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Intermittency in dynamics of two-dimensional vortexlike defects
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We examine high-order dynamical correlations of deféetstices, disclinations, efcin thin films starting
from the Langevin equation for the defect motion. We demonstrate that dynamical correlation fuRgfjarfis
vorticity and disclinicity behave aB,,~y?/r*", wherer is the characteristic scale agds the renormalized
fugacity. As a consequence, below the Berezinskii-Kosterlitz-Thouless transition tempé&rgtanes charac-
terized by anomalous scaling exponents. The behavior strongly differs from the nornfa) a5 occurring
for simultaneous correlation functions, the nonsimultaneous correlation functions appear to be much larger.
The phenomenon resembles intermittency in turbulence.

PACS numbgs): 68.60—p, 05.20-y, 05.40—a, 64.60.Ht

INTRODUCTION high-order correlations are examined.
We start from the same “microscopical” equations of the

It is well known that defects like quantum vortices, spin defect dynamics as was accepted in R&l]. Following the
vortices, dislocations and disclinations play an essential rol@apers, we focus mainly on the case when the motion of the
in the physics of low-temperature phases of thin films. Be-defects is determined by the Langevin equation describing an
rezinskii[1] and then Kosterlitz and Thoulef2] recognized interplay between the Coulomb interaction and the thermal
that there is a class of phase transitions in two-dimensionaloise. We believe that the approach is correct for hexatic
(2D) systems related to the defects. The main idea of theifilms (membranes, Langmuir films, freely suspended films
approach is that in 2D the defects can be treated as poifthe situation is a bit more complicated for the vortices in
objects interacting like charged particles. It is usually calledsuperfluid films because of the Magnus force. Nevertheless,
Coulomb gas analogy. The low-temperature phase corréhe equation for the vortices is close to the Langevin equa-
sponds to a fluid constituted of bound uncharged defecttion, see Ref[11]. Similar equations can be formulated for
antidefect pairs, which is an insulator, whereas the highthe dislocations in crystalline films, see Rgt2], for the
temperature phase contains free charged particles and can ¥@/tices in superconductors in some interval of scales, see,
treated as plasma. Correspondingly, in the low-temperature.g., Ref.[10], and for the spin vortices in planar 2D mag-
phase the correlation length is infinite whereas in the highnetics. We will not consider the last cases here, though our
temperature phase it is finite. A huge number of works arécheme is, generally, applicable to the systems. Treating
devoted to different aspects of the problem, see, e.g., theonsimultaneous correlation functions related to the defects,
surveys [3-7]. The scheme proposed by Kosterlitz andone should take into account creation and annihilation pro-
Thouless can be applied to superfluid and hexatic films angesses also. For this purpose we use the Doi techijititie
planar 2D magnetics. It admits a generalization for crystalwho demonstrated that dynamics of classical particles in-
line films, see Refd.8] and[9]. There are also applications Volved into chemical reactions can be examined in terms of
to superconductive materials, especially to higrsupercon-  the creation and annihilation operators, like in the quantum-
ductors, see, e.g., R4fLO]. field-theory.

The dynamics of the films in the presence of the defects We consider correlation functions,, of the “charge
was considered in the papers in Rdfs1] and[12]. In the  density” p (vorticity, disclinicity, etc) provided that the so-
papers, a complete set of equations is formulated describingglled renormalized fugacity is small. The inequalityy
both motion of the defects and hydrodynamic degrees ofk1 is satisfied for large scales in the low-temperature phase
freedom. Then, to obtain macroscopic dynamic equations, aand probably in some region of scales abdve In statics,
averaging over an intermediate scale was performed. At ththe normal estimat&,,~F} is valid at the condition. Sur-
procedure the “current density” related to the defects wasprisingly, the nonsimultaneous high-order correlation func-
substituted by an expression proportional to the averag#ons F,, appear to be much larger than their normal esti-
“electric field” and to gradients of the temperature and of mate F. In the low-temperature phase the phenomenon
the chemical potential. The resulting equations perfectly correveals an anomalous scaling on large scales. The reason for
respond to the problems solved in the papers in Réfsl  such unusual behavior is that the main contribution to high-
and[12]. Unfortunately, at the procedure, information con- order nonsimultaneous correlation functions is associated
cerning high-order correlations of the defect motion is lostwith rare single defect-antidefect pairs. The situation re-
That is the motivation for the present paper where thesgembles the intermittency phenomenon in turbulence, see,

e.g., Ref[14]. It can also be compared with nontrivial tails
of probability distribution functions in the physics of disor-
*Electronic addresses: Ilwlebede@wicc.weizmann.ac.il andlered materials, see, e.g., Réfs] and[16]. Some prelimi-
lebede@landau.ac.ru nary results were published in R¢fL7].
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I approach. Actually, the renormalization is reduced to the
well-known static renormalization group equations. In Sec.
/fl/\/xi/ IV we consider correlation functions of the “charge density”
and ground the properties announced above. In Sec. V we
generalize our procedure for the case of superfluid films. In
Sec. VI we discuss the main results of our work and their

5 x4 possible relations to other systems. The extended version of
——e 00— the paper can be found in R¢fL8].
. BASIC RELATIONS
! Static properties of the system of the vortexlike defects in
_ ) _ ) _ thin films can be described quite universally. The starting
FIG. 1. Trajectories passing through given points. point of the description is the free energy associated with the
defects
Let us give a qualitative explanation of the phenomenon.
To obtain a nonzero contribution to the correlation function |Xi_Xj|
Fon(ty, ... tn:f1, ... ry) One must consider trajectories of F==2, TAnn, In( a +2 u(n), (1D
the particles passing through the points.. . . 1, at the time s !
momentst,, ... t,. The situation is illustrated in Fig. 1.

The “single-pair’ contribution has to be compared with a where the subscriptsj label defectsy; are positions of the

“normal” contribution associated with a number of defect- de;ec;s,a 'S a cutoff pa(a:neter of theborder doftthe s1z€ oftthhe
antidefect pairs. Though the normal contribution contains arf?e ect core, n; aré integer numbers determining the

additional large entropy factor it has also an additional smal]f st;ength dOf t.hetﬁlefects,e IS a d|m.ert1s(|jonlle;rs]§;ﬂependen_lt_h
factor related to a small probability to observe a defect- actor, andu 1S the energy associated wi € core. 1he

antidefect pair with a separation larger than the core radiu .xpressior(l.l) Is correct for quantum vortices in §uperﬂuid
As a result of the competition, the normal contribution ap- ilms, for disclinations in hexatic films, and for spin vortices
pears to be smaller. To avoid a misunderstanding, let u 2D plana_r magnets. For d|s|_ocat|ons m_crystallme films
stress that the arguments do not work for the simultaneou e expressioril.1) has to be slightly modified8], but the

correlation functions. The reason is that trajectories of twgnain peculiarity of the free energy, the logarithmic depen-

: : dence on the separation, remains the same.
defects cannot pass through-2 points simultaneously, see : re .
Fig. 2. This mechanism of intermittency looks quite univer- 1 e Gibbs distribution exp{/T) corresponding to the

sal. It should be realized for any system of point Ol:)ject‘,:)energy(l.l) can be treated as the partition function of two-

correlated due to strong interaction dimensional point particles with chargasg, with 8 playing

