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Intermittency in dynamics of two-dimensional vortexlike defects

V. V. Lebedev*
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

and Landau Institute for Theoretical Physics, RAS, Kosygina 2, Moscow 117940, Russia
~Received 15 July 1999; revised manuscript received 14 February 2000!

We examine high-order dynamical correlations of defects~vortices, disclinations, etc.! in thin films starting
from the Langevin equation for the defect motion. We demonstrate that dynamical correlation functionsF2n of
vorticity and disclinicity behave asF2n;y2/r 4n, wherer is the characteristic scale andy is the renormalized
fugacity. As a consequence, below the Berezinskii-Kosterlitz-Thouless transition temperatureF2n are charac-
terized by anomalous scaling exponents. The behavior strongly differs from the normal lawF2n;F2

n occurring
for simultaneous correlation functions, the nonsimultaneous correlation functions appear to be much larger.
The phenomenon resembles intermittency in turbulence.

PACS number~s!: 68.60.2p, 05.20.2y, 05.40.2a, 64.60.Ht
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INTRODUCTION

It is well known that defects like quantum vortices, sp
vortices, dislocations and disclinations play an essential
in the physics of low-temperature phases of thin films. B
rezinskii @1# and then Kosterlitz and Thouless@2# recognized
that there is a class of phase transitions in two-dimensio
~2D! systems related to the defects. The main idea of th
approach is that in 2D the defects can be treated as p
objects interacting like charged particles. It is usually cal
Coulomb gas analogy. The low-temperature phase co
sponds to a fluid constituted of bound uncharged def
antidefect pairs, which is an insulator, whereas the hi
temperature phase contains free charged particles and c
treated as plasma. Correspondingly, in the low-tempera
phase the correlation length is infinite whereas in the hi
temperature phase it is finite. A huge number of works
devoted to different aspects of the problem, see, e.g.,
surveys @3–7#. The scheme proposed by Kosterlitz a
Thouless can be applied to superfluid and hexatic films
planar 2D magnetics. It admits a generalization for crys
line films, see Refs.@8# and @9#. There are also application
to superconductive materials, especially to high-Tc supercon-
ductors, see, e.g., Ref.@10#.

The dynamics of the films in the presence of the defe
was considered in the papers in Refs.@11# and @12#. In the
papers, a complete set of equations is formulated descri
both motion of the defects and hydrodynamic degrees
freedom. Then, to obtain macroscopic dynamic equations
averaging over an intermediate scale was performed. At
procedure the ‘‘current density’’ related to the defects w
substituted by an expression proportional to the aver
‘‘electric field’’ and to gradients of the temperature and
the chemical potential. The resulting equations perfectly c
respond to the problems solved in the papers in Refs.@11#
and @12#. Unfortunately, at the procedure, information co
cerning high-order correlations of the defect motion is lo
That is the motivation for the present paper where th
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high-order correlations are examined.
We start from the same ‘‘microscopical’’ equations of th

defect dynamics as was accepted in Ref.@11#. Following the
papers, we focus mainly on the case when the motion of
defects is determined by the Langevin equation describing
interplay between the Coulomb interaction and the therm
noise. We believe that the approach is correct for hex
films ~membranes, Langmuir films, freely suspended film!.
The situation is a bit more complicated for the vortices
superfluid films because of the Magnus force. Neverthel
the equation for the vortices is close to the Langevin eq
tion, see Ref.@11#. Similar equations can be formulated fo
the dislocations in crystalline films, see Ref.@12#, for the
vortices in superconductors in some interval of scales,
e.g., Ref.@10#, and for the spin vortices in planar 2D mag
netics. We will not consider the last cases here, though
scheme is, generally, applicable to the systems. Trea
nonsimultaneous correlation functions related to the defe
one should take into account creation and annihilation p
cesses also. For this purpose we use the Doi technique@13#
who demonstrated that dynamics of classical particles
volved into chemical reactions can be examined in terms
the creation and annihilation operators, like in the quantu
field-theory.

We consider correlation functionsF2n of the ‘‘charge
density’’ r ~vorticity, disclinicity, etc.! provided that the so-
called renormalized fugacityy is small. The inequalityy
!1 is satisfied for large scales in the low-temperature ph
and probably in some region of scales aboveTc . In statics,
the normal estimateF2n;F2

n is valid at the condition. Sur-
prisingly, the nonsimultaneous high-order correlation fun
tions F2n appear to be much larger than their normal es
mate F2

n . In the low-temperature phase the phenomen
reveals an anomalous scaling on large scales. The reaso
such unusual behavior is that the main contribution to hi
order nonsimultaneous correlation functions is associa
with rare single defect-antidefect pairs. The situation
sembles the intermittency phenomenon in turbulence,
e.g., Ref.@14#. It can also be compared with nontrivial tai
of probability distribution functions in the physics of diso
dered materials, see, e.g., Refs.@15# and@16#. Some prelimi-
nary results were published in Ref.@17#.
d
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PRE 62 1003INTERMITTENCY IN DYNAMICS OF TWO- . . .
Let us give a qualitative explanation of the phenomen
To obtain a nonzero contribution to the correlation functi
F2n(t1 , . . . ,tn ;r1 , . . . ,rn) one must consider trajectories o
the particles passing through the pointsr1 , . . . ,rn at the time
momentst1 , . . . ,tn . The situation is illustrated in Fig. 1
The ‘‘single-pair’’ contribution has to be compared with
‘‘normal’’ contribution associated with a number of defec
antidefect pairs. Though the normal contribution contains
additional large entropy factor it has also an additional sm
factor related to a small probability to observe a defe
antidefect pair with a separation larger than the core rad
As a result of the competition, the normal contribution a
pears to be smaller. To avoid a misunderstanding, let
stress that the arguments do not work for the simultane
correlation functions. The reason is that trajectories of t
defects cannot pass throughn.2 points simultaneously, se
Fig. 2. This mechanism of intermittency looks quite unive
sal. It should be realized for any system of point obje
correlated due to strong interaction.

Our paper is organized as follows. In Sec. I we rem
some basic facts concerning static properties of the 2D
fects and their dynamics and then we shortly review the
technique@13# suitable for our problem. In Sec. II we de
velop a diagrammatic representation for dynamical obje
and examine the two-particle conditional probability that
extensively exploited in the subsequent consideration.
Sec. III we demonstrate how renormalization of different p
rameters can be obtained in the framework of our dyna

FIG. 1. Trajectories passing through given points.

FIG. 2. Possible and impossible trajectories passing thro
four points at a given time moment.
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approach. Actually, the renormalization is reduced to
well-known static renormalization group equations. In S
IV we consider correlation functions of the ‘‘charge density
and ground the properties announced above. In Sec. V
generalize our procedure for the case of superfluid films
Sec. VI we discuss the main results of our work and th
possible relations to other systems. The extended versio
the paper can be found in Ref.@18#.

I. BASIC RELATIONS

Static properties of the system of the vortexlike defects
thin films can be described quite universally. The start
point of the description is the free energy associated with
defects

F52(
iÞ j

Tb ninj lnS uxi2xj u
a D1(

j
m~nj !, ~1.1!

where the subscriptsi , j label defects,xi are positions of the
defects,a is a cutoff parameter of the order of the size of t
defect core, ni are integer numbers determining th
‘‘strength’’ of the defects,b is a dimensionlessT-dependent
factor, andm is the energy associated with the core. T
expression~1.1! is correct for quantum vortices in superflu
films, for disclinations in hexatic films, and for spin vortice
in 2D planar magnets. For dislocations in crystalline film
the expression~1.1! has to be slightly modified@8#, but the
main peculiarity of the free energy, the logarithmic depe
dence on the separation, remains the same.

