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An exact relation between the Green'’s function and the dressed third-order vertex I' was found
for the Kardar-Parisi-Zhang (KPZ) model of surface roughening in (1+d) dimensions. This relation,
of the Ward-identity type, follows from a hidden symmetry of the problem, which generalizes in some
sense the Galilean invariance of the KPZ equation. This relation allows one to conclude that in the
region of strong coupling, I' — I'g ~ 0.1T"g, where I'q is the bare value of the vertex I'. The identity
is generalized for higher-order vertices, enabling us to predict some relations between observable

correlation functions.

PACS number(s): 05.40.4j, 47.27.Gs, 68.45.—v

The Kardar-Parisi-Zhang (KPZ) equation is written as
8h/0t = 1 V2h + A(VR)? + ¢, (1)

where h(t,r) is a scalar field, A is an interaction con-
stant, v, is a diffusion coefficient, and £(¢,r) is a white
noise with an effective temperature T. Let us stress that
a system described by (1) is far from equilibrium. The
KPZ equation describes roughening of an interface in dif-
ferent cases, such as growths of solids [1], two fluid flows
[2,3], motion of domain walls [4], or boundaries of clus-
ters [5], etc. This equation is equivalent to the Burgers
equation [6-8]. It is also equivalent to the equation for
the partition function of directed polymers [9] and of dis-
locations [10] or vortices [11] in a random potential (in
these cases we should take the third coordinate instead
of the time ¢). This variety of physical contexts is asso-
ciated with the universal character of the KPZ equation
representing the long-wavelength dynamics of any field h
if it is invariant under h — h + const but not invariant
under h — —h.

Considering the interface in the three-dimensional
(3D) space or the vortex in the 3D lattice the quantity h
should be treated as a function of the 2D radius vector r.
Then fluctuations of the field ~ are relevant. It appears
that the case of “asymptotic freedom” is realized, that is,
the dimensionless coupling constant grows with increas-
ing scale [12]. In this situation one cannot say anything
definite about the long-wavelength properties of correla-
tion functions of A on the basis of perturbation methods
like renormalization-group equations. Numerics [13-15]
show a scaling long-wavelength behavior. From a theo-
retical point of view it is a surprise since in known exactly
solvable models where “asymptotic freedom” is simulated
the long-wavelength behavior of correlation functions is
not of the scaling type [16,17]. The possibility of the scal-
ing behavior of the correlation functions of h is related to
cancellation of ultraviolet divergences in the KPZ model
[18,19].

Hidden symmetry of the problem. In this paper we ex-
amine statistical properties of solutions of the KPZ equa-
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tion in terms of the Green’s function G and the triple ver-
tex I'. These are objects describing the linear and non-
linear response of the field h to an infinitesimal “force”
f to be added to the right-hand side (rhs) of (1):

6h
1G101,2 = <5_f:> )

&
G1I'2,3G2G361,243 = — AT (2)

61‘2.{.3 = (27r)1+d5(w1 — Wg — w3)5(k1 - k2 — k3) .

Here d is the dimensionality of the space, subscripts
1,2,3 designate Fourier harmonics with frequencies w;
and wave vectors k;, so that G; = G(w1,k1) and the
vertex I'z 3 is a function of w;, ke and ws, k3, 8,2 is de-
fined like 6 24+3. The average () in (2) is performed over
the ensemble of random “forces” &.

In the limit of a weak interaction one can easily calcu-
late G and T directly from the KPZ equation (1):
Go(w,k) = 1/(w + ivok®), To(k;q) = —2idk-q. (3)
Fluctuation corrections lead to the “dressing” of these
functions. The dressed values can be represented as

G(w,k) =1/[w + ivgk® — (w, k)], (4)
F(ka; V,Q) = FO(k; q) [1 +’y(w,k;u,q)] ’ (5)

where ¥ is the self-energy function and the dimension-
less function -y characterizes the deviation of the dressed
vertex I' from its bare value I'y.