Our paper is organized as follows. In Sec. | we remind? 0le of the “inverse temperature.” The paramegecan be

some basic facts concerning static properties of the 2D deqonS|dered also as the Coulomb coupling constant. Based on

fects and their dynamics and then we shortly review the Dol éléctrostatic analogy, one can introduce the “charge den-

technique[13] suitable for our problem. In Sec. Il we de- SIY”
velop a diagrammatic representation for dynamical objects
and ex_amine the _two-particle conditional probability t_hat is p(r)=2 n;(r=x). (1.2
extensively exploited in the subsequent consideration. In j
Sec. lll we demonstrate how renormalization of different pa-
rameters can be obtained in the framework of our dynamidhe quantityp is vorticity for superfluid films and disclinic-
ity for hexatic films. We will treat the case where defects are

r produced by thermal fluctuations. Since both creation and

; annihilation processes conserve the “charge” we should ac-
cept that the total charge is zero:

2 nj =0.
i
It leads to the constraint

f d’r p(r)=0, (1.3

where the integration is performed over the total area of the
t specimen.
Below we assume that fon|>1 the core energy(n) is
FIG. 2. Possible and impossible trajectories passing througi$0 large that such defects are hardly created. Then only de-
four points at a given time moment. fects with the charges;= =+ 1 should be taken into account.
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We will call the objects with the chargegs=1 defects and asymptotic region, wherg can be treated asindependent,
the objects with the charges= —1 antidefects. Because of the renormalized fugacityy remains r dependent. Its
the constraint asymptotic behavior can easily be extracted from @cp):

ocrz_ﬁ_ 1.6
Thus, in the low-temperature phagetends to zero as the
there can be simultaneously defects andN antidefects in ~ Scale increases. _ _
the system. Thus, the partition function of the system can be L€t us turn to simultaneous correlation functions of the
characterized via a set of probability distribution functionscharge densityp (1.2). The odd correlation functions are
P,y depending on coordinates of\2"particles.” In accor- ~ Z€ro. Indeed, the system is symmetric under permuting de-

dance with Eq(1.1) the functions can be written as fects and antidefects whereas the charge dengitp)
changes its sign at the permutation. The pair-correlation
vo| 2" % — Xi| function can be written atsee, e.g., Ref20])
Pon(Xq, - - Xon)=Z7H = | ex >, Bnin;In o S
a 1#] a L (p(r)p(0))~y=(r)/r™. (1.7

A generalization of the relatiol.7) can be obtainedsee
where Z is the sum over states and the quantily  Ref.[21]) which is
=exp(—w/T) is usually called fugacity. The possibility to

neglect charges withn|>1 implies that the fugacity is y2(r,)
small. (p(ry)-- - p(ran))~ Tn*~<p<r*>p<0>>“, (1.8
The low-temperaturéinsulato) phase can be treated as a *

system constituted of bound defect-antidefect pairs. In the,hare all separation\si—rj| are assumed to be of the same

high-temperaturéplasma phase there are unbound charges, e | the large-scale limit wher@ is saturated we
that essentially influence the system on scales larger than trp%\/e

correlation lengthr,. We will treat the low-temperature

phase and the region of scales betwaemdr in the high- {p(Xry)- - -p(Xan)>=X*2ﬁ“<p(rl)- <p(ran)), (1.9

temperature phase where one can neglect the role of the un-

bound charges and only the bound defect-antidefect pairghereX is an arbitrary factor. The relatiofl.9 shows that

have to be taken into account. The presence of the pairs ithe simultaneous statistics @f has normal scaling, that is

the system leads to nontrivial “dielectric” properties of the scaling exponents of the correlation functions of the order 2

medium. As a result, the interaction between the charges igre equal ton times the scaling exponent of the pair-

modified, and the effect can be described in terms of a scalaorrelation function(1.7). We will demonstrate that the be-

dependent “dielectric constant” of the medium as is sug-havior of nonsimultaneous correlation functions of the

gested in Ref[2]. In other words, the effective coupling charge density is quite different.

constaniB becomes dependent on the separation between the

charges. A. Dynamics

The scale dependence gfcan be described in the frame- To examine d ical ch teristi f th ¢

work of the scheme proposed by Koster[it8]. Namely, the ynamical characteristics ot Ine system we

should formulate a dynamical equation for a defect motion.

partition function of the system can be integrated over sepa- . . : i
rations of the defect-antidefect pairs between the coreasizeal:OlIOWIng Ref.[11] we accept the following stochastic equa

and a scale. After the procedure that can be interpreted astIon

shifting the core radiusa—r, the form of the probability dx: D 9F

distribution functions(1.4) is reproducedwith r instead of d_tJ: - TKﬂng , (1.10
i

a), but the parameter8 andy are renormalized. The de-
pendence ofB and y is determined by the following
renormalization-group equations found in Relf9]:

P ep, Y —2 gy, (19
din(r/a) - din(r/a) Y, ' (&i,o(t1) € 5(12))=2D 6 6, 50(t1—t5). (1.11

determining the trajectory of thggh defect. HereF is the
free energy(1.1), D is a diffusion coefficient, and; are
Langevin forces with the correlation function

wherec is a numerical factor of order unity. Thedependent The diffusion coefficientD determines mobility of the de-
functiony is the renormalized fugacity. It determines a con-fects. We believe that the equatigh10 is applicable to the
centration of defects belonging to the bound pairs with sepadynamics of disclinations in hexatic films such as mem-
rations of the order of, the concentration can be estimatedbranes, freely suspended films, and Langmuir films. The
asy/r2. The renormalized value ¢8 determines the depen- equation for the vortices in superfluid films is a bit more
dence of the strength of the Coulomb interaction on the sepazomplicated. It is written in Sec. V where the correlation
ration between the charges. In the low-temperature phase, tifienctions of the vorticity are analyzed.

effective value of tends to a constant on large scales. The The equation$1.10,1.1) describe trajectories of separate
asymptotic value of3 is larger than 2, the critical valug  defects. We should also take into account annihilation and
=2 corresponds to the transition temperature. In thecreation processes. Remember that we neglect defects with
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Inj|>1. Next, processes where a number of defect-antidefeavhere we implyr >a. The constrainf1.14) can be treated as
pairs are created at the same point are suppressed since the manifestation of the equilibrium state of the thermal bath,
probability of such events is small due to the energy associwhich in our case is related to short-scale fluctuations.
ated with the cores of defects. Then we have to take into
account the creation processes of single pairs solely, they are

characterized by the creation rd&¢r), which is a probabil-
ity density for a defect-antidefect pair with the separation The Doi techniqug13] enables one to treat systems of
be created per unit time per unit area. The annihilation proelassical particles where creation and annihilation processes
cesses have to be characterized by the annihilatiorRfae  occur. The main idea introduced by Doi is that correlation
which is a probability for a defect-antidefect pair to annihi- functions of different quantities characterizing the particles
late per unit time if the pair is separated by the distance can be written in the form close to the one known in the
Really, bothR(r) andR(r) are nonzero only if is of the  quantum-field-theory. Of course there are some peculiarities
order of the core siza. Let us introduce the integrals related to the fact that for classical particles one should deal
directly with probabilities whereas in the quantum-field-
— 0 = " theory one starts from the scattering matrix. Nevertheless,
)‘:f dr R(r), )‘:f dr R(r). (1.12  the Doi technique enables, say, to formulate a diagrammatic
. expansion with the conventional rules. The technique was
Here, the creation constait is a probability for a defect- originally developed to describe systems of molecules in-
antidefect pair to be created per unit time per unit arearand volved in chemical reactions. But it is definitely applicable
is a constant having the same dimensionality as the diffusioalso to the system of point defects.
coefficientD. Below, the diffusion coefficienD is put to The Doi technique is formulated in terms of the creation
unity by rescaling time. Then the annihilation constans a [p and annihilationy operators that satisfy the same commu-
dimensionless parameter of the order of unity and the cretation rules as the ones for Bose particles