The Gibbs distribution exp(2F/T) corresponding to the
energy~1.1! can be treated as the partition function of tw
dimensional point particles with chargesnj , with b playing
a role of the ‘‘inverse temperature.’’ The parameterb can be
considered also as the Coulomb coupling constant. Base
the electrostatic analogy, one can introduce the ‘‘charge d
sity’’

r~r!5(
j

njd~r2xj !. ~1.2!

The quantityr is vorticity for superfluid films and disclinic-
ity for hexatic films. We will treat the case where defects a
produced by thermal fluctuations. Since both creation a
annihilation processes conserve the ‘‘charge’’ we should
cept that the total charge is zero:

(
j

nj50.

It leads to the constraint

E d2r r~r!50, ~1.3!

where the integration is performed over the total area of
specimen.

Below we assume that forunu.1 the core energym(n) is
so large that such defects are hardly created. Then only
fects with the chargesni561 should be taken into accoun
h
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1004 PRE 62V. V. LEBEDEV
We will call the objects with the chargesni51 defects and
the objects with the chargesni521 antidefects. Because o
the constraint

(
j

nj50

there can be simultaneouslyN defects andN antidefects in
the system. Thus, the partition function of the system can
characterized via a set of probability distribution functio
P2N depending on coordinates of 2N ‘‘particles.’’ In accor-
dance with Eq.~1.1! the functions can be written as

P2N~x1 , . . . ,x2N!5Z21S y0

a2D 2N

expH(
iÞ j

bninj ln
uxi2xj u

a J ,

~1.4!

where Z is the sum over states and the quantityy0
5exp(2m/T) is usually called fugacity. The possibility t
neglect charges withunu.1 implies that the fugacity is
small.

The low-temperature~insulator! phase can be treated as
system constituted of bound defect-antidefect pairs. In
high-temperature~plasma! phase there are unbound charg
that essentially influence the system on scales larger than
correlation lengthr c . We will treat the low-temperature
phase and the region of scales betweena andr c in the high-
temperature phase where one can neglect the role of the
bound charges and only the bound defect-antidefect p
have to be taken into account. The presence of the pair
the system leads to nontrivial ‘‘dielectric’’ properties of th
medium. As a result, the interaction between the charge
modified, and the effect can be described in terms of a sc
dependent ‘‘dielectric constant’’ of the medium as is su
gested in Ref.@2#. In other words, the effective couplin
constantb becomes dependent on the separation between
charges.

The scale dependence ofb can be described in the frame
work of the scheme proposed by Kosterlitz@19#. Namely, the
partition function of the system can be integrated over se
rations of the defect-antidefect pairs between the core sia
and a scaler. After the procedure that can be interpreted
shifting the core radiusa→r , the form of the probability
distribution functions~1.4! is reproduced~with r instead of
a), but the parametersb andy are renormalized. Ther de-
pendence ofb and y is determined by the following
renormalization-group equations found in Ref.@19#:

db

d ln~r /a!
52cy2,

dy

d ln~r /a!
5~22b!y, ~1.5!

wherec is a numerical factor of order unity. Ther-dependent
function y is the renormalized fugacity. It determines a co
centration of defects belonging to the bound pairs with se
rations of the order ofr, the concentration can be estimat
asy/r 2. The renormalized value ofb determines the depen
dence of the strength of the Coulomb interaction on the se
ration between the charges. In the low-temperature phase
effective value ofb tends to a constant on large scales. T
asymptotic value ofb is larger than 2, the critical valueb
52 corresponds to the transition temperature. In
e
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asymptotic region, whereb can be treated asr independent,
the renormalized fugacityy remains r dependent. Its
asymptotic behavior can easily be extracted from Eq.~1.5!:

y}r 22b. ~1.6!

Thus, in the low-temperature phasey tends to zero as the
scale increases.

Let us turn to simultaneous correlation functions of t
charge densityr ~1.2!. The odd correlation functions ar
zero. Indeed, the system is symmetric under permuting
fects and antidefects whereas the charge density~1.2!
changes its sign at the permutation. The pair-correlat
function can be written as~see, e.g., Ref.@20#!

^r~r!r~0!&;y2~r !/r 4. ~1.7!

A generalization of the relation~1.7! can be obtained~see
Ref. @21#! which is

^r~r1!•••r~r2n!&;
y2n~r * !

r
*
4n

;^r~r* !r~0!&n, ~1.8!

where all separationsur i2r j u are assumed to be of the sam
order r * . In the large-scale limit whereb is saturated we
have

^r~Xr1!•••r~Xr2n!&5X22bn^r~r1!•••r~r2n!&, ~1.9!

whereX is an arbitrary factor. The relation~1.9! shows that
the simultaneous statistics ofr has normal scaling, that is
scaling exponents of the correlation functions of the ordern
are equal ton times the scaling exponent of the pai
correlation function~1.7!. We will demonstrate that the be
havior of nonsimultaneous correlation functions of t
charge density is quite different.

A. Dynamics

To examine dynamical characteristics of the system
should formulate a dynamical equation for a defect moti
Following Ref.@11# we accept the following stochastic equ
tion

dxj

dt
52

D

T

]F
]xj

1jj , ~1.10!

determining the trajectory of thej th defect. HereF is the
free energy~1.1!, D is a diffusion coefficient, andjj are
Langevin forces with the correlation function

^j i ,a~ t1!j j ,b~ t2!&52Dd i j dabd~ t12t2!. ~1.11!

The diffusion coefficientD determines mobility of the de
fects. We believe that the equation~1.10! is applicable to the
dynamics of disclinations in hexatic films such as me
branes, freely suspended films, and Langmuir films. T
equation for the vortices in superfluid films is a bit mo
complicated. It is written in Sec. V where the correlatio
functions of the vorticity are analyzed.

The equations~1.10,1.11! describe trajectories of separa
defects. We should also take into account annihilation a
creation processes. Remember that we neglect defects
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PRE 62 1005INTERMITTENCY IN DYNAMICS OF TWO- . . .
unj u.1. Next, processes where a number of defect-antide
pairs are created at the same point are suppressed sinc
probability of such events is small due to the energy ass
ated with the cores of defects. Then we have to take
account the creation processes of single pairs solely, they
characterized by the creation rateR̄(r ), which is a probabil-
ity density for a defect-antidefect pair with the separationr to
be created per unit time per unit area. The annihilation p
cesses have to be characterized by the annihilation rateR(r ),
which is a probability for a defect-antidefect pair to annih
late per unit time if the pair is separated by the distancer.
Really, bothR̄(r ) and R(r ) are nonzero only ifr is of the
order of the core sizea. Let us introduce the integrals

l̄5E d2r R̄~r !, l5E d2r R~r !. ~1.12!

Here, the creation constantl̄ is a probability for a defect-
antidefect pair to be created per unit time per unit area anl
is a constant having the same dimensionality as the diffus
coefficient D. Below, the diffusion coefficientD is put to
unity by rescaling time. Then the annihilation constantl is a
dimensionless parameter of the order of unity and the
ation constantl̄ can be estimated as

l̄;a24 exp~22m/T!, ~1.13!

which is the second power of the defect concentration.
The Gibbs distribution~1.4! must be a stationary solutio

of the master equations for the system. The condition
poses the following constraint on the creation and the a
hilation rates:

R̄~r !5
y0

2

a4 S a

r D 2b

R~r !, ~1.14!
ti
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where we implyr .a. The constraint~1.14! can be treated as
the manifestation of the equilibrium state of the thermal ba
which in our case is related to short-scale fluctuations.