In order to examine statistical properties of solutions
of the KPZ equation we will utilize a diagram technique
of the type first developed by Wyld [20] (see also [21]).
As it was shown in [22,23] Wyld’s diagrammatic tech-
nique is generated by a conventional quantum field theory
method starting from an effective action I. This action
can be constructed on the basis of nonlinear dynamic
equations of a system and for the KPZ equation is

I= /dtdr[pah/at — Ap(Vh) + voVpVh + iTwop?).  (6)
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Here p is the auxiliary field “conjugated” to the field h.
Correlation functions containing the p field are suscep-
tibilities, e.g., the Green’s function G(t; — t2,r; — r2)
determined by (2) is —(h1p2) = — [ DhDpexp(il)hips,
where h; = h(ti,r1), p2 = p(t2,rz2). The nonlinear
susceptibility I'; ; determined by (2) can be expressed
via the h and p fields with the help of the relation
(h1p2p3) = —(6%h1 /8 f26 f3).

Consider the symmetry of the effective action (6) giv-
ing a full statistical description of the KPZ problem. The
KPZ equation is invariant under Galilean transforma-
tions; the infinitesimal one is

hW=h-(-V)h—(-r/2), p'=p—¢-Vp, (7)

where ¢ = 8¢/8t=const. One can check that (6) is in-
variant under the transformation (7) up to a term linear
in p supplying the nonzero average (h') = ¢or/2) It
leads to the conventional Ward identity [12]

7(0,0;¢,q) = —0%(v,q)/0v . (8)

We claim that the effective action (6) has exactly
the same transformation properties under generalized
Galilean transformation (7) in which ¢ is an arbitrary
function of time ¢ but not of coordinates r. One may say
that after statistical averaging solutions of the KPZ prob-
lem became invariant under passage into reference sys-
tems with a time dependent velocity V(t) = {(¢). This
is similar to the gauge invariance of quantum electrody-
namics [24]. The difference is that in quantum electrody-
namics a gauge function depends both on t and r while
the KPZ problem possesses a hidden “gauge” symmetry
with gauge functions depending on time only. This situ-
ation is in some sense analogous to that appearing at the

investigation of the nematic-smectic phase transition: de
J
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Gennes’s model [25] for this phase transition possesses a
“gauge” symmetry determined by a function of two (but
not three) coordinates [26].

Generalized Ward identity. The proven symmetry en-
ables us to formulate a set of relations between correla-
tion functions. The simplest such relation can be derived
by taking a variation of the Green’s function G = —(hp)
of the linear part of the transformation (7) (without ¢)
and equating it to an additional term in G induced by
the appearance of the average (h'):

w .. 0 )
ﬁ ,11_1_)% bi[r(w,k’ v, q) - I-‘O(kv q)]

=iq(Z(w +v,q) — £(1,q)).
(9)

Here the definition (4) was utilized. Using now the defi-
nition (5) we derive the following identity:

wy(w,0;v,q) = B(v,q) — B(w + v,q), (10)

which is valid for any dimension d of the space. In the
limit w — 0 this relation gives a well-known Ward iden-
tity (8). Therefore we may say that (10) is a manifesta-
tion of the generalized Galilean invariance of the problem.
For a finite value of w the relation (10) has a form close to
one of the Ward identities in quantum electrodynamics
[24]. The difference is that in quantum electrodynamics
there are both arbitrary w and k in the Ward identity
[24], while in (10) k = 0 and only w is arbitrary.

It is obvious that the invariance of the action (6) under
the transformation (7) enables us to derive also relations
of the type (9) for many-point correlation functions. We
present here an example concerning a one-particle irre-
ducible vertex of the fourth order ') defined as

1(63h1/8f26 fa6 f1) = —(h1p2p3ps) = 01,2+3+4 [G1F§f§,4GzGaG4 + G1T'2,344G2G3441'3 4G3Gy

+G1I'3,442G3G 41214 2G4G2+ G1F4,2+3G4G2+3F2,3G'2G3] ) (11)

where a subscript such as 2+ 3 designates a function of arguments wy + w3 and g2 +qs and 1 24344 is defined similarly

to 81,243 in (2). The identity for I'®) is

w .. 0O .
- lim ﬁr(‘t) (w,k;v2,42; v3,q3) = iq2(T(w + v2,q2;v3,q3) — I'(v2, 42513, q3))

2\ k=0

+iq3(T'(v2,q2; vs + w,q3) — I'(v2,q2;v3,4q3)) . (12)

One can continue to derive the series of relations started
from (9), (12) for higher-order vertices, the vertices of n-
and (n + 1)-order entering each such identity.