ation constanh can be estimated as

B. Quantum field formulation

_ [(ry), (rp)]1=8(r1—r2),
A~a Yexp(—2ulT), (1.13

which is the second power of the defect concentration. I ) 1=l o(r r)1=0. 1.1
The Gibbs distributior{1.4) must be a stationary solution [9(r) 9(r2) 1=[WAre), A1)} (119
of the master equations for the system. The condition im-

poses the following constraint on the creation and the anniFor our system of defects we should introduce annihilation

hilation rates: and creation operatorg.. and fpi where the subscripts-
y2 [ a)|28 and — label fields related to the defects and to the antide-
R(r)= _°<_) R(r), (1.14  fects. The state of the system at a time momienan be
a*t\r written in terms of a “quantum” state

o0

1 A A ~ ~
|t>:NE:0 (NI )Zj d?xy- - - d?xnd?zy - - - AP\ Ponths (Xa) - - e (X P (20) - - - - (2)]0), (1.1
|
where P,y are the N-particle probability densities an@) D= — b . (1.18

designates the vacuum state:|0)=0. In accordance with
the expressioiil.16) an evolution of the quantum stdte is

determined by the master equations. The evolution equatiof A iS such an operator corresponding to a quarhityhen
can be written as an average value of the quantity at a time montec#n be

expressed as

aty=—Hlt), (1.17) _
t <A(t)>=<0lexr{ f d2r<¢++¢_>}A|t>. (1.19

where’H is an operator expressed in terms of the figlds

and fpi. By analogy with the quantum-field formulation it
can be called the Hamiltonian operator or simply the Hamil-
tonian.

Quantities characterizing the system can be represent
by corresponding operators, see Réf3]. Say, the operator 5 5
of the charge density is A(t)=exd —(ti—t)H]Aexd —(t—t)H]. (1.20

Correlation functions of different quantities can be presented
analogously to Eq(1.19. They can be rewritten as averages

over an initial state if to introduce operators in the Heisen-
&Frg representation
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Then one can reformulate the problem of calculating corre-y I

lation functions in terms of a functional integral, see Ref. i r""\ N

[22]. Namely, we can write N

<Al(t1) s -An(tn)> E/\J

=f DY DA, . .. A,

Xexp[—ftf dt[?—HJ d2r(f/f+at¢++¢?/&tw)} _KQ

+f d2r[‘/’+(tf!r)+¢(tfir)]+i (12]) !

N

where . , . are to be interpreted as functionstodndr. FIG. 3. Typical diagram block.

We assume that;>t,, ... t, in Eq. (1.21). Deriving the Substituting the expressiaf2.1) into Eq. (1.21) and ex-
expression one has taken the limjf—— and assumed panding the exponent ovefz and ; one can obtain a
lin)=|0). Because of the creation processes the vacuum hasnventional perturbation series for calculating different cor-
to be turned into a stationary state during the infinite timerelation functions ofy, . The series is an expansion over
To ensure convergence of the functional inteddaRl) the R, R andg in terms of the conventional diffusion propaga-
integration contour over the fielgt should go parallel to the tors:

|mag|nary axis. R
G(tir):<¢+(tvr)¢/+(010)>0

Il. DIAGRAMMATIC REPRESENTATION -~
=(¢-(t,N¥_(0,0)o

Below, we apply the Doi technique to our particular prob-

2
lem. The explicit expression for the Hamiltonian determining = @ F{ - ' (2.5
the evolution of the defect system is 4t 4t
H=Ho+ He+H,. 2.1) where (1) is the step function. However, effects related to

the Coulomb interaction and to the annihilation processes are
not weak. Therefore one must take into account the Coulomb
interaction and the annihilation processes exactly. In other
words, when calculating the correlation functions, one must
H0=f d2r (Vg Vi, +Vi_ Vi) (2.2 consider the complete series oy@randR. Fortunately, the
expansion ovelR is equivalent to an expansion over the
- fugacityy, which is assumed to be a small parameter. There-
= —f dzrldzfz[R(fl—fz)(&u,lQ/—,z— 1) fore we can take only principal terms in the expansion over
R.
_ 0 The perturbation expansion can be formulated as a dia-
TR oo™ e aY- 2P a9 D) grammellatic series. We pdevelop the diagrammatic technique
(2.3 starting from the representati¢h.21), pushing the final time
t; to the far future. We depict the propagat@r5) by a line
_ 2, 42 0 5 ~ directed fromi to . The term with the creation ra in
HB_ZBI A T (Vs af- 2= s VY- 2 Eq.(2.1) gene(fateswvertlces where two propagator lines start,
the vertices correspond to the defect-antidefect creation pro-
w12 Fi—r e cesses. The Coulomb term in EQ.1) generates two-point
Ir—r2 1¥-2 objects, which we will designate by dashed lines, which de-
scribes the Coulomb interaction of defects located in points
connected by the line. And the term proportional to the an-
Va2 nihilation rateR in Eq. (2.1) produces two types of vertices.
| 2| First, it produces vortices where two propagator lines finish,
r that corresponds to an annihilation process. Second, it pro-
! Yo 21, (2.4  duces fourth-order vertices that correspond to an effective
Iry 2|2 interaction related to a finite probability for a defect-
antidefect pair to annihilate, see REE3]. A typical diagram
where i, 1= (t,r;) and so further. The diffusive contri- piock is presented in Fig. 3. The block is drawn in real
bution (2.2) is related to the Langevin forces, in E@.3,  _t space time. The curves constituted of the propagator lines
whereR is the annihilation rate an@ is the creation rate for can be interpreted as trajectories of defects and antidefects.
the defect-antidefect paifghe quantities were introduced in Due to causality the particles always move forward in time.
Sec. ), and the tern{2.4) describes the Coulomb interaction. Note that the dashed lines corresponding to the Coulomb

The explicit expressions for the terms entering Exjl) are

Vil o

—ZBJ d?r, d?r,

+Vi 1'// P Fa—
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interaction are perpendicular to thexis since the interac- r
tion is simultaneous.

1
A. Pair conditional probability 3 f
In this subsection we examine an auxiliary object that will
be needed at intermediate stages of subsequent calculation t

The object is the following correlation function

%

M(to—ty,r1,r2,r3,74) ~

=(P (Lo, 1) (Lo, 1) i (ty,ra) b (ty,ra)).  (2.6)

For a stationary case the averd@e6) depends on the differ-
encet=t,—t; only. Due to causalityM is equal to zero
provided t<0. The quantity(2.6) can be interpreted as a
probability density to find a defect and an antidefect at the
time momentt, in the pointsr; andr, provided they were 9,S= 2V28+4,8V(LS) —R(r)S+8(t)8(r—ry).
located in the points; andr, at the time moment;. It can r2

be considered also as a two-particle matrix element of the (2.10
evolution operator eXp-(t,—t;)H].

FIG. 4. Typical diagram for the conditional probabiliky.