B. Quantum field formulation

The Doi technique@13# enables one to treat systems
classical particles where creation and annihilation proces
occur. The main idea introduced by Doi is that correlati
functions of different quantities characterizing the partic
can be written in the form close to the one known in t
quantum-field-theory. Of course there are some peculiari
related to the fact that for classical particles one should d
directly with probabilities whereas in the quantum-fiel
theory one starts from the scattering matrix. Neverthele
the Doi technique enables, say, to formulate a diagramm
expansion with the conventional rules. The technique w
originally developed to describe systems of molecules
volved in chemical reactions. But it is definitely applicab
also to the system of point defects.

The Doi technique is formulated in terms of the creati
ĉ and annihilationc operators that satisfy the same comm
tation rules as the ones for Bose particles

@c~r1!,ĉ~r2!#5d~r12r2!,

@ĉ~r1!,ĉ~r2!#5@c~r1!,c~r2!#50. ~1.15!

For our system of defects we should introduce annihilat
and creation operatorsc6 and ĉ6 where the subscripts1
and 2 label fields related to the defects and to the anti
fects. The state of the system at a time momentt can be
written in terms of a ‘‘quantum’’ state
ut&5 (
N50

`
1

~N! !2E d2x1•••d2xNd2z1•••d2zNP2Nĉ1~x1!•••ĉ1~xN!ĉ2~z1!•••ĉ2~zN!u0&, ~1.16!
ted
es
n-
whereP2N are the 2N-particle probability densities andu0&
designates the vacuum state:c6u0&50. In accordance with
the expression~1.16! an evolution of the quantum stateut& is
determined by the master equations. The evolution equa
can be written as

] tut&52Hut&, ~1.17!

whereH is an operator expressed in terms of the fieldsc6

and ĉ6 . By analogy with the quantum-field formulation
can be called the Hamiltonian operator or simply the Ham
tonian.

Quantities characterizing the system can be represe
by corresponding operators, see Ref.@13#. Say, the operato
of the charge density is
on

-

ed

r̃5ĉ1c12ĉ2c2 . ~1.18!

If Ã is such an operator corresponding to a quantityA, then
an average value of the quantity at a time momentt can be
expressed as

^A~ t !&5^0uexpF E d2r ~c11c2!GÃut&. ~1.19!

Correlation functions of different quantities can be presen
analogously to Eq.~1.19!. They can be rewritten as averag
over an initial state if to introduce operators in the Heise
berg representation

Ã~ t !5exp@2~ t f2t !H#Ã exp@2~ t2t in!H#. ~1.20!
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1006 PRE 62V. V. LEBEDEV
Then one can reformulate the problem of calculating co
lation functions in terms of a functional integral, see R
@22#. Namely, we can write

^A1~ t1! . . . An~ tn!&

5E Dĉ6Dc6Ã1 . . . Ãn

3expH 2E
2`

t f
dtFH1E d2r ~ ĉ1] tc11ĉ2] tc2!G

1E d2r @c1~ t f ,r!1c2~ t f ,r!#J , ~1.21!

wherec6 ,ĉ6 are to be interpreted as functions oft and r.
We assume thatt f.t1 , . . . ,tn in Eq. ~1.21!. Deriving the
expression one has taken the limitt in→2` and assumed
u in&5u0&. Because of the creation processes the vacuum
to be turned into a stationary state during the infinite tim
To ensure convergence of the functional integral~1.21! the
integration contour over the fieldĉ should go parallel to the
imaginary axis.

II. DIAGRAMMATIC REPRESENTATION

Below, we apply the Doi technique to our particular pro
lem. The explicit expression for the Hamiltonian determini
the evolution of the defect system is

H5H01HR1Hb . ~2.1!

The explicit expressions for the terms entering Eq.~2.1! are

H05E d2r ~¹ĉ1¹c11¹ĉ2¹c2! ~2.2!

HR52E d2r 1 d2r 2@R̄~r12r2!~ ĉ1,1ĉ2,221!

1R~r12r2!~c1,1c2,22ĉ1,1ĉ2,2c1,1c2,2!#

~2.3!

Hb52bE d2r 1 d2r 2~¹ĉ1,1ĉ2,22ĉ1,1¹ĉ2,2!

3
r12r2

ur12r2u2
c1,1c2,2

22bE d2r 1 d2r 2F¹ĉ1,1ĉ1,2

r12r2

ur12r2u2
c1,1c1,2

1¹ĉ2,1ĉ2,2

r12r2

ur12r2u2
c2,1c2,2G , ~2.4!

wherec1,15c1(t,r1) and so further. The diffusive contri
bution ~2.2! is related to the Langevin forces, in Eq.~2.3!,
whereR is the annihilation rate andR̄ is the creation rate for
the defect-antidefect pairs~the quantities were introduced i
Sec. I!, and the term~2.4! describes the Coulomb interactio
-
.

as
.

-

Substituting the expression~2.1! into Eq. ~1.21! and ex-
panding the exponent overHR and Hb one can obtain a
conventional perturbation series for calculating different c
relation functions ofc,ĉ. The series is an expansion ov
R, R̄, andb in terms of the conventional diffusion propag
tors:

G~ t,r!5^c1~ t,r!ĉ1~0,0!&0

5^c2~ t,r!ĉ2~0,0!&0

5
u~ t !

4pt
expS 2

r 2

4t D , ~2.5!

whereu(t) is the step function. However, effects related
the Coulomb interaction and to the annihilation processes
not weak. Therefore one must take into account the Coulo
interaction and the annihilation processes exactly. In ot
words, when calculating the correlation functions, one m
consider the complete series overb andR. Fortunately, the
expansion overR̄ is equivalent to an expansion over th
fugacityy, which is assumed to be a small parameter. The
fore we can take only principal terms in the expansion o
R̄.

The perturbation expansion can be formulated as a
grammatic series. We develop the diagrammatic techni
starting from the representation~1.21!, pushing the final time
t f to the far future. We depict the propagator~2.5! by a line
directed fromĉ to c. The term with the creation rateR̄ in
Eq. ~2.1! generates vertices where two propagator lines st
the vertices correspond to the defect-antidefect creation
cesses. The Coulomb term in Eq.~2.1! generates two-poin
objects, which we will designate by dashed lines, which
scribes the Coulomb interaction of defects located in po
connected by the line. And the term proportional to the a
nihilation rateR in Eq. ~2.1! produces two types of vertices
First, it produces vortices where two propagator lines fini
that corresponds to an annihilation process. Second, it
duces fourth-order vertices that correspond to an effec
interaction related to a finite probability for a defec
antidefect pair to annihilate, see Ref.@13#. A typical diagram
block is presented in Fig. 3. The block is drawn in rear
2t space time. The curves constituted of the propagator li
can be interpreted as trajectories of defects and antidefe
Due to causality the particles always move forward in tim
Note that the dashed lines corresponding to the Coulo

FIG. 3. Typical diagram block.
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PRE 62 1007INTERMITTENCY IN DYNAMICS OF TWO- . . .
interaction are perpendicular to thet axis since the interac
tion is simultaneous.

A. Pair conditional probability

In this subsection we examine an auxiliary object that w
be needed at intermediate stages of subsequent calcula
The object is the following correlation function

M ~ t22t1 ,r1 ,r2 ,r3 ,r4!