We have considered the nonlinear susceptibilities de-
termining the response of (h) to an external force f.
Analogously, nonlinear susceptibilities determining the
response of (hh), (hhh), etc. to f can also be treated.
We can formulate the identities of (9), (12) type for each
sequence of these susceptibilities. The above procedure
can be applied also to other nonlinear statistical problems
described by an equation with a nonlinearity of the con-
vective type (recall that the KPZ problem reduces to the
noisy Burgers equation having just the convection type

of nonlinearity). An example to which our consideration
may be usefully extended is the Euler equation.

Dressed vertez in long-wavelength limit. In the long-
wavelength limit the interaction in the KPZ equation be-
comes strong and the dressed values of G and T differ es-
sentially from their “bare” values (3). Let us stress that
it is impossible to find the dressed values with the help
of a perturbation series since in this case we encounter a
problem with a coupling constant growing with increas-
ing scale [12] (in the quantum field theory such a situation
is called “asymptotic freedom”). Nevertheless there are
analytical and computational arguments in favor of the
existence of scaling behavior of the correlation functions
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in the region of strong coupling [13,18,19]. This enables
us to assert that in this region

G(w,k) = g () /e, 9(Q)=1/[2-0(@)]. (13)

Here g and o are dimensionless functions of the dimen-
sionless argument Q = w/pk, pr = p(k) x k*, z be-
ing the dynamic scaling exponent of the KPZ problem,
z2=3/2ford =1 and z ~ 1.6 for d = 2 [12,13]. Isotropy
of the solution is assumed. Then (10) will be

¥(w,0;,q) = [0(Q) - o(Q+ )]/, (14)

where Q = v/, and Q' = w/p,.

Let us formulate known properties of the Green’s func-
tion G(w, k) for the KPZ problem in the long-wavelength
limit. First of all there is the frequency sum rule

/ " m{G(w,k)} dw = -, (15)

—o0

which is a consequence of the analyticity of G in the
upper half-plane. We can also assert that there exists a
regular expansion of G in w with a radius of convergence
of the order of ug. Second the Green’s function of G(w, k)
in the region w > p; possesses an asymptotic behavior

Re{G(w,k)} =w™!, Im{G(w,k)} x kZw™21+  (16)

The factor k2 follows from simple physics: in the limit
w > py, the main contribution to the self-energy function
Y (w,k) is induced by the interaction of fluctuations of
scale 1/k with short-wavelength fluctuations with k' o
wl/% that is, k' > k. This is the so-called “turbulent
viscosity” leading to Im ¥ oc k2. In the region w > ug
Im{G(w,k)} ~ Im ¥/w?. Therefore in this region the
function Im{G(w, k)} has to be proportional to k2. One
can establish exponent § by comparing (16) and (13):

§d=1/z-1/2. (17)

For (1+1) dimensions where z = 3 the exponent § = } ~
0.167; for (1+2) dimensions z ~ 1.6 and é ~ 0.125.

One may suggest the simplest interpolation expression
for G satisfying these properties

ic(s) [ dey
9@ == /_oo @t 18

In the approximation (18) g has only one cut along the
imaginary axis starting from the point Q@ = —i. The
distance to a singularity of g from the point Q = 0 is
taken to be equal to unity, which may be done with an
appropriate choice of a factor in p;. The factor ¢(d) is de-
termined by (15): ¢(6) = I'(1)/[T(% +6)T'(1—6)] , where
I'(z) is the gamma function. Clearly c¢(0) = 1, for small
8 the factor c(§) is close to 1+ 1.388, (%) ~ 1.160. The
model function (18) agrees with the results of numeri-
cal experiments [18] for the Kuramoto-Sivashinsky (KS)
equation in (1 + 1) dimensions. The statistical behav-
ior of the KPZ and KS equations in the long-wavelength
limit (region of strong coupling) is the same. Thus one
can conclude that the function (18) is a good approxi-
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mation for the KPZ problem too. There are no reasons
to think that function (18) does not represent the behav-
ior of the Green’s function for the KPZ model in (1 + 2)
dimensions.

We will use (18) in order to estimate a fluctuation cor-
rection to the bare vertex I'g (3) determined by the factor
~ introduced in (5) with the help of identity (14). Clearly
in the case § = 0 the formula (18) gives g(Q2) = 1/(Q+1).
This means that o(2) = —1, hence for § = 0, according
to identity (14), the factor v is equal to zero. One may
suspect that for small § the value of v has to be propor-
tional to § and (if we are lucky) the numerical factor in
front of 4 will not be too large.

Based on representation (18) one can compute do/dS2
for Q = 0 and different . This allows us to find that

T} +OLE+9)
L(3)L(Hr2(1+96)

Yo =7(0,0;0,q) =1 (19)

It follows from (19) that for small § the factor o ~ 0.77§
and vo =~ 0.064 for § = 0.1, yo ~ 0.096 for § = } ~
0.167. So the correction factor 7 is smaller than 0.1 for
the KPZ model in (1+1) dimensions with § ~ 0.167 and
in (142) dimensions with § ~ 0.125. Nevertheless the
correction factor v in (5) is a function of two frequencies
and two wave vectors. It is interesting to know whether
these parameters remain small in the actual region of
variation of the variables. The results of calculations of
the function (14) for d = 1 and 6 = } are presented
in Fig. 1. One can see that we continue to be lucky
and that the function (14) for nonzero 2 and €’ is even
smaller than fer @ = Q' = 0. In some sense it has to be so
because for large Q there is o(Q2) ox 2724 and the factor y
has to decay. For ' < Q vy(w,0;v,q) ~ §/Q(1*+29)_ Qur
calculations show that (14) decays continuously with Q
and .

Of course we do not know the correction factor
~v(w,k;v,q) at arbitrary k; it is a dimensionless func-
tion of k/q. But for large values of k/q we return to the
same function (up to transmutation of arguments) and
to the same estimations. It is reasonable to believe that
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FIG. 1. The correction factor v(w,0;v,q) as a function of
Q = v/p, at different Q' = w/pg. The labels on the graph
lines correspond to values of £2'.
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in the intermediate region k/q ~ 1 the function y does
not essentially differ from its values at k = 0 or ¢ = 0
and is of the order of 0.1. Therefore we may conclude
that the KPZ problem in the region of strong coupling
has a small numerical parameter o § which allows one to
use the one-loop approximation in dimensions (1+1) and
(142) for calculation of the Green’s function, correlation
function, etc. with accuracy better than 0.1. This is an
explanation of the good agreement between calculations
of ImG(w, k) in the one-loop approximation for the KPZ
model in (14+2) dimensions [27] and the numerics [13].
We believe that the assertion made in [27] that the (self-
consistent) one-loop approximation is ezact for the KPZ
problem in (142) dimensions is incorrect.

Conclusion. The hidden symmetry of equations with
the nonlinearity of the convective type was found. The
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consequence of this symmetry is the set of new identities
of the Ward type. Basing on these identities we ana-
lyzed the dressed vertex in the KPZ problem in the re-
gion of strong coupling. We found for dimensions (1 + 1)
and (1 + 2) a small numerical parameter which allows
one to calculate correlation functions in the one-loop ap-
proximation with accuracy better than 0.1. One may
use the Ward-type identities to analyze the behavior of
high-order correlation functions for the KPZ and related
problems (e.g., our considerations can be extended to the
conventional Euler equation).
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