As we explained above, the perturbation series in terms o ere
the creation rat& is an expansion over a small parameter, ri+rs
which is the fugacity. Here we examine the principal contri- r=ri—rz, @=—5—, To=rfz=rfz. (211
bution to the conditional probability2.6) which is of the
zero order oveR. Then the average.6) can be represented In accordance with Eq2.9), a motion of the mass center

as a series of diagrams of the type depicted in Fig. 4. Ongnd. the relative motion of Fhe defects_ are separated. The
can interpret the picture as trajectories of a defect and of afiotion of the mass center is purely diffusive whereas the
antidefect that are driven by the Langevin forces, and ar(lgelatlye motion is strongly influenced by th_e mteraphon. The
influenced the Coulomb interactiofashed linesand the function S can be treated as the probability density for the
effective interaction associated with the annihilation pro-rélative motion of the defect-antidefect pair. It is natural to
cessegpoint vertey. Note that in this approximation, direct expand the function into the Fourier series over the aggle
annihilation events do not contribute to the conditional probPetween the vectonsandry:
ability (2.6) since they would lead to terminating the lines in +oo
the diagrams. - i

It is of crucial importance that both the Coulomb interac- S(trro) Z’c Sn(t.1 ro)expime). @12
tion and the effective interaction associated with the annihi- = . . . .
lation processes are local in time. Therefore all the diagramg/IOtlons corresponding to different angular. harmomgs are
representing the conditional probabilit®.6) are ladder dia- sepqrated. In terms of the angular harmonics, @dlL0 is
grams, like in Fig. 4. Summing up the ladder sequence Wéewrltten as

get an equation foM that can be written in the differential 1 1 m? 1
form =0Sm=|?+(1+2B) = d;— —|Sm— 5 R(r)Sn
2 r r2 2
2 2 rh—r;
IM=(Vi+V5)IM+2B(V,= V)| ——5M + (1) 8(r—ry). (2.13
|rl_ 2| 4’7Tr0

—R(ri—=ra)M+68(t)8(ri—r3)8(ro—rys). (2.7 It is possible to get equations f@&analogous to Eqg2.10
and (2.13 in terms ofry. They have practically the same
SinceM =0 att<0 we conclude from Eq(2.7) that att— form as Eqs(2.10 and(2.13. The only difference is in the
+0, sign of B, which is opposite. That leads to the relation

2B
M(t,ry,rz,r3,r)—6(r1—r3)6(ra—ry). (2.9 Sm(t,r,ro)= r_o) Sm(t,ro.r). (2.14

r

The solution of Eq(2.7) can be written in a multiplicative

form Let us stress that the relatid®.14) is correct for an arbitrary

function R(r).
) Consider a behavior of the angular harmor;gt,r,rg)
M= iexp{ (2013719 ]S(t Fro) (2.9  atsmallr. More precisely, we assunte- a? and examine the
2t 8t nron ' region \t>r>a. Then it is possible to use E¢.13 with
the time derivative and the annihilation term neglected. As a
where the functiors satisfies the following equation result we get
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r Then the influence of small-scale defect-antidefect pairs on
larger scales becomes essential. In the situation the most
natural language is the renormalization-group approach. One

\5 can formulate a renormalization-group procedure in the spirit
of Kosterlitz, Ref.[19]. We will single out blocks corre-

! t4 sponding to small separations of the pairs and treat them as

. renormalized quantities entering the Hamilton{@nl).

\ /7 A. Creation and annihilation rates

s Sizes of the pairs are small near creation and near annihi-
lation points. Here, we consider vicinities of the points. Then
¢ it is possible to neglect the interaction of the defect and of
the antidefect with the environment. Thus we turn to the
situation when only a single pair can be treated. If this is the
FIG. 5. Vicinities of creation and annihilation points. case, then one should analyze diagram blocks of the type
drawn in Fig. 5. The left part of the figure corresponds to a
Sn=Cyml " P+Cyr’ B(rla)~2", (2.15 Vvicinity of the creation occurring at a time momentand the
' ’ right part of the figure corresponds to a vicinity of the anni-
v=/BZ+n?, (2.1 hilation occurring at a time momeny.
Now we consider processes occurring during a time inter-
where C, ,,,C;,,, are some factors dependent bandr,.  val 7 from the creation time;. One can separately treat a
The ratio of the factors is determined by a concretiepen-  block corresponding to the time interval frotp until t,
dence of the annihilation rat& one can assert only th&,,,  =t;+ 7. For this purpose we use the well-known property of
andC,,, are of the same order. Therefore, if we consider thehe propagator§2.5):
behavior of the functiors for r>a, then the second term on
the right-hand side of Eq2.15 can be neglected. In other -~ _ 2 _ _ _
words, being interested in the scatesa, we can solve Eq. Glss Sl’r)_f X C(Sg =52, = X)G(S,~81.%),
(2.13 neglecting the annihilation term and requiring a finite 3.1
value ofS,, atr —0 instead. The requirement can be treate
as the boundary condition fo8, at smallr. The other
boundary condition is th&$,, tends to zero at—o<c. Then

theres3> s,>s,. For each diagram we extract propagators
G containingt, inside their time interval and represent the
propagators such as in E(.1) believings,=t,. The pro-

1 [ra\5 r24 2 ' cedure is reflected in Fig. 5 where the dotted line represents
sm=—<—°) exy{ -—, —O), (2.17  aplanet=t, in ther—t space time and the integration in Eq.
8t r 8t 4t (3.1) corresponds to the integration in the plane. As a result,

the block to the left of the plane is separated, it is character-
by Eq. (2.16). i;ed by the time separatiqﬁ and b_y two pqintsrl andr,
Note that the Coulomb term in Eq2.10 produces a Iy!ng in the _plane_, the points are intersections of the plane
probability flux to the origin. To find it we should integrate W'th the trajectories of th_e part|cle§. The .blOCk has to _be
. . inserted into more complicated objects via a convolution
Eq. (2.10 over a disk of a radius<r</t centered at the overr. andr
or.igin and single out the contributign to/d’ S associated Thel: samez.is true for the vicinity of the annihilation point
with the Coulomb term. Then we find the flaxC, o where also. Let us take a time momehy separated by a time in-
A, =878. (2.18 ter\_/al >a? from an annihila_tion timeé,. Then i'g is possible
to introduce the block that is a sum of the diagrams where
One can treat the quantity2.189 as the renormalized the trajectories of the annihilating particles start from two
(“dressed”) value of the annihilation constant. Now we un- given pointsrs andr, att=ts. The block has to be inserted
derstand why the solutiof2.17) (realized atr>a) is insen-  into more complicated objects via a convolution over the
sitive to a particular form of the annihilation rate. The prob-points. In the vicinity of the annihilation point we can take
ability for a defect-antidefect pair with the separaticrato ~ into account the interaction of the annihilating defect-
annihilate is determined by the Coulomb attraction. And onlyantidefect pair solely. That leads to the same ladder diagrams
the behavior of the probability density et-a is sensitive to ~ treated in Sec. Il. Therefore we can write an expression for
the particular form of the annihilation raf(r): The coeffi-  the block without an additional analysis
cientsC,, in Eq. (2.15 are positive ifA<\; and are nega-
tive if A>\;. RT(r0)=f d?r, d?r, R(NM(7,1,F5,13,4)

wherel is the modified Bessel function andis introduced

lll. RENORMALIZATION

=f d?r S(7,r,ro)R(r). (3.2
In this section we are going to dis%ss effects related to

high-order terms over the creation refe The effects are Herer andr, are defined by Eq2.11), M is the conditional
relevant only near the transition point wheBes close to 2. probability (2.6), Sis the conditional probability for the rela-
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tive motion of the defects, see EQ.9), it is the solution of - yz a\28
Eq. (2.10. The physical meaning of the quant®.(r,) is a R,(r)= 20 —) RA(r). (3.7
distribution of the annihilating particles over the separation a*\r

ro between the particles at the time momentlt is natural Thus we see that the relatidni.14) is reproduced for the
to name this distribution the “dressed” annihilation rate . o —

since the quantity determines a probability for the particles tcgenormallzed qu.antltleRT e.md R, .

annihilate after the time intervat. Note that all processes  1he renormalized creation raig(r) can be interpreted as

occurring on scales larger thafr are sensitive only to this & Probability density to find a defect-antidefect pair with a
dressed quantity space separationprovided the pair was born on time sepa-

Let us substitute into Eq3.2) the produciRS expressed rated byr from the measurement. Let us calculate the total
from Eq. (2.10. The terms with the total derivatives give Probability densityx, to find the defect-antidefect pair at a
zero contribution to the integral overand we get fixed time separatiorr regardingr>a“. The probability is
determined by the integral dR (r) overr. We conclude