5^c1~ t2 ,r1!c2~ t2 ,r2!ĉ1~ t1 ,r3!ĉ2~ t1 ,r4!&. ~2.6!

For a stationary case the average~2.6! depends on the differ
ence t5t22t1 only. Due to causality,M is equal to zero
provided t,0. The quantity~2.6! can be interpreted as
probability density to find a defect and an antidefect at
time momentt2 in the pointsr1 and r2 provided they were
located in the pointsr3 and r4 at the time momentt1. It can
be considered also as a two-particle matrix element of
evolution operator exp@2(t22t1)H#.

As we explained above, the perturbation series in term
the creation rateR̄ is an expansion over a small paramet
which is the fugacity. Here we examine the principal con
bution to the conditional probability~2.6! which is of the
zero order overR̄. Then the average~2.6! can be represente
as a series of diagrams of the type depicted in Fig. 4. O
can interpret the picture as trajectories of a defect and o
antidefect that are driven by the Langevin forces, and
influenced the Coulomb interaction~dashed lines! and the
effective interaction associated with the annihilation p
cesses~point vertex!. Note that in this approximation, direc
annihilation events do not contribute to the conditional pro
ability ~2.6! since they would lead to terminating the lines
the diagrams.

It is of crucial importance that both the Coulomb intera
tion and the effective interaction associated with the ann
lation processes are local in time. Therefore all the diagra
representing the conditional probability~2.6! are ladder dia-
grams, like in Fig. 4. Summing up the ladder sequence
get an equation forM that can be written in the differentia
form

] tM5~¹1
21¹2

2!M12b~¹12¹2!F r12r2

ur12r2u2
M G

2R~r12r2!M1d~ t !d~r12r3!d~r22r4!. ~2.7!

SinceM50 at t,0 we conclude from Eq.~2.7! that att→
10,

M ~ t,r1 ,r2 ,r3 ,r4!→d~r12r3!d~r22r4!. ~2.8!

The solution of Eq.~2.7! can be written in a multiplicative
form

M5
1

2pt
expH 2

~2%2r32r4!2

8t J S~ t,r,r0!, ~2.9!

where the functionS satisfies the following equation
l
ns.

e

e
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-
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n
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-

-
i-
s

e

] tS52¹2S14b¹S r

r 2
SD 2R~r !S1d~ t !d~r2r0!.

~2.10!

Here

r5r12r2 , %5
r11r2

2
, r05r32r4 . ~2.11!

In accordance with Eq.~2.9!, a motion of the mass cente
and the relative motion of the defects are separated.
motion of the mass center is purely diffusive whereas
relative motion is strongly influenced by the interaction. T
function S can be treated as the probability density for t
relative motion of the defect-antidefect pair. It is natural
expand the function into the Fourier series over the anglw
between the vectorsr and r0:

S~ t,r,r0!5(
2`

1`

Sm~ t,r ,r 0!exp~ imw!. ~2.12!

Motions corresponding to different angular harmonics
separated. In terms of the angular harmonics, Eq.~2.10! is
rewritten as

1

2
] tSm5F ] r

21~112b!
1

r
] r2

m2

r 2 GSm2
1

2
R~r !Sm

1
1

4pr 0
d~ t !d~r 2r 0!. ~2.13!

It is possible to get equations forS analogous to Eqs.~2.10!
and ~2.13! in terms of r0. They have practically the sam
form as Eqs.~2.10! and~2.13!. The only difference is in the
sign of b, which is opposite. That leads to the relation

Sm~ t,r ,r 0!5S r 0

r D 2b

Sm~ t,r 0 ,r !. ~2.14!

Let us stress that the relation~2.14! is correct for an arbitrary
function R(r ).

Consider a behavior of the angular harmonicsSm(t,r ,r 0)
at smallr. More precisely, we assumet@a2 and examine the
regionAt@r @a. Then it is possible to use Eq.~2.13! with
the time derivative and the annihilation term neglected. A
result we get

FIG. 4. Typical diagram for the conditional probabilityM.
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Sm5C1,mr n2b1C2,mr n2b~r /a!22n, ~2.15!

n5Ab21m2, ~2.16!

where C1,m ,C2,m are some factors dependent ont and r 0.
The ratio of the factors is determined by a concreter depen-
dence of the annihilation rateR; one can assert only thatC1m
andC2m are of the same order. Therefore, if we consider
behavior of the functionS for r @a, then the second term o
the right-hand side of Eq.~2.15! can be neglected. In othe
words, being interested in the scalesr @a, we can solve Eq.
~2.13! neglecting the annihilation term and requiring a fin
value ofSm at r→0 instead. The requirement can be trea
as the boundary condition forSm at small r. The other
boundary condition is thatSm tends to zero atr→`. Then

Sm5
1

8pt S r 0

r D b

expS 2
r 21r 0

2

8t D I nS rr 0

4t D , ~2.17!

whereI is the modified Bessel function andn is introduced
by Eq. ~2.16!.

Note that the Coulomb term in Eq.~2.10! produces a
probability flux to the origin. To find it we should integrat
Eq. ~2.10! over a disk of a radiusa!r !At centered at the
origin and single out the contribution to] t*d2r S associated
with the Coulomb term. Then we find the fluxl rC1,0 where

l r58pb. ~2.18!

One can treat the quantity~2.18! as the renormalized
~‘‘dressed’’! value of the annihilation constant. Now we u
derstand why the solution~2.17! ~realized atr @a) is insen-
sitive to a particular form of the annihilation rate. The pro
ability for a defect-antidefect pair with the separationr @a to
annihilate is determined by the Coulomb attraction. And o
the behavior of the probability density atr;a is sensitive to
the particular form of the annihilation rateR(r ): The coeffi-
cientsC2,m in Eq. ~2.15! are positive ifl,l r and are nega-
tive if l.l r .

III. RENORMALIZATION

In this section we are going to discuss effects related
high-order terms over the creation rateR̄. The effects are
relevant only near the transition point whereb is close to 2.

FIG. 5. Vicinities of creation and annihilation points.
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Then the influence of small-scale defect-antidefect pairs
larger scales becomes essential. In the situation the m
natural language is the renormalization-group approach.
can formulate a renormalization-group procedure in the sp
of Kosterlitz, Ref. @19#. We will single out blocks corre-
sponding to small separations of the pairs and treat them
renormalized quantities entering the Hamiltonian~2.1!.

A. Creation and annihilation rates

Sizes of the pairs are small near creation and near ann
lation points. Here, we consider vicinities of the points. Th
it is possible to neglect the interaction of the defect and
the antidefect with the environment. Thus we turn to t
situation when only a single pair can be treated. If this is
case, then one should analyze diagram blocks of the t
drawn in Fig. 5. The left part of the figure corresponds to
vicinity of the creation occurring at a time momentt1 and the
right part of the figure corresponds to a vicinity of the an
hilation occurring at a time momentt4.

Now we consider processes occurring during a time in
val t from the creation timet1. One can separately treat
block corresponding to the time interval fromt1 until t2
5t11t. For this purpose we use the well-known property
the propagators~2.5!:

G~s32s1 ,r!5E d2x G~s32s2 ,r2x!G~s22s1 ,x!,

~3.1!

wheres3.s2.s1. For each diagram we extract propagato
G containingt2 inside their time interval and represent th
propagators such as in Eq.~3.1! believing s25t2. The pro-
cedure is reflected in Fig. 5 where the dotted line represe
a planet5t2 in ther2t space time and the integration in E
~3.1! corresponds to the integration in the plane. As a res
the block to the left of the plane is separated, it is charac
ized by the time separationt and by two pointsr1 and r2
lying in the plane, the points are intersections of the pla
with the trajectories of the particles. The block has to
inserted into more complicated objects via a convolut
over r1 and r2.

