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Single-Point Velocity Distribution in Turbulence
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We show that the tails of the single-point velocity probability distribution function (PDF) are
generally non-Gaussian in developed turbulence. By using instanton formalism for the randomly
forced Navier-Stokes equation, we establish the relation between the PDF tails of the velocity and
those of the external forcing. In particular, we show that a Gaussian random force having correlation
scaleL and correlation timer produces velocity PDF tails ®(v) = —v* at v > v, L/7. For
a short-correlated forcing when < L/v.,s there is an intermediate asymptoticsBiw) « —v> at
L/T > v > vy,. [S0031-9007(97)04610-3]

PACS numbers: 47.27.Ak, 05.40.+j, 47.10.+g

Early experimental data on skewness and flatness dhe same argument goes for Burgers equation whesea
the velocity field prompted one to believe that the single-breaking time and viscous dissipation at a shock prevents
point velocity probability distribution function (PDF) in further growth [3]. Viscosity does not enter above
developed turbulence is generally close to Gaussian [1,2gstimates because we presume a large Reynolds number
A possible reasoning may be that large-scale motionso that large-scale motions are effectively inviscid. Still,
(that give the main contribution into velocity statistics atviscous dissipation provides for a steady state which is
a point) are connected to a random external forciiag crucial for the whole picture to be valid.
then the central limit theorem makes the veloaity) = Let us stress that the above arguments can be applied
[0 f(¢")dt' to be Gaussian if is larger than the correlation only to rare events with velocity and force being much
time 7 of the forcing, irrespective of the statistics §f  larger than their root-mean-square values when the influ-
That would be the case if the force was the only agenence of background fluctuations can be neglected. The
affecting velocity. However, there are also nonlinearityabove predictions are thus made for PDF tails. For a non-
(leading to instability and breakup of large-scale motions)inear dissipative system, it is generally difficult to relate
and viscosity (that dissipates small-scale modes appeariran output statistics to the statistics of the input (be it ini-
as a result of the instability). Let us first explain the tial conditions or external force). Our aim here is to show
simple physics involved and formulate the predictionsthat it is possible, nevertheless, to relate the probabilities
following from physical arguments; then we develop theof rare fluctuations, that is, to relate the tails of the PDFs
formalism which gives the predicted PDF tails. of the force and of the field that is forced. A systematic

Qualitatively, one may describe the interplay betweenway to describe rare fluctuations is the instanton formal-
external force and nonlinearity in the following way. ism recently developed for turbulence [4] and employed
Force f pumps velocityv ~ ft until the time ¢t. ~  for obtaining PDF tails in different problems [4—6]. The
L/v when nonlinearity restricts the growth. The relationmain idea of the method is that the tails are described by
between velocity and forcing can thus be suggested asaddle-point configurations in the path integral for the cor-
follows: v?> ~ fL. Therefore, velocity’'s PDF can be relation functions of the turbulent variable (say, velocity
obtained by substituting ~ v?/L into force’s PDFP;:  v). We call the configuration instanton because of a finite
P(v) ~ Pr(v?/L). Those arguments presume thais lifetime. One may call it also optimal fluctuation since it
less than the correlation timeof forcing. If the opposite corresponds to the extremum of the probability.
is the caser. > 7 then the law of velocity growth is We start with the Navier-Stokes equation
different v> ~ f2t7, so that the velocity increases up to ) _
v3 ~ f2L7; the short-correlated pumping is effectively 0va + vpVpva = ¥V Ve + Vol = fa, (1)
Gaussian Py ~ exp(—f?) and the velocity's PDF is where f is a random force (per unit mass) pumping the
P(v) ~ exd—(v/vms)’]. We see that the velocity PDF energy into the system andis the viscosity coefficient.
is expected to be dependent on the statistics of ththcompressibility is assumed so that div= div f = 0.
force. An actual mechanism of restriction for the Navier-The field P in (1) is the pressure divided by the mass den-
Stokes equation (instability of a large-scale flow leadingsity p. Velocity correlation functions can be presented as
to a cascade that provides for a viscous dissipation) ipath integrals in which form is determined by the statis-
irrelevant for the above arguments. What matters is thatics of pumping. Let us first consider a Gaussian forc-
we deal with the system of the hydrodynamic type so thaing with the correlation function f.(z,r) fg(t',r')) =
nonlinear timer. can be estimated ds/v. For example, E,z(r — t/,r — r’) which is assumed to decay on the
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scaler as a function of the first argument and on the scale Our goal in this paper is to show that a definite
L as a function of the second one. Then moments of thetatement about the functional form of velocity PDF tails
velocity can be written as path integrals: can be obtained from the analysis of the symmetries
o ' ) of the instanton equations without actually finding a
(v™) = j DpDvDPDQ exdil +ninv(0,0)],  solution. Let us show how the symmetry analysis gives
@) n dependence ofv>") which determines the functional
form of PDF tails. What is important to state is that both
wherep is an auxiliary field and the effective action has fieldsu and p decay at moving backwards in time during
the following form [7]: some characteristic time. which we call the lifetime
) of the instanton. Actually it is the same time which
I= [dt drlpa(9ve + vgVpve = ¥Vva + VaP) e qualitatively discussed above at treating rare events
with strong forcing since the instanton presents just the

+ OVaval space-time picture of those typical events contributing
i ; e , to (v>"). Symmetry analysis depends on whether the
+ 2 dt dtdr dr Eagpapg - (3) pumping correlation timer is larger or smaller than

the instanton lifetimer.. Let us first consider the case
T > t., Wwhich makes it possible to consider the pumping
correlation functiong as time independent. In this case,

The tails of the velocity PDF are determined by highth® parametern can be excluded from (4)-(7) by the
moments withn 3 1 which can be found by applying escaling transformation
the saddle-point method to the integral (Qu*") = — X'z, u— Xu, P — X°P, 0 — X*0,
u?(0,0) exp(Ixy). The configurationu(t,r), p(t,r), 4 (9)
P(t,r), andQ(z, r) corresponding to a saddle point is our X' =n.
instanton. The extremum conditions for the argument ofThat gives a general dependence of the velocity

The independent fieldB andQ play the role of Lagrange
multipliers enforcing the incompressibility conditions on
the velocity and the response fieM;v, = Vop, = 0.

v — Xv, p-—*Xgp,

the exponent in (2) determining the instanton give two u = n'4 (vt /n) (10)
dynamical equations ¢ ’
dytte + ugVpity — vy + VoP where the dimensionless functign is expected to go to

some constant when its argument goes to zero. This is
— _if dr' dr' Bap(t — t'r — 1) pg(d'.r'), (4) equivalent_to the physically plausible_ assumption that the
high velocity moments are viscosity independent. Under

9iPa — PpValtg + ugVppa + vVipa + Vo0 such an assumption the dependence of the instanton

—h 2 solutionu o n'/* gives the following: dependence of the
_ chs(l)é_(r_)?‘“/u T () moment(v2") o« n"/2 which corresponds to the PDF tail
and two incompressibility constraints i Ply? . 1
V2P = —Va(ugVita), (6) NP = v (11)
) Note that the integral term in the actidg, « n, i.e., the
V0 = Vu(pgVaug — ugVgpa). (7)  factor exfl.) gives the only subleading contribution

As was explained in [4], the auxiliary fielg = 0 at into (11). If L/7 < vims (Where vy is the typical
t > 0. Therefore the right-hand side of (5) gives thevalue of the velocity fluctuations) then the asymptotics

value ofp att = —0: (11) is realized atv > vy, and INP ~ —(v/vms)*.
. 1 3rarg\ug In the opposite limit of a short-correlated pumping with
Pa = _2ln|:5aﬂ6(r) - 4—7”3(50:3 T2 ﬂﬁ L/7 > vms, an intermediate asymptotics exists where

(8) the pumping correlation functioEl can be treated as delta
correlated in time:Z(¢,r) = 8(t)x(r). Then the only

Equations (4) and (5) are to be solved-atc <t <0  changes in (9) are
with constraints (6) and (7) under the boundary conditions 5 3 3
(8) andu — 0 ast — —x. One may say that the system p—Xp, Q— X0, X' =n. (12)
(4)—(7) describes the prehistory that leads to the giverThat leads to the law (cf. [4])
measured value of the velocity at= 0. The instanton INPW2) ~ —(v/vym)® (13)
approach thus reduces the statistical problem (finding PDF ms/
tails) to the dynamical problem of finding a particular which is valid at L/7 > v > v,. For larger v,
solution of the deterministic equations (4),(5). Still, thethe asymptotics (11) is realized. We thus see that for
system (4),(5) is quite complicated and its completeGaussian pumping the velocity PDF always decreases
solution (which will provide important information about faster than Gaussian.
the spatiotemporal domains with high velocity) is stil Note that the above consideration can be readily
ahead of us. The main difficulty is an effective spatialextended for the consideration of velocity differences
nonlocality of the constraints (6),(7). w(r) = |v(r) — v(0)| at anyr. There is an intermediate
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region w(r) < w(r) < vms, whereP(w) cannot be  keeping the form of Eqgs. (16) and (17) and removing
described within the saddle-point approximation (4),(5).from Eq. (5). Using the law (19) we can find how the
The same formulas (11),(13) as well as below (20)characteristic velocity scales with As above the answer
describe the remote tails @ (w) atw > vps. can be expressed in terms of the behavior of the tail of the
Faster-than-Gaussian decay of a single-point velocitgimultaneous PDEP(v?) for the velocity:

PDF was recently observed both in experiments [8] and in
numerical simulations [9—-11]. Even though our random-
force treatment has no direct relation to the experi- . . 1)
ments where large-scale velocity is determined by spatia] "€ lifetime 7. of our instanton scales as « n ’

boundaries, our qualitative explanation of faster-thanhat is, decreases with increasingfor any positivea

Gaussian decay (short lifetime of strong quctuations—se(\-f'VhiCh justifies our consideration. For Gaussian statistics
also [11]) may be relevant. a = 2 and we reproduce (11). Note that the velocity PDF

The transformations (9),(12) show that the lifetime 0fdecays_, always f_aster than that of the force; in particular,
the instanton decreases with increasing. « n~'/3 for Gaussian velocity would correspond to the force PDF

the fast pumpingr < t. and £, = n~"/% for the slow decaying exponentially. .
pumpingr > t.. Therefore at large enoughwe always The expression (3) implies homogeneous pumping.
deal with a slow pumping. In other words, distant tailsMeanwhile, the —transformations (9),(12),(19) do not
of the velocity PDF are determined by a simultaneoudransform coordinates and can be generalized for spa-

statistics of the pumping rather than by integral over timgi@lly inhomogeneous pumping statistics. Therefore our
as one would naively expect. conclusions are true also for a more physical case of

Let us consider now a non-Gaussian statistics of" inhomogeneous pumping, in particular, acting on the

pumping. Since at the condition < 7. the pumping Poundaries of the turbulent flow.
always has an effectively Gaussian statistics we will treat 10 conclude, let us describe the status of the results
the opposite case > r.. The above procedure can be pbtalned: Unde_r the assumptions that the s_olqun_s of the
readily generalized for an arbitrary pumping statisticsNStanton equations exist and the probability of finding
when instead of (2) one has very high ve.l'oc[ty is viscosity mdepgndent we found how
that probability is related to the statistics of the force.
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action I figuring in (14) for the Navier-Stokes equation
has now the following form:

I = f dtdr[pa(9;ve + vgVgv, — vV, + V,P)

In P(v?) = —v*, (20)

(v|*") = ]Df DpDvDPDQP

[1] G.K. Batchelor, Theory of Homogeneous Turbulence
(Cambridge University Press, New York, 1953).
[2] A. Monin and A. Yaglom, Statistical Fluid Mechanics

+ OVava — pPafal. (15)

The saddle-point equation for the instanton veloatis
now written as

0ty + MBVBMQ - szua + VoP = fo, (16)
with the relation
f dt po = —i8INPH(1)/5fa. (17)

The equation forp and the incompressibility constraints
are the same (5)—(7).

Let us assume the tail oM = —In P, to be scale
invariant with the exponent:

MXf) =X M(f). (18)
Then we can generalize (9)
t—X "% wu—Xu  P—XP,
v— Xv, f—Xf, (19)
p— X2 1p, 0 — X¥Q, X2 =y,

(MIT Press, Cambridge, 1975).

[3] E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebe-
dev, Phys. Rev. Let78, 1452 (1997).

[4] G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal,
Phys. Rev. B54, 4896 (1996).

[5] V. Gurarie and A. Migdal, Phys. Rev. &4, 4908 (1996).

[6] M. Chertkov, Phys. Rev. 55, 2722 (1997).

[7] P.C. Martin, E. Siggia, and H. Rose, Phys. Rev8A23
(1973); C. de Dominicis, J. Phys. (Paris), Coll&g, CO1-
247 (1976); H. Janssen, Z. Phys2B, 377 (1976).

[8] A. Noullez, G. Wallace, W. Lempert, R.B. Miles, and
U. Frisch, J. Fluid Mech339, 287-307 (1997).

[9] A. Vincent and M. Meneguzzi, J. Fluid Meci225 1
(1991).

[10] J. Jimenez, A. Wray, P. Saffman, and R. Rogallo, J. Fluid
Mech. 255 65 (1993).

[11] R.H. Kraichnan and Y. Kimura, ifProgress in Turbu-
lence Researchedited by H. Branover and Y. Unger
(American Institute of Aeronautics and Astronautics,
Washington, 1994), pp. 19-27.

4161