B ) from expression$2.17) and (3.3) that the integral is deter-
RAro)=—d;| dr S(7,1.ro). (3.3 mined by the regiom~ /7. Taking into account Eq3.5) we
get

SinceS( ) tends to zero at— +o0 and is zero for negative s
7, we get from Eq(3.3), — — ye a2\ #
d 933 xrzf d2r R,(r)~ —2(—) : (3.9
a T

drR.(rg)=1. 3.4 I ..
f 7R:(o) S We see that due to annihilation of defects at collisions the
) - ) _total probability diminishes when increasing the time sepa-
The rella.t|on means that thg total probabmty of a given pair ation  as a power ofr. The property can be interpreted as
to annihilate is e%ual to unity. As is seen from ERB.15 at  {q)iows: The majority of defect-antidefect pairs annihilate
the condition7>a*, the main contribution to the integral on fast after their creation and only a minor part of the defects
the right-hand side of Eq3.3) is associated with the region ,-hieve a separatiar>a. The probability of such an event
r~ /7 and therefore the contribution to the integral assocCi-ig proportional to (/a) ~22.
ated with the regiom~a is negligible. Therefore, we can  The results obtained in this subsection are correct if the
use the expressiof2.12 with Eq. (2.17). Substituting itinto  yariation of the coupling constarg on the scale intervah
Eq. (3.3, we get a universal expression for the dressed quan — /7 is small. The existence of such an interval is justi-
tity Ry(ro), which is insensitive to the bare quant®(r). fied by the assumed small value of the fugagigy NearT,

In Sec. Il we established the renormalized vaRel8 of \ariations of 8 on a wide region of scales can be relevant.

the annihilation constanh. This analysis concemed the Then the consideration needs a generalization made in the
fourth-order interaction term written in ER.1). Below we |55t subsection of this section.

demonstrate that the renormalized coefficient of the second-

order annihilation term has the same value, independent of B. Coulomb interaction and diffusion coefficient
the bare one. In accordance with E#}.12), to find the renor-
malized valuex, we should calculate the integral Bf(r).

At 7>a?, the value of the integral is independent ofind
coincides with the value written in E¢2.18), as one antici-
pated:

Let us consider the renormalization of the Coulomb inter-
action related to small defect-antidefect pairs. It is known
that the influence of such pairs can be described in terms of
a contribution to the effective dielectric constant, see Ref.
[2]. The picture is naturally generalized for the dynamics.

A typical diagram contributing to renormalization of the
7\r=f d?roR(ro)=8mp. (3.5 effective “dielectric constant” is drawn in Fig. 6. There we
see a loop composed of the trajectories of a defect and of an

The phenomenon resembles the renormalization of the rea@.ntidefect that annihilate after their creation. There are also
tion rate due to diffusion, see Refd.3] and[23]. two “external” dashed lines corresponding to the interaction

Analogously, one can introduce the renormalized creatio®f the defect-antidefect pair with an environment. Besides

rateR,(r), which is determined by the block describing the the diagrgms of the type drawn in.Fig. 6, there are also dia-
vicinity of the creation poin{see Fig. 5 Summing up the grams with two external dashed lines attached to the same

same ladder sequence of the diagrams we get trajectory. We.draw the external ques with arrows .to remem-
ber that two sides of the dashed line are not equivalent.
_ _ As previously, we can dissect the diagram into parts that
RAN= f d?r3d’ry R(rg)M(7,1q,15,13,14) can be treated separately. Then the answer can be found as a
convolution of the corresponding expressions. We perform
2 = the dissection along the planes in thet space time perpen-
:f d°roR(ro)S(7,r.ro). (36 dicular to thet axis and corresponding to the time moments
t, andts of the external Coulomb lines. In Fig. 6 the dissec-
Herer andr, are defined by Eq.2.11), andM is the condi- tion is shown by the dotted lines. We see that the loop is
tional probability (2.6), Sis the conditional probability for divided into three parts.
the relative motion of the defects, see ER.9). Using the The left part of the loop implying the integration over the
relations(1.14) and(2.14) we get from Eq(3.6), time t; (see Fig. 6 corresponds to
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FIG. 6. Typical diagram contributing to renormalization of the  FIG. 7. A more complicated diagram giving a correction to the
effective dielectric constant. Coulomb interaction.

- o We can also consider blocks that can be treated as contri-
f de d?r3d?ry R(r3—ry)M(7,%Xq,X2,3,14) butions to the diffusion coefficienb introduced by Egs.
0 (1.10 and (1.11. An example is depicted in Fig. 8, where
— the block between two dotted lines is a self-energy insertion
=f drR.(|x;—Xy|). (3.9 to the propagatof2.5 which gives the renormalization of
0 the diffusion coefficient. We will assume that the fields
are corrected to keep the ter(@.2 unchanged. Then the

Substituting here Eq3.7) and using Eq(3.4) we get contribution(3.12 has to be extracted from the renormaliza-
tion of the coefficient in front of the time derivatives.
© yg a\?8 To analyze the correctioAD quantitatively one should
jo dTRr(r):g(F (3.10 know a three-particle conditional probability that is more

complicated than the two-particle conditional probability
. . R (2.6). Fortunately, one can estimate the value\@ without
Zhgnggntrtaol p?& Ofctgr? d%'grg];?m C:gg:;éﬁﬁ '(g glg. I\? (forre'detailed calculations. The point is that the dependenaelnf
pt X3,X4.X1,X5). And the right pa?rt of the}(;lia.gram in Igig on the cutoffa can be produced only by regions near the
T2, A3,84,A1,A2)- . . . . .
6 corresponds to the integré.4). The relation can be rec- creation or near the annihilation poifwhich are designated

ognized as a manifestation of independence of all results q y ovals in Fig. 8. The regions can be analyzed in terms of
: ! . X wo-particl nditional pr ilit¢2.6) sin nly th
the final timet; in the relation(1.21). If we choset;=t5 then e two-particle conditional probability2.6) since only the

the right part of the diagram in Fig. 6 disappears and Weinteraction of the nearest “particles” is relevant the_re. W_e
. . . ' i already know the answer: the region near the creation point

should substitute one instead, in accordance with(Ed). roduces the renormalized creation r48e6) whereas the
The structure of the diagram depicted in Fig. 6 shows tha gion near the annihilation point produce mdependence

the block related to the defect-antidefect pair can be treate hen simple dimensional estimates give the answer sirﬁilar

as a self-energy insertion to the line corresponding to thel)O expressior(3.11

Coulomb interaction. Thus it is natural to expect that this 7

insertion can be treated as a contribution to the “dielectric

constant,” leading to a renormalization of the Coulomb con- AD~ —YSJ

stantg:

a

r

(3.12

T

dr 2B—4

AB“‘Y%JT

The expression can be treated as an integral over the chara : a
teristic sizes of the defect-antidefect pairs.

One may try to find more complicated blocks contributing
to a renormalization of the Coulomb coupling constanfn 5 /
example of such block is depicted in Fig. 7 where a number :
(three “external” lines are attached to the loop correspond-
ing to the trajectories of the defect-antidefect pair. One can
easily check that the block depicted in Fig. 7 gives a correc- ¢
tion to the Coulomb force that diminishes faster tmart at
increasing the distance between the interacting particles.

Therefore the contribution is irrelevant. The same is true for FIG. 8. lllustration to the renormalization of the diffusion coef-
more complicated diagrams of the same type. ficient.

a
r

(3.11
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Remember that the bare value Dfis assumed to be equal a\f2
to unity. y=\y] VYo (3.19
C. Summary The relation can be treated as an elementary step of the

i _ . . renormalization-group procedure, which is described by Eq.
In the preceding subsection we obtained the exXpressiong g for y. Thus the renormalization group equation fin

for the correctiong3.11) and(3.12 of the Coulomb constant dynamics coincides with one in statics.

and of the diffusion coefficient in the main order over the Expression(3.11) for the correction to the Coulomb con-
fugacity yo. Now we are going to discuss high-order correc-gant3 can be considered as arising at the elementary step of
tions overy,, which in statics leads to the renormalization- renormalization-group procedure. The corresponding
group equation$1.5). It will be more convenient for us t0  rengrmalization-group equation can be found to pass to the
proceed in spirit of the Kosterlitz renormalization-group gjfferential form and to substitutg, by the renormalized
scheme. Namely, we see that expressihil and(3.12  \51yey in accordance with Eq(3.15. Then we obtain the
are written as integrals over the space variabhich can renormalization-group equation coinciding with Eg.5) for

be treated as the size of a defect-antidefect pair. We can firg_ The expressioif3.12 for the correction to the diffusion
perform the integration over a restricted interval of the sizesgofficient leads to the following renormalization-group
what gives slightly renormalized values of the coupling con-

X . 9~ equation:
stants. Then we can repeat the integration. In the limit this
multistep procedure gives the renormalization group equa- dD
tions for the coupling constants, as Kosterlitz suggested. On m~ -vy? (3.19

the diagrammatic language the procedure means that we

gradually substitute blPCkS corresponding to small Sepa.‘raénalogous to Eq1.5 for B. We conclude that the correction
tions between the particles by their effective values reIaUveiO D is small due to the small value of the fugacity and is
to Iarggr scales];f Tf:g pr(l)cedufr?hcag ?IZO be _Iciﬁnsm:thared fiferefore irrelevant. To avoid a misunderstanding, remember
Increasing an efiective size ot the deteds:r. Then Me - - a¢ the variation of the Coulomb constghtwith increasing
renormalization of the coupling constants can be described if 6 is also small. Nevertheless. as seen fron(Eg, it is

terms of the differential renormallzatlon-group_ equations. . difference—2 that enters the renormalization-group
At each step of the procedure we deal with correlation

functions like Eq.(2.6). For an interval of scales where a equations and the variation of the difference can be essential.
variation of the Coulomb constagtis small, one can use for

the function expressiof2.17) where one should substitute IV. CORRELATION FUNCTIONS

the renormalized value of the Coulomb constgntAnalo- Here, we treat nonsimultaneous correlation functions of
gously, the renormalized annihilation rate is determined byne charge density, Eq. (1.2),

Eq. (3.3, where one should substitute expresgipri?) with

the renormalized value of the Coulomb const@niNext, for Fon(ty, - tonile, - o) ={p(ty,ry) . . . p(ton,Ton)).

the renormalized creation rate we should use the relation 4,

ﬁflzf d2ro S(7,— Tz,r,ro)ﬁfz, (313 Note an obvious consequence of the constréirB)

f d?r, F,,=0. 4.2
wherer;> 7,. Relation(3.13 can be derived from Ed3.6)

to use the property ddanalogous to E(3.1). For the renor- To examine the correlation functioi4.1) we use the repre-

malized qreation rate, relatidB.13 is cor.reF:t only if5(r4) sentation(1.18. We will assume that all the diagrammatic
weakly differs from3(r,) for characteristic values of the blocks corresponding to small defect-antidefect pairs are al-
paramete_r$1~\/q-—l andr,~ /7. ready included in the renormalization of the corresponding
A relation analogous to Ed3.13 can be formulated for . 5ling constants as discussed in Sec. Ill. Therefore, the
the annihilation rat&. The relation leads to the same eXpreS'fugacityy and the Coulomb constar entering all subse-
sion (3.3 where g is now scale dependent. Therefore they ent expressions should be taken at the current scale. First
renormalized quantity of the annihilation constantflows \ye will examine contributions to the functions associated
together withs in accordance with E¢2.18. This accounts yith 5 single defect-antidefect pair and then we will consider

for the nonlogarithmic character of the integrals leading toconriputions related to a number of defect-antidefect pairs.

relation(2.18.
Then we should define the renormalized fugacity in dy- A Pair correlation function
namics. For this purpose let us generalize expressidr)) :

We start with the pair-correlation function

o 2 Fo(to—ty,ro—r)={p(ty,ry)p(ty,r)), 4.3
deRT(r)=y—4. (3.14 2=ty 1= 1) =(p(t2,r2)p(ty,r1))
0 ' with t,>t,. The averag€4.3) can be calculated in accor-
dance with relation(1.21) where one should substitute ex-
Then Eq.(3.10 is rewritten as pression(1.18. We assumé;=t,.
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fon ty F Fz(t,rz—f1)=—2J d?ryd?r, d,(r,—ry)

X[M(t,r3,rp,r,rg) —M(t,rp,r3,r1,r4)1,

(4.7)

. wheret>0. At small timest we turn to the limit law(2.8).
ty P Substituting the expression into E@.7) we get

tH 'r4

F2(t=O,r1—l’2)=25(rl—r2)I d2r (Dz(r)_zq)z(rl_rz).
FIG. 9. Trajectories contributing to the pair-correlation func- (4.9

tion. Here the second contribution corresponds to the (aw)

S . and the term proportional to th& function is an autocorre-
The contribution to the averagd.3) related to a single lation contribution associated with a single defect. The factor

defect-antidefect pair can be represented by a series of tr}ﬁ front of the & function (which is the density of defedtis

diagrams with two lines constituted of the defect and antldeTn accordance with the relatic.2). Note that at small the

fect propaga'tors. The lines start from the cr'eatlon' pomt. A5 function is converted into a narrow function of the width

half of the diagrams have the structure depicted in Fig. 9'~\ﬁ

Here we omitted lines and vertices corresponding to the in-

teraction of the defect$which is implied and keep only ';f follows from Egs. (2.17), (4.5, and (4.7) that for t

trajectories of the defects. The trajectories should pass r

through the points; andr, at the time moments; andt, 2

(the events are designated by black cirtledn additional Fo(t,r)~ y (r). (4.9

contribution to the averagét.3) is determined by similar r4

diagrams where both events,r; andt,,r, belong to the

same trajectory. To justify Eq.(4.9) one should check that there are no diver-

As above, we dissect the diagram into parts that can bgences in the integra#.7). It can be done directly using Eq.

treated separately. Let us make a cut along planes-in ~ (2.17. The convergence at small separatienand r, ac-

space time corresponding to the time momentsand t,, counts for the behavior of the modified Bessel functions

they are shown in Fig. 9 by dotted lines. Intermediate pointd ,(X) X" at small values of the argument. The convergence

appearing in the convolutiof8.1) are designated in Fig. 9 as at large separationsandr, can be checked using E.9).

r; andr,. After that the diagram is divided into two parts If [t|>r? then

separated by the dotted line. The part of the diagram to the

right from the dotted line corresponds to the conditional Foe y2(r)

probability M, Eq. (2.6), and the part of the diagram to the 2 r4*23|t|3'

left from the dotted line corresponds to the correlation func-

tion The behavior of the pair-correlation function determined

by the laws(4.9) and (4.10 corresponds to conventional

Do(ry—ra) =(¢(t,r) ¥_(t,r)). (44 critical dynamics(see, e.g., Ref[24]) with the dynamical

critical indexz=2. However, as we will see below, the be-

havior of the high-order correlation functions is beyond the

conventional scheme. Besides, the scaling taw? is true

for the high-order correlation functions as well.

(4.10

The quantity(4.4) can be treated as the probability density
to find a defect-antidefect pair with a given separation. Cor
respondingly, the integrdld?r &,(r) determines the density
of the defect-antidefect pairs. The correlation functidm)

coincides with the integral on the left-hand side of Eq.
(3.14). Hence B. High-order correlation functions

@ _ 2y 4 Here we extend the procedure of the preceding subsection
2(r) =y T, 4.9 to the case of the high-order correlation functidhs, (4.1).

We will assume that;<t,<...<t,,. Again, we examine
dhe contribution toF,, associated with a single defect-
antidefect pair. Corresponding diagrams contain two trajec-

wherey is the renormalized fugacity. Equatiori$.6) and
(4.5 show that asymptotically in the low-temperature phas

D,(r)ocr 28, (4.6) tories starting anywhere and passing through the points
i, ...,lo, at the time moments, ... t,,. We will desig-
Note that the same behavi@t.6) is observed up to a slowly nate the trajectories of the defect and of the antidefeg{igs
varying factor in the whole region of scales. andz(t).
The diagram depicted in Fig. 9 gives a convolutiordof Let us dissect the diagrams along planes inrthé space

and M. Adding the contribution corresponding to the casetime corresponding to the time momers . .. t,,. Then
where both events;,r; andt,,r, belong to the same trajec- the diagram is divided into a number of blocks, see Fig. 10.
tory, we get the following expression for the pair-correlation The left block in Fig. 10 corresponds to the objét#) and
function (4.3, all the other blocks correspond to the correlation function
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X (1)

L2z o
2n-1

FIG. 10. Trajectories passing through a number of points.

(2.6). Again, using Eq(3.1) we can write the contribution to V t

the correlation functiori4.1) associated with a single defect-

antidefect pair as the following convolution: FIG. 11. A number of defect-antidefect pairs passing through
given points.

Fon(ty, -« tonife, -« - uFan)

fluid films. It is instructive to re-express our results in terms

:ﬁ f d?x; d%z; (X, —29)[ 8(r;—X;) of the phase gradient circulations Bt over a closed loop
j=1

—o(ri—z)IM(tj 11—t X 11,2 41,%,Z). (4.1

(= 2)IM {178 %02 00.%,3). (41D I'(t,C)= 3@ drvgp:zwf d’r p(t,r),  (4.14
Here, one must replace the last factdr(t,,,;—ts,) by
unity. Relation(4.11) is a generalization of Eq4.7). Thus  where the second integral is taken over the area inside the
we got an expression for the correlation function that is @doop. Correlation functions of’s can be rewritten as inte-
multiple integral of functions determined by explicit formu- grals of the correlation functions,,,. As an example, con-

las. sider the following average:
An analysis shows that there are no divergences in the
integrals at all steps of calculatirfép,,. This means that we Vo =(I'(t,C)I'(t+7,C)- - - I'[t+(2n—1)7,C]).
can evaluate the correlation functions from naive dimension (4.19

estimates. Namely, if all space separations anjorgr;| are
of the same order, and all time intervals are of the order
r2 then

Suppose that the characteristic size of the loois large
enough so that we can assume tpais saturated, and that
7~r2. Then the following scaling law is satisfied: rif-Xr
Fony2(r, )ro ™ 4.12 and 7— X27 then
n * * " "
4-28
In the large-scale limit wherB is saturated, we have, in Fan—X Won, (4.16

accordance with E¢1.6), where X is an arbitrary factor. The law4.16) is a conse-

quence of Eq(4.13. It has two striking peculiarities. First, it
possesses a clear critical dependence. Second, it is indepen-
dent of the orden.

Fopoer, 40717268 (4.13

If some space separations amojrg— rJ-| and/or some
time intervals differ strongly, then one can formulate some _ o
simple rules following from Eqs(2.17 and (4.11). Let us C. Many-pair contributions
give some examples. If one of the time intervalss much We have established the contributions to the charge-
larger than all values of the squared separatjonsr;|> then  density correlation function&,,, associated with a single
the correlation function behaves likg,x 7~ #. For smallr,  defect-antidefect pair. Now we are going to discuss other
there appear contributions #;,,,, short correlated in space contributions to the correlation functions related to an arbi-
(on scales~ /7). In the limit 7—0 the contributions turn trary number of defect-antidefect pairs. Correspondingly, we
into § functions, as it was for the pair-correlation function, should take diagrams with a number of trajectories passing

see Eq.(4.8), representing an autocorrelation of single de-through the pointsry, ... r,, at the time moments
fects. If the pointg; can be divided into two “clouds” with  t,, ... t,,. The picture illustrating the situation is drawn in
a separatiorr between the clouds much larger than theirFig. 11 where black circles correspond to the arguments of
sizes(and all time intervals are much smaller the) then  F,,:  (ty,r1), ..., (tsn.F2y). There we omitted blocks re-
the principalr dependence of the correlation functibp, is  lated to short-living defect-antidefect pairs, regarding that
the same as in the functich,(r), Eq. (4.5). the blocks are already included into the renormalization of

Remember that the charge densitys related to the curl the Coulomb constang.
of the gradient of the hexatic angéefor hexatics and to the As previously, we can dissect the diagrams along the
curl of the gradient of the order parameter phase for supemplanes in the—t space time corresponding to the time mo-
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mentst,, ... t,,. Then any diagram will be divided into a Thus instead of Eq.1.10 we should write(see Ref[11])
number of strips, see Fig. 11. The part of the diagram within

each strip can be treated as the corresponding matrix element dx: D[ aF OF

of the evolution operator exp(fdt*). Then the contribu- d’t'“ =-7 (9X—+nj Y€ap s +& 0 (5.1

tion to F,,, will be written like Eq.(4.11) as a convolution of aj XBj

the_ matrix e_zlements. Generally, the matrix elements can bﬁ/herey is a new dimensionless parameter. Equaiisn)
estimated like the functioni2.6): each trajectory segment capn pe derived in the spirit of the procedure proposed by Hall
gives a factor that scales ag Bhdt scales as“. But there 4 viinen for the 3D superfluid, see RE25]. Huber[26]

are obvious exceptions from the rule. Namely, going back iy g, e that the same equation is correct for spin vortices in
time we will come to a moment where a defect-z;mtldefec:[Manalr 2D magnetics

pair was created. Again, when we consider small separations g, ihe su P “ . .
. S perfluid films the “charge density1.2) is pro-
between the defect and the antideféwhich is correct for ., iona) 1o the vorticity curb.. To calculate correlation

time moments close to the.creatio'n timee can take into functionsF,,, Eq.(4.1), one can use the scheme developed
account only the Coulomb interaction between the two Créy, he nrevious sections. The only difference is that one
ated defects. The corresponding regions in Fig. 11 are insm?nould use the solution of the equation

the ovals. Each such region produces the fagforThere-

fore, generallyF,,cy?¢, wherek is the number of the pairs.

Taking into account also a scale-dependent factor we get 1 r r
g P 9t M= SV2H2VEHAB—V, M+ 2yBe,5 LV o M
r r
Fan~y? (rore®, (4.1
r3 Ia
where we assume that all space separations are of the order ~RNOM+ (1) 4(r— r0)5( =5 E) : (5.2

r, and all time intervals are of the ordef .

The expression(4.17) is a generalization of Eq4.12.  The variablesr, ry, and ¢ are introduced by Eq(2.11).
Comparing these two expressions we see that the ratio of th&gain, on scales>a one can omit the term with the anni-
contribution (4.17 to the contribution(4.12 is the (K hilation rateR in Eq. (5.2 demanding a finite value dfl at
—1)th power of a dimensionless small paramegér,). r—0 instead.

Thus we conclude that the leading contributionReg, is Unfortunately, a cross term overand ¢ appears in the
related to a single defect-antidefect pair, that corresponds toperator on the right-hand side of E§.2). Thus one cannot
k=1. Now we can explain the origin of the estim&tes) for obtain an explicit expression fivl of the type of Eq(2.9).

the simultaneous correlation functions, which obviously doedNevertheless, this additional term has the same dimensional-
not coincide with Eq(4.12. The estimaté1.8) in terms of ity as the other terms and does not change the scaling esti-
Eqg. (4.17 corresponds t&=n. The reason is quite obvious: matesM ~t72, t~r? determining the functiorM. More-

Two defects cannot pass simultaneously throughpdints  over, the equation for the object

and at leask=n defect-antidefect pairs should be taken to

obtain a nonzero contribution to the simultaneous correlation

functionF,,,. The situation is illustrated by Fig. 2. Note that S(t,r,ro)zJ’ d?0 M(t,r,0,rg,r3/2+142), (5.3

the estimatg1.8) is not correct for the autocorrelation con-

tributions proportional ta> functions, as written in E4.8).  following from Eq.(5.2) is identical to Eq(2.13. Therefore,

Thus we have two different regimes: for simultaneous andor the object(5.3), we have the same seriéa 12 with the
for nonsimultaneous correlation functions. Let us establiskyoefficients(2.17).
the boundary between the regimes. For this purpose, we | ooking through the derivation presented in Sec. Il we
should consider small time intervals where the single-paikee that just the functiots (5.3 enters all the relations.
contribution is finite but small. The smallness is associated-herefore, we can make the same assertions as previously.
with diffusive exponents presented, e.g., in expressiorkirst, on large scales the annihilation coefficiaris equal to
(2.17). Therefore the characteristic time where the simultaits universal valug2.18. Second, we can write the same
neous regime passes into the nonsimultaneous one can BRpressior(4.5) for the averagé4.4). Third, in dynamics we

estimated as get the same renormalization-group equatidrb) for 3.

Fourth, the renormalization of the diffusion coefficient is ir-
r2 relevant. And finally, one can assert that a renormalization of
t~ Ty (4.189 the parametey introduced by Eq(5.1) is determined by the

equation

wherer is a space separation corresponding to the small time

interval. In the low-temperature phase on large scalé®re dy 2

B is saturatedwe havelln y|~(8—2)In(r/a)+|in y0|. din(ria) Y

analogous to Eq3.16). Therefore the renormalization of

is irrelevant. Again, the scheme can be generalized to include
Let us consider superfluid films. The equation-of-motionthe “external potential,” which now is the average value of

for the vortices contains an additional tefiMagnus forcé  the superfluid velocity.

V. SUPERFLUID FILMS
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Next, we proceed to the correlation functioRs, (4.1). lomb attraction. The considered effect is a consequence of
Formally they are determined by the same convolutibtl)  the competition of those two factors. The result of the com-
as previously. However, one should substitute there the sgetition manifests in the la4.17 which gives the estimate
lution of Eq. (5.2). Therefore the concrete expressions forfor the contribution associated withdefect-antidefect pairs.
Fon will be different. Nevertheless, the estimates like Egs.For simultaneous correlation functions nothing similar oc-
(4.12, (4.13, and(4.17) remain true because of the follow- cyrs and we have the conventional estinfat&). That is the
ing reasons. First, due to the same dimensionality of all theeason why the effect cannot be observed in statics. The
terms on the right-hand side of E(5.2), the functionM  property is directly related to causality since a defect-
possesses the simple scaling properties noted above. Secogiqefect pair cannot simultaneously pass througlp@ints
there are no divergences in the convolutions such as Equg 4t |east defect-antidefect pairs are needed to get a
(4.11) determining the objects. To prove the second ProPeMyn snzero contribution to the simultaneous correlation function

we ShO.UId analyze a behavior of at large gn_d at small F,n, see Fig. 2. That explains the estim#ied). Thus we
separations. In the casey/t>1 the characteristic values of . . . _
the separationg,— r, and off,—r, are~+t and are conse- have two different regimes for simultaneous and nonsimul-
3 2 4 L taneous correlation functions. The characteristic boundary
quently much smaller thajr;—r,| (or [r3—r4|). Thenitis . . ; O )
ossible to neglect all the terms containifig—r,| in de- time separating those two regimes is written in qu.s)'
P 2 The considered effect resembles intermittency in turbu-

nominators in Eq(5.2) and we come to a purely diffusive )
equation leading to the corresponding asymptotics. It is pog_encg(see, €.9., Retl_4]) Ieadlng to Iarger—dgpendent f_ac—
tors in the ratios like in Eq(6.1) in the velocity correlation

sible to establish that the small scale of the conditional prob: . 4
ability M for the vortices coincides with that examined functions of a turbulent flow. However, as is seen from Eq.

above. The properties ensure convergence of all intermediaté-D. for the defects, the largedependent factors are related
integrals appearing at calculating the correlation functions of0 the ultraviolet cutoff parametex whereas for intermit-
vorticity F,. tency in turbulence the largedependent factors are related
We have also the same scaling 16416 for the correla- o the infrared(pumping scale. Our situation is thus closer
tion function (4.15 of the integrals(4.14 which are now to the inverse cascadsee Ref[27]) realized on scales much
proportional to the circulations of the superfluid velocity. We larger than the pumping length. There are experimental data
conclude that all the scaling laws for the correlation func-[28] concerning the inverse cascade in 2D hydrodynamics
tions of the vorticity and their asymptotic behavior remainsand analytical observations concerning the inverse cascade
the same as previously. for a compressible fluifi29] that indicate the absence of the
intermittency in the inverse cascades. Note that only simul-
taneous objects were examined in the papers in R28§.
and[29], and there is no intermittency in our simultaneous
The main result of our consideration is the expressiorcorrelation functions. So, based on the analogy, one may
(4.12 for high-order correlation functions of the “charge think that for the inverse cascades, nonsimultaneous objects
density” (4.1) which is disclinicity for hexatic films and vor- reveal some intermittency.
ticity for superfluid films. We see from Ed4.12) that the The consideration presented in our paper is applicable to
high-order correlation functions are much larger than theirsuperfluid films. There exist also films and quasi-2D systems
normal estimates via the pair-correlation function. Namelyof different symmetry. Hubef26] argued that the same

VI. DISCUSSION

in accordance with Eqs4.9) and (4.12 we have equation as for quantum vortices is correct for spin vortices
in planar 2D magnets. We believe that our approach, based
Fon/Fo~y 21251 (6.1  on Eq.(1.10, is correct for the dynamics of disclinations in

hexatic films such as membranes, freely suspended films,

wherey is the renormalized fugacity. The asymptotic behay-&nd Langmuir films. Next, the above scheme seems to work
ior of the ratio at large scales is determined by the (avg). &S0 for dislocations in solid films. The system needs a spe-
Though at developing our scheme we accepted that thelal treatment since a modification should be mtroduced_lnto
defect-antidefect pairs constitute a dilute solution, we hopdn€ procedure. Maybe some features of the presented picture
that the scaling law(6.1) is universal. The ground for the _can.be observed also in superconductive ma.terlals, espeua]ly
hope is the renormalization-group proceddi@mulated in I h!gh_-TC _superconductors. There are analytlca_\l and numeri-
Ref. [19]) which shows that on large scales we come to arfal indications that for purely Lz_inge_vm dynar_nlcs of the or-
effectively dilute solution of the pairs. We believe that the der parameter, there are logarithmic corrections to the law
most interesting fact to be compared with experiment or nu{1-10, see Refs[30-36.
merics is the scaling law4.16 which is a consequence of
Eq. (6.2).
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