The same is true for the vicinity of the annihilation poi
also. Let us take a time momentt3 separated by a time in
tervalt@a2 from an annihilation timet4. Then it is possible
to introduce the block that is a sum of the diagrams wh
the trajectories of the annihilating particles start from tw
given pointsr3 and r4 at t5t3. The block has to be inserte
into more complicated objects via a convolution over t
points. In the vicinity of the annihilation point we can tak
into account the interaction of the annihilating defe
antidefect pair solely. That leads to the same ladder diagr
treated in Sec. II. Therefore we can write an expression
the block without an additional analysis

Rt~r 0!5E d2r 1 d2r 2 R~r!M ~t,r1 ,r2 ,r3 ,r4!

5E d2r S~t,r,r0!R~r !. ~3.2!

Herer andr0 are defined by Eq.~2.11!, M is the conditional
probability ~2.6!, S is the conditional probability for the rela
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tive motion of the defects, see Eq.~2.9!, it is the solution of
Eq. ~2.10!. The physical meaning of the quantityRt(r 0) is a
distribution of the annihilating particles over the separat
r 0 between the particles at the time momentt3. It is natural
to name this distribution the ‘‘dressed’’ annihilation ra
since the quantity determines a probability for the particles
annihilate after the time intervalt. Note that all processe
occurring on scales larger thanAt are sensitive only to this
dressed quantity.

Let us substitute into Eq.~3.2! the productRSexpressed
from Eq. ~2.10!. The terms with the total derivatives giv
zero contribution to the integral overr and we get

Rt~r 0!52]tE d2r S~t,r,r0!. ~3.3!

SinceS(t) tends to zero att→1` and is zero for negative
t, we get from Eq.~3.3!,

E dt Rt~r 0!51. ~3.4!

The relation means that the total probability of a given p
to annihilate is equal to unity. As is seen from Eq.~2.15! at
the conditiont@a2, the main contribution to the integral o
the right-hand side of Eq.~3.3! is associated with the regio
r;At and therefore the contribution to the integral asso
ated with the regionr;a is negligible. Therefore, we ca
use the expression~2.12! with Eq. ~2.17!. Substituting it into
Eq. ~3.3!, we get a universal expression for the dressed qu
tity Rt(r 0), which is insensitive to the bare quantityR(r ).

In Sec. II we established the renormalized value~2.18! of
the annihilation constantl. This analysis concerned th
fourth-order interaction term written in Eq.~2.1!. Below we
demonstrate that the renormalized coefficient of the seco
order annihilation term has the same value, independen
the bare one. In accordance with Eq.~1.12!, to find the renor-
malized valuel r we should calculate the integral ofRt(r 0).
At t@a2, the value of the integral is independent oft and
coincides with the value written in Eq.~2.18!, as one antici-
pated:

l r5E d2r 0 Rt~r 0!58pb. ~3.5!

The phenomenon resembles the renormalization of the r
tion rate due to diffusion, see Refs.@13# and @23#.

Analogously, one can introduce the renormalized crea
rateR̄t(r ), which is determined by the block describing th
vicinity of the creation point~see Fig. 5!. Summing up the
same ladder sequence of the diagrams we get

R̄t~r!5E d2r 3 d2r 4 R̄~r0!M ~t,r1 ,r2 ,r3 ,r4!

5E d2r 0 R̄~r0!S~t,r,r0!. ~3.6!

Herer andr0 are defined by Eq.~2.11!, andM is the condi-
tional probability ~2.6!, S is the conditional probability for
the relative motion of the defects, see Eq.~2.9!. Using the
relations~1.14! and ~2.14! we get from Eq.~3.6!,
n

o

r

i-

n-

d-
of

c-

n

R̄t~r!5
y0

2

a4 S a

r D 2b

Rt~r !. ~3.7!

Thus we see that the relation~1.14! is reproduced for the
renormalized quantitiesRt and R̄t .

The renormalized creation rateR̄t(r) can be interpreted a
a probability density to find a defect-antidefect pair with
space separationr provided the pair was born on time sep
rated byt from the measurement. Let us calculate the to
probability densityl̄ r to find the defect-antidefect pair at
fixed time separationt regardingt@a2. The probability is
determined by the integral ofR̄t(r) over r. We conclude
from expressions~2.17! and ~3.3! that the integral is deter
mined by the regionr;At. Taking into account Eq.~3.5! we
get

l̄ r5E d2r R̄t~r!;
y0

2

a4 S a2

t D b

. ~3.8!

We see that due to annihilation of defects at collisions
total probability diminishes when increasing the time se
ration t as a power oft. The property can be interpreted a
follows: The majority of defect-antidefect pairs annihila
fast after their creation and only a minor part of the defe
achieve a separationr @a. The probability of such an even
is proportional to (r /a)22b.

The results obtained in this subsection are correct if
variation of the coupling constantb on the scale intervala
,r ,At is small. The existence of such an interval is jus
fied by the assumed small value of the fugacityy0. NearTc
variations ofb on a wide region of scales can be releva
Then the consideration needs a generalization made in
last subsection of this section.

B. Coulomb interaction and diffusion coefficient

Let us consider the renormalization of the Coulomb int
action related to small defect-antidefect pairs. It is kno
that the influence of such pairs can be described in term
a contribution to the effective dielectric constant, see R
@2#. The picture is naturally generalized for the dynamics

A typical diagram contributing to renormalization of th
effective ‘‘dielectric constant’’ is drawn in Fig. 6. There w
see a loop composed of the trajectories of a defect and o
antidefect that annihilate after their creation. There are a
two ‘‘external’’ dashed lines corresponding to the interacti
of the defect-antidefect pair with an environment. Besid
the diagrams of the type drawn in Fig. 6, there are also d
grams with two external dashed lines attached to the s
trajectory. We draw the external lines with arrows to reme
ber that two sides of the dashed line are not equivalent.

As previously, we can dissect the diagram into parts t
can be treated separately. Then the answer can be found
convolution of the corresponding expressions. We perfo
the dissection along the planes in ther2t space time perpen
dicular to thet axis and corresponding to the time momen
t2 andt3 of the external Coulomb lines. In Fig. 6 the disse
tion is shown by the dotted lines. We see that the loop
divided into three parts.

The left part of the loop implying the integration over th
time t1 ~see Fig. 6! corresponds to
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E
0

`

dtE d2r 3 d2r 4 R̄~r32r4!M ~t,x1 ,x2 ,r3 ,r4!

5E
0

`

dt R̄t~ ux12x2u!. ~3.9!

Substituting here Eq.~3.7! and using Eq.~3.4! we get

E
0

`

dt R̄t~r !5
y0

2

a4 S a

r D 2b

. ~3.10!

The central part of the diagram depicted in Fig. 6 cor
sponds to the conditional probability~2.6! M (t3
2t2 ,x3 ,x4 ,x1 ,x2). And the right part of the diagram in Fig
6 corresponds to the integral~3.4!. The relation can be rec
ognized as a manifestation of independence of all result
the final timet f in the relation~1.21!. If we choset f5t3 then
the right part of the diagram in Fig. 6 disappears and
should substitute one instead, in accordance with Eq.~3.4!.

The structure of the diagram depicted in Fig. 6 shows t
the block related to the defect-antidefect pair can be trea
as a self-energy insertion to the line corresponding to
Coulomb interaction. Thus it is natural to expect that t
insertion can be treated as a contribution to the ‘‘dielec
constant,’’ leading to a renormalization of the Coulomb co
stantb:

Db;2y0
2E dr

r S a

r D 2b24

. ~3.11!

The expression can be treated as an integral over the ch
teristic sizes of the defect-antidefect pairs.

One may try to find more complicated blocks contributi
to a renormalization of the Coulomb coupling constantb. An
example of such block is depicted in Fig. 7 where a num
~three! ‘‘external’’ lines are attached to the loop correspon
ing to the trajectories of the defect-antidefect pair. One
easily check that the block depicted in Fig. 7 gives a corr
tion to the Coulomb force that diminishes faster thanr 21 at
increasing the distancer between the interacting particle
Therefore the contribution is irrelevant. The same is true
more complicated diagrams of the same type.

FIG. 6. Typical diagram contributing to renormalization of th
effective dielectric constant.
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We can also consider blocks that can be treated as co
butions to the diffusion coefficientD introduced by Eqs.
~1.10! and ~1.11!. An example is depicted in Fig. 8, wher
the block between two dotted lines is a self-energy insert
to the propagator~2.5! which gives the renormalization o
the diffusion coefficient. We will assume that the fieldsc6

are corrected to keep the term~2.2! unchanged. Then the
contribution~3.12! has to be extracted from the renormaliz
tion of the coefficient in front of the time derivatives.

To analyze the correctionDD quantitatively one should
know a three-particle conditional probability that is mo
complicated than the two-particle conditional probabil
~2.6!. Fortunately, one can estimate the value ofDD without
detailed calculations. The point is that the dependence ofDD
on the cutoffa can be produced only by regions near t
creation or near the annihilation point~which are designated
by ovals in Fig. 8!. The regions can be analyzed in terms
the two-particle conditional probability~2.6! since only the
interaction of the nearest ‘‘particles’’ is relevant there. W
already know the answer: the region near the creation p
produces the renormalized creation rate~3.6! whereas the
region near the annihilation point produce noa dependence.
Then simple dimensional estimates give the answer sim
to expression~3.11!,

DD;2y0
2E dr

r S a

r D 2b24

. ~3.12!

FIG. 7. A more complicated diagram giving a correction to t
Coulomb interaction.

FIG. 8. Illustration to the renormalization of the diffusion coe
ficient.
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Remember that the bare value ofD is assumed to be equa
to unity.

C. Summary

In the preceding subsection we obtained the express
for the corrections~3.11! and~3.12! of the Coulomb constan
and of the diffusion coefficient in the main order over t
fugacity y0. Now we are going to discuss high-order corre
tions overy0, which in statics leads to the renormalizatio
group equations~1.5!. It will be more convenient for us to
proceed in spirit of the Kosterlitz renormalization-grou
scheme. Namely, we see that expressions~3.11! and ~3.12!
are written as integrals over the space variabler, which can
be treated as the size of a defect-antidefect pair. We can
perform the integration over a restricted interval of the siz
what gives slightly renormalized values of the coupling co
stants. Then we can repeat the integration. In the limit
multistep procedure gives the renormalization group eq
tions for the coupling constants, as Kosterlitz suggested.
the diagrammatic language the procedure means that
gradually substitute blocks corresponding to small sep
tions between the particles by their effective values rela
to larger scales. The procedure can also be considere
increasing an effective size of the defectsa→r . Then the
renormalization of the coupling constants can be describe
terms of the differential renormalization-group equations.

At each step of the procedure we deal with correlat
functions like Eq.~2.6!. For an interval of scales where
variation of the Coulomb constantb is small, one can use fo
the function expression~2.17! where one should substitut
the renormalized value of the Coulomb constantb. Analo-
gously, the renormalized annihilation rate is determined
Eq. ~3.3!, where one should substitute expression~2.17! with
the renormalized value of the Coulomb constantb. Next, for
the renormalized creation rate we should use the relation

R̄t1
5E d2r 0 S~t12t2 ,r,r0!R̄t2

, ~3.13!

wheret1.t2. Relation~3.13! can be derived from Eq.~3.6!
to use the property ofSanalogous to Eq.~3.1!. For the renor-
malized creation rate, relation~3.13! is correct only ifb(r 1)
weakly differs fromb(r 2) for characteristic values of th
parametersr 1;At1 and r 2;At2.

A relation analogous to Eq.~3.13! can be formulated for
the annihilation rateR. The relation leads to the same expre
sion ~3.3! where b is now scale dependent. Therefore t
renormalized quantity of the annihilation constantl r flows
together withb in accordance with Eq.~2.18!. This accounts
for the nonlogarithmic character of the integrals leading
relation ~2.18!.

Then we should define the renormalized fugacity in d
namics. For this purpose let us generalize expression~3.10!

E
0

`

dt R̄t~r !5
y2

r 4
. ~3.14!

Then Eq.~3.10! is rewritten as
ns

-
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-

y5S a

r D b22

y0 . ~3.15!

The relation can be treated as an elementary step of
renormalization-group procedure, which is described by
~1.5! for y. Thus the renormalization group equation forb in
dynamics coincides with one in statics.

Expression~3.11! for the correction to the Coulomb con
stantb can be considered as arising at the elementary ste
the renormalization-group procedure. The correspond
renormalization-group equation can be found to pass to
differential form and to substitutey0 by the renormalized
value y in accordance with Eq.~3.15!. Then we obtain the
renormalization-group equation coinciding with Eq.~1.5! for
b. The expression~3.12! for the correction to the diffusion
coefficient leads to the following renormalization-grou
equation:

dD

d ln~r /a!
;2y2, ~3.16!

analogous to Eq.~1.5! for b. We conclude that the correctio
to D is small due to the small value of the fugacity and
therefore irrelevant. To avoid a misunderstanding, remem
that the variation of the Coulomb constantb with increasing
scale is also small. Nevertheless, as seen from Eq.~1.5!, it is
the differenceb22 that enters the renormalization-grou
equations and the variation of the difference can be essen

IV. CORRELATION FUNCTIONS

Here, we treat nonsimultaneous correlation functions
the charge densityr, Eq. ~1.2!,

F2n~ t1 , . . . ,t2n ;r1 , . . . ,r2n!5^r~ t1 ,r1! . . . r~ t2n ,r2n!&.
~4.1!

Note an obvious consequence of the constraint~1.3!

E d2r 1 F2n50. ~4.2!

To examine the correlation functions~4.1! we use the repre-
sentation~1.18!. We will assume that all the diagrammat
blocks corresponding to small defect-antidefect pairs are
ready included in the renormalization of the correspond
coupling constants as discussed in Sec. III. Therefore,
fugacity y and the Coulomb constantb entering all subse-
quent expressions should be taken at the current scale.
we will examine contributions to the functions associat
with a single defect-antidefect pair and then we will consid
contributions related to a number of defect-antidefect pa

A. Pair correlation function

We start with the pair-correlation function

F2~ t22t1 ,r22r1!5^r~ t2 ,r2!r~ t1 ,r1!&, ~4.3!

with t2.t1. The average~4.3! can be calculated in accor
dance with relation~1.21! where one should substitute ex
pression~1.18!. We assumet f5t2.
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The contribution to the average~4.3! related to a single
defect-antidefect pair can be represented by a series o
diagrams with two lines constituted of the defect and anti
fect propagators. The lines start from the creation point
half of the diagrams have the structure depicted in Fig
Here we omitted lines and vertices corresponding to the
teraction of the defects~which is implied! and keep only
trajectories of the defects. The trajectories should p
through the pointsr1 and r2 at the time momentst1 and t2
~the events are designated by black circles!. An additional
contribution to the average~4.3! is determined by similar
diagrams where both eventst1 ,r1 and t2 ,r2 belong to the
same trajectory.

As above, we dissect the diagram into parts that can
treated separately. Let us make a cut along planes inr2t
space time corresponding to the time momentst1 and t2,
they are shown in Fig. 9 by dotted lines. Intermediate po
appearing in the convolution~3.1! are designated in Fig. 9 a
r3 and r4. After that the diagram is divided into two par
separated by the dotted line. The part of the diagram to
right from the dotted line corresponds to the condition
probability M, Eq. ~2.6!, and the part of the diagram to th
left from the dotted line corresponds to the correlation fu
tion

F2~r12r2!5^c1~ t,r1!c2~ t,r2!&. ~4.4!

The quantity~4.4! can be treated as the probability dens
to find a defect-antidefect pair with a given separation. C
respondingly, the integral*d2r F2(r) determines the densit
of the defect-antidefect pairs. The correlation function~4.4!
coincides with the integral on the left-hand side of E
~3.14!. Hence

F2~r !5y2/r 4, ~4.5!

where y is the renormalized fugacity. Equations~1.6! and
~4.5! show that asymptotically in the low-temperature pha

F2~r !}r 22b. ~4.6!

Note that the same behavior~4.6! is observed up to a slowly
varying factor in the whole region of scales.

The diagram depicted in Fig. 9 gives a convolution ofF2
and M. Adding the contribution corresponding to the ca
where both eventst1 ,r1 andt2 ,r2 belong to the same trajec
tory, we get the following expression for the pair-correlati
function ~4.3!,

FIG. 9. Trajectories contributing to the pair-correlation fun
tion.
he
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F2~ t,r22r1!522E d2r 3 d2r 4 F2~r42r1!

3@M ~ t,r3 ,r2 ,r1 ,r4!2M ~ t,r2 ,r3 ,r1 ,r4!#,

~4.7!

wheret.0. At small timest we turn to the limit law~2.8!.
Substituting the expression into Eq.~4.7! we get

F2~ t50,r12r2!52d~r12r2!E d2r F2~r!22F2~r12r2!.

~4.8!

Here the second contribution corresponds to the law~1.7!
and the term proportional to thed function is an autocorre-
lation contribution associated with a single defect. The fac
in front of thed function ~which is the density of defects! is
in accordance with the relation~4.2!. Note that at smallt the
d function is converted into a narrow function of the wid
;At.

It follows from Eqs. ~2.17!, ~4.5!, and ~4.7! that for t
;r 2,

F2~ t,r!;
y2~r !

r 4
. ~4.9!

To justify Eq.~4.9! one should check that there are no dive
gences in the integral~4.7!. It can be done directly using Eq
~2.17!. The convergence at small separationsr and r 0 ac-
counts for the behavior of the modified Bessel functio
I n(x)}xn at small values of the argument. The convergen
at large separationsr andr 0 can be checked using Eq.~2.9!.
If utu@r 2 then

F2;2
y2~r !

r 422butub
. ~4.10!

The behavior of the pair-correlation function determin
by the laws ~4.9! and ~4.10! corresponds to conventiona
critical dynamics~see, e.g., Ref.@24#! with the dynamical
critical indexz52. However, as we will see below, the be
havior of the high-order correlation functions is beyond t
conventional scheme. Besides, the scaling lawt;r 2 is true
for the high-order correlation functions as well.

B. High-order correlation functions

Here we extend the procedure of the preceding subsec
to the case of the high-order correlation functionsF2n ~4.1!.
We will assume thatt1,t2, . . . ,t2n . Again, we examine
the contribution toF2n associated with a single defec
antidefect pair. Corresponding diagrams contain two traj
tories starting anywhere and passing through the po
r1 , . . . ,r2n at the time momentst1 , . . . ,t2n . We will desig-
nate the trajectories of the defect and of the antidefect asx(t)
andz(t).

Let us dissect the diagrams along planes in ther2t space
time corresponding to the time momentst1 , . . . ,t2n . Then
the diagram is divided into a number of blocks, see Fig.
The left block in Fig. 10 corresponds to the object~4.4! and
all the other blocks correspond to the correlation funct



t-

-

th

io

r

n

m

e

n,
e

ei

pe

s

the
-

t

t
pen-

ge-

her
bi-
we
ing

n
of

-
at
of

the
o-

gh

PRE 62 1013INTERMITTENCY IN DYNAMICS OF TWO- . . .
~2.6!. Again, using Eq.~3.1! we can write the contribution to
the correlation function~4.1! associated with a single defec
antidefect pair as the following convolution:

F2n~ t1 , . . . ,t2n ;r1 , . . . ,r2n!

5)
j 51

2n E d2xj d2zj F2~x12z1!@d~r j2xj !

2d~r j2zj !#M ~ t j 112t j ,xj 11 ,zj 11 ,xj ,zj !. ~4.11!

Here, one must replace the last factorM (t2n112t2n) by
unity. Relation~4.11! is a generalization of Eq.~4.7!. Thus
we got an expression for the correlation function that is
multiple integral of functions determined by explicit formu
las.

An analysis shows that there are no divergences in
integrals at all steps of calculatingF2n . This means that we
can evaluate the correlation functions from naive dimens
estimates. Namely, if all space separations amongur i2r j u are
of the same orderr * and all time intervals are of the orde
r
*
2 then

F2n;y2~r * !r
*
24n . ~4.12!

In the large-scale limit whenb is saturated, we have, i
accordance with Eq.~1.6!,

F2n}r
*
24(n21)22b . ~4.13!

If some space separations amongur i2r j u and/or some
time intervals differ strongly, then one can formulate so
simple rules following from Eqs.~2.17! and ~4.11!. Let us
give some examples. If one of the time intervalst is much
larger than all values of the squared separationsur i2r j u2 then
the correlation function behaves likeF2n}t2b. For smallt,
there appear contributions toF2n , short correlated in spac
~on scales;At). In the limit t→0 the contributions turn
into d functions, as it was for the pair-correlation functio
see Eq.~4.8!, representing an autocorrelation of single d
fects. If the pointsr j can be divided into two ‘‘clouds’’ with
a separationr between the clouds much larger than th
sizes~and all time intervals are much smaller thanr 2) then
the principalr dependence of the correlation functionF2n is
the same as in the functionF2(r ), Eq. ~4.5!.

Remember that the charge densityr is related to the curl
of the gradient of the hexatic anglew for hexatics and to the
curl of the gradient of the order parameter phase for su

FIG. 10. Trajectories passing through a number of points.
a

e

n

e

-

r

r-

fluid films. It is instructive to re-express our results in term
of the phase gradient circulations of¹w over a closed loop
C:

G~ t,C!5 R dr ¹w52pE d2r r~ t,r!, ~4.14!

where the second integral is taken over the area inside
loop. Correlation functions ofG ’s can be rewritten as inte
grals of the correlation functionsF2n . As an example, con-
sider the following average:

C2n5^G~ t,C!G~ t1t,C!•••G@ t1~2n21!t,C#&.
~4.15!

Suppose that the characteristic size of the loopr is large
enough so that we can assume thatb is saturated, and tha
t;r 2. Then the following scaling law is satisfied: ifr→Xr
andt→X2t then

C2n→X422bC2n , ~4.16!

where X is an arbitrary factor. The law~4.16! is a conse-
quence of Eq.~4.13!. It has two striking peculiarities. First, i
possesses a clear critical dependence. Second, it is inde
dent of the ordern.

C. Many-pair contributions

We have established the contributions to the char
density correlation functionsF2n associated with a single
defect-antidefect pair. Now we are going to discuss ot
contributions to the correlation functions related to an ar
trary number of defect-antidefect pairs. Correspondingly,
should take diagrams with a number of trajectories pass
through the points r1 , . . . ,r2n at the time moments
t1 , . . . ,t2n . The picture illustrating the situation is drawn i
Fig. 11 where black circles correspond to the arguments
F2n : (t1 ,r1), . . . ,(t2n ,r2n). There we omitted blocks re
lated to short-living defect-antidefect pairs, regarding th
the blocks are already included into the renormalization
the Coulomb constantb.

As previously, we can dissect the diagrams along
planes in ther2t space time corresponding to the time m

FIG. 11. A number of defect-antidefect pairs passing throu
given points.
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mentst1 , . . . ,t2n . Then any diagram will be divided into
number of strips, see Fig. 11. The part of the diagram wit
each strip can be treated as the corresponding matrix ele
of the evolution operator exp(2*dtH). Then the contribu-
tion to F2n will be written like Eq.~4.11! as a convolution of
the matrix elements. Generally, the matrix elements can
estimated like the function~2.6!: each trajectory segmen
gives a factor that scales as 1/t and t scales asr 2. But there
are obvious exceptions from the rule. Namely, going back
time we will come to a moment where a defect-antidef
pair was created. Again, when we consider small separat
between the defect and the antidefect~which is correct for
time moments close to the creation time! we can take into
account only the Coulomb interaction between the two c
ated defects. The corresponding regions in Fig. 11 are in
the ovals. Each such region produces the factory2. There-
fore, generallyF2n}y2k, wherek is the number of the pairs
Taking into account also a scale-dependent factor we ge

F2n;y2k~r * !r
*
24n , ~4.17!

where we assume that all space separations are of the
r * and all time intervals are of the orderr

*
2 .

The expression~4.17! is a generalization of Eq.~4.12!.
Comparing these two expressions we see that the ratio o
contribution ~4.17! to the contribution ~4.12! is the (k
21)th power of a dimensionless small parametery2(r * ).
Thus we conclude that the leading contribution toF2n is
related to a single defect-antidefect pair, that correspond
k51. Now we can explain the origin of the estimate~1.8! for
the simultaneous correlation functions, which obviously do
not coincide with Eq.~4.12!. The estimate~1.8! in terms of
Eq. ~4.17! corresponds tok5n. The reason is quite obvious
Two defects cannot pass simultaneously through 2n points
and at leastk5n defect-antidefect pairs should be taken
obtain a nonzero contribution to the simultaneous correla
functionF2n . The situation is illustrated by Fig. 2. Note th
the estimate~1.8! is not correct for the autocorrelation con
tributions proportional tod functions, as written in Eq.~4.8!.

Thus we have two different regimes: for simultaneous a
for nonsimultaneous correlation functions. Let us estab
the boundary between the regimes. For this purpose,
should consider small time intervals where the single-p
contribution is finite but small. The smallness is associa
with diffusive exponents presented, e.g., in express
~2.17!. Therefore the characteristic time where the simu
neous regime passes into the nonsimultaneous one ca
estimated as

t;
r 2

u ln@y~r !#u
, ~4.18!

wherer is a space separation corresponding to the small t
interval. In the low-temperature phase on large scales~where
b is saturated! we haveu ln yu'(b22)ln(r/a)1uln y0u.

V. SUPERFLUID FILMS

Let us consider superfluid films. The equation-of-moti
for the vortices contains an additional term~Magnus force!.
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Thus instead of Eq.~1.10! we should write~see Ref.@11#!

dxj ,a

dt
52

D

T F ]F
]xa j

1njgeab

]F
]xb j

G1j j ,a , ~5.1!

whereg is a new dimensionless parameter. Equation~5.1!
can be derived in the spirit of the procedure proposed by H
and Vinen for the 3D superfluid, see Ref.@25#. Huber @26#
argued that the same equation is correct for spin vortice
planar 2D magnetics.

For the superfluid films the ‘‘charge density’’~1.2! is pro-
portional to the vorticity curlvs. To calculate correlation
functionsF2n , Eq. ~4.1!, one can use the scheme develop
in the previous sections. The only difference is that o
should use the solution of the equation

] tM5S 1

2
¹%

212¹ r
214b

r

r 2
¹ r D M12gbeab

r b

r 2
¹%aM

2R~r !M1d~ t !d~r2r0!dS %2
r3

2
2

r4

2 D . ~5.2!

The variablesr, r0, and % are introduced by Eq.~2.11!.
Again, on scalesr @a one can omit the term with the ann
hilation rateR in Eq. ~5.2! demanding a finite value ofM at
r→0 instead.

Unfortunately, a cross term overr and % appears in the
operator on the right-hand side of Eq.~5.2!. Thus one cannot
obtain an explicit expression forM of the type of Eq.~2.9!.
Nevertheless, this additional term has the same dimensio
ity as the other terms and does not change the scaling
matesM;t22, t;r 2 determining the functionM. More-
over, the equation for the object

S~ t,r,r0!5E d2% M ~ t,r,%,r0 ,r3/21r4/2!, ~5.3!

following from Eq.~5.2! is identical to Eq.~2.13!. Therefore,
for the object~5.3!, we have the same series~2.12! with the
coefficients~2.17!.

Looking through the derivation presented in Sec. III w
see that just the functionS ~5.3! enters all the relations
Therefore, we can make the same assertions as previo
First, on large scales the annihilation coefficientl is equal to
its universal value~2.18!. Second, we can write the sam
expression~4.5! for the average~4.4!. Third, in dynamics we
get the same renormalization-group equation~1.5! for b.
Fourth, the renormalization of the diffusion coefficient is
relevant. And finally, one can assert that a renormalization
the parameterg introduced by Eq.~5.1! is determined by the
equation

dg

d ln~r /a!
;y2,

analogous to Eq.~3.16!. Therefore the renormalization ofg
is irrelevant. Again, the scheme can be generalized to incl
the ‘‘external potential,’’ which now is the average value
the superfluid velocity.
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Next, we proceed to the correlation functionsF2n ~4.1!.
Formally they are determined by the same convolution~4.11!
as previously. However, one should substitute there the
lution of Eq. ~5.2!. Therefore the concrete expressions
F2n will be different. Nevertheless, the estimates like E
~4.12!, ~4.13!, and~4.17! remain true because of the follow
ing reasons. First, due to the same dimensionality of all
terms on the right-hand side of Eq.~5.2!, the functionM
possesses the simple scaling properties noted above. Se
there are no divergences in the convolutions such as
~4.11! determining the objects. To prove the second prope
we should analyze a behavior ofM at large and at smal
separations. In the caserr 0 /t@1 the characteristic values o
the separationsr12r3 and ofr22r4 are;At and are conse
quently much smaller thanur12r2u ~or ur32r4u). Then it is
possible to neglect all the terms containingur12r2u in de-
nominators in Eq.~5.2! and we come to a purely diffusiv
equation leading to the corresponding asymptotics. It is p
sible to establish that the small scale of the conditional pr
ability M for the vortices coincides with that examine
above. The properties ensure convