity statistics a
a point) are connected to a random external forcingf,
then the central limit theorem makes the velocityystd ­Rt

0 fst0ddt0 to be Gaussian ift is larger than the correlation
time t of the forcing, irrespective of the statistics off.
That would be the case if the force was the only age
affecting velocity. However, there are also nonlineari
(leading to instability and breakup of large-scale motion
and viscosity (that dissipates small-scale modes appea
as a result of the instability). Let us first explain th
simple physics involved and formulate the prediction
following from physical arguments; then we develop th
formalism which gives the predicted PDF tails.

Qualitatively, one may describe the interplay betwe
external force and nonlinearity in the following way
Force f pumps velocity y , ft until the time tp ,
Lyy when nonlinearity restricts the growth. The relatio
between velocity and forcing can thus be suggested
follows: y2 , fL. Therefore, velocity’s PDF can be
obtained by substitutingf , y2yL into force’s PDFPf :
P syd , Pfsy2yLd. Those arguments presume thattp is
less than the correlation timet of forcing. If the opposite
is the casetp ¿ t then the law of velocity growth is
different y2 , f2tt, so that the velocity increases up t
y3 , f2Lt; the short-correlated pumping is effectivel
GaussianPf , exps2f2d and the velocity’s PDF is
P syd , expf2syyyrmsd3g. We see that the velocity PDF
is expected to be dependent on the statistics of
force. An actual mechanism of restriction for the Navie
Stokes equation (instability of a large-scale flow leadin
to a cascade that provides for a viscous dissipation)
irrelevant for the above arguments. What matters is th
we deal with the system of the hydrodynamic type so th
nonlinear timetp can be estimated asLyy. For example,
0031-9007y97y79(21)y4159(3)$10.00
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the same argument goes for Burgers equation wheretp is a
breaking time and viscous dissipation at a shock preve
further growth [3]. Viscosity does not enter abov
estimates because we presume a large Reynolds nu
so that large-scale motions are effectively inviscid. St
viscous dissipation provides for a steady state which
crucial for the whole picture to be valid.

Let us stress that the above arguments can be app
only to rare events with velocity and force being mu
larger than their root-mean-square values when the in
ence of background fluctuations can be neglected.
above predictions are thus made for PDF tails. For a n
linear dissipative system, it is generally difficult to rela
an output statistics to the statistics of the input (be it i
tial conditions or external force). Our aim here is to sh
that it is possible, nevertheless, to relate the probabili
of rare fluctuations, that is, to relate the tails of the PD
of the force and of the field that is forced. A systema
way to describe rare fluctuations is the instanton form
ism recently developed for turbulence [4] and employ
for obtaining PDF tails in different problems [4–6]. Th
main idea of the method is that the tails are described
saddle-point configurations in the path integral for the c
relation functions of the turbulent variable (say, veloc
y). We call the configuration instanton because of a fin
lifetime. One may call it also optimal fluctuation since
corresponds to the extremum of the probability.

We start with the Navier-Stokes equation

≠tya 1 yb=bya 2 n=2ya 1 =aP ­ fa , (1)

wheref is a random force (per unit mass) pumping t
energy into the system andn is the viscosity coefficient.
Incompressibility is assumed so that divy ­ div f ­ 0.
The fieldP in (1) is the pressure divided by the mass de
sity r. Velocity correlation functions can be presented
path integrals in which form is determined by the stat
tics of pumping. Let us first consider a Gaussian fo
ing with the correlation functionk fast, rd fbst0, r0dl ­
Jabst 2 t0, r 2 r0d which is assumed to decay on th
© 1997 The American Physical Society 4159
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scalet as a function of the first argument and on the sca
L as a function of the second one. Then moments of t
velocity can be written as path integrals:

ky2nl ­
Z

D p D y D P D Q expfiI 1 n ln y2s0, 0dg ,

(2)

wherep is an auxiliary field and the effective action ha
the following form [7]:

I ­
Z

dt drfpas≠tya 1 yb=bya 2 n=2ya 1 =aPd

1 Q=ayag

1
i
2

Z
dt0 dt dr0 dr Jabpap0

b . (3)

The independent fieldsP andQ play the role of Lagrange
multipliers enforcing the incompressibility conditions o
the velocity and the response field:=aya ­ =apa ­ 0.

The tails of the velocity PDF are determined by hig
moments withn ¿ 1 which can be found by applying
the saddle-point method to the integral (2):ky2nl ­
u2ns0, 0d expsIextr d. The configurationust, rd, pst, rd,
Pst, rd, andQst, rd corresponding to a saddle point is ou
instanton. The extremum conditions for the argument
the exponent in (2) determining the instanton give tw
dynamical equations

≠tua 1 ub=bua 2 n=2ua 1 =aP

­ 2i
Z

dt0 dr0 Jabst 2 t0, r 2 r0d pbst0, r0d , (4)

≠tpa 2 pb=aub 1 ub=bpa 1 n=2pa 1 =aQ

­ 2indstddsrduayu2, (5)

and two incompressibility constraints

=2P ­ 2=asub=buad , (6)

=2Q ­ =aspb=aub 2 ub=bpad . (7)

As was explained in [4], the auxiliary fieldp ­ 0 at
t . 0. Therefore the right-hand side of (5) gives th
value ofp at t ­ 20:

pa ­ 22in

∑
dabdsrd 2

1
4pr3

µ
dab 2

3rarb

r2

∂∏
ub

u2 .

(8)

Equations (4) and (5) are to be solved at2` , t , 0
with constraints (6) and (7) under the boundary conditio
(8) andu ! 0 ast ! 2`. One may say that the system
(4)–(7) describes the prehistory that leads to the giv
measured value of the velocity att ­ 0. The instanton
approach thus reduces the statistical problem (finding P
tails) to the dynamical problem of finding a particula
solution of the deterministic equations (4),(5). Still, th
system (4),(5) is quite complicated and its comple
solution (which will provide important information abou
the spatiotemporal domains with high velocity) is sti
ahead of us. The main difficulty is an effective spati
nonlocality of the constraints (6),(7).
4160
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Our goal in this paper is to show that a definite
statement about the functional form of velocity PDF tail
can be obtained from the analysis of the symmetrie
of the instanton equations without actually finding a
solution. Let us show how the symmetry analysis give
n dependence ofky2nl which determines the functional
form of PDF tails. What is important to state is that both
fieldsu andp decay at moving backwards in time during
some characteristic timetp which we call the lifetime
of the instanton. Actually it is the same time which
we qualitatively discussed above at treating rare even
with strong forcing since the instanton presents just th
space-time picture of those typical events contributin
to ky2nl. Symmetry analysis depends on whether th
pumping correlation timet is larger or smaller than
the instanton lifetimetp. Let us first consider the case
t ¿ tp, which makes it possible to consider the pumpin
correlation functionJ as time independent. In this case
the parametern can be excluded from (4)–(7) by the
rescaling transformation

t ! X21t, u ! Xu, P ! X2P, Q ! X4Q ,

n ! Xn, p ! X3p, X4 ­ n .
(9)

That gives a generaln dependence of the velocity

u ­ n1y4wsn4ynd , (10)

where the dimensionless functionw is expected to go to
some constant when its argument goes to zero. This
equivalent to the physically plausible assumption that th
high velocity moments are viscosity independent. Unde
such an assumption then dependence of the instanton
solutionu ~ n1y4 gives the followingn dependence of the
momentky2nl ~ nny2 which corresponds to the PDF tail

ln P sy2d ~ 2y4. (11)

Note that the integral term in the actionIextr ~ n, i.e., the
factor expsIextr d gives the only subleading contribution
into (11). If Lyt & yrms (where yrms is the typical
value of the velocity fluctuations) then the asymptotic
(11) is realized aty ¿ yrms and lnP , 2syyyrmsd4.
In the opposite limit of a short-correlated pumping with
Lyt ¿ yrms, an intermediate asymptotics exists wher
the pumping correlation functionJ can be treated as delta
correlated in time:Jst, rd ­ dstdxsrd. Then the only
changes in (9) are

p ! X2p, Q ! X3Q, X3 ­ n . (12)

That leads to the law (cf. [4])

ln P sy2d , 2syyyrmsd3, (13)

which is valid at Lyt ¿ y ¿ yrms. For larger y,
the asymptotics (11) is realized. We thus see that fo
Gaussian pumping the velocity PDF always decreas
faster than Gaussian.

Note that the above consideration can be readi
extended for the consideration of velocity difference
wsrd ­ jysrd 2 ys0dj at anyr. There is an intermediate
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region wrmssrd ø wsrd ø yrms, whereP swd cannot be
described within the saddle-point approximation (4),(5
The same formulas (11),(13) as well as below (20
describe the remote tails ofP swd at w ¿ yrms.

Faster-than-Gaussian decay of a single-point veloc
PDF was recently observed both in experiments [8] and
numerical simulations [9–11]. Even though our random
force treatment has no direct relation to the exper
ments where large-scale velocity is determined by spat
boundaries, our qualitative explanation of faster-tha
Gaussian decay (short lifetime of strong fluctuations—s
also [11]) may be relevant.

The transformations (9),(12) show that the lifetime o
the instanton decreases with increasingn: tp ~ n21y3 for
the fast pumpingt ø tp and tp ~ n21y4 for the slow
pumpingt ¿ tp. Therefore at large enoughn we always
deal with a slow pumping. In other words, distant tail
of the velocity PDF are determined by a simultaneou
statistics of the pumping rather than by integral over tim
as one would naively expect.

Let us consider now a non-Gaussian statistics
pumping. Since at the conditiont ø tp the pumping
always has an effectively Gaussian statistics we will tre
the opposite caset ¿ tp. The above procedure can be
readily generalized for an arbitrary pumping statistic
when instead of (2) one has

kjyj2nl ­
Z

D f D p D y D P D Q Pf

3 expsiĨ 1 n ln y2d . (14)

Here, we substituted the simultaneous PDF of pumpi
Pf s fd since we treat the slow pumping and the effectiv
action Ĩ figuring in (14) for the Navier-Stokes equation
has now the following form:

Ĩ ­
Z

dt drfpas≠tya 1 yb=bya 2 n=2ya 1 =aPd

1 Q=aya 2 pafag . (15)

The saddle-point equation for the instanton velocityu is
now written as

≠tua 1 ub=bua 2 n=2ua 1 =aP ­ fa , (16)

with the relationZ
dt pa ­ 2id ln Pfs fdydfa . (17)

The equation forp and the incompressibility constraints
are the same (5)–(7).

Let us assume the tail ofM ­ 2 ln Pf to be scale
invariant with the exponenta:

M sXf d ­ XaMs f d . (18)

Then we can generalize (9)

t ! X21t, u ! Xu, P ! X2P ,

n ! Xn, f ! X2f , (19)

p ! X2a21p, Q ! X2aQ, X2a ­ n ,
).
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keeping the form of Eqs. (16) and (17) and removingn
from Eq. (5). Using the law (19) we can find how the
characteristic velocity scales withn. As above the answer
can be expressed in terms of the behavior of the tail of th
simultaneous PDFP sy2d for the velocity:

ln P sy2d ~ 2y2a. (20)

The lifetime tp of our instanton scales astp ~ n21ys2ad,
that is, decreases with increasingn for any positivea
which justifies our consideration. For Gaussian statistic
a ­ 2 and we reproduce (11). Note that the velocity PDF
decays always faster than that of the force; in particula
Gaussian velocity would correspond to the force PDF
decaying exponentially.

The expression (3) implies homogeneous pumping
Meanwhile, the transformations (9),(12),(19) do no
transform coordinates and can be generalized for sp
tially inhomogeneous pumping statistics. Therefore ou
conclusions are true also for a more physical case o
an inhomogeneous pumping, in particular, acting on th
boundaries of the turbulent flow.

To conclude, let us describe the status of the resul
obtained: Under the assumptions that the solutions of th
instanton equations exist and the probability of finding
very high velocity is viscosity independent we found how
that probability is related to the statistics of the force.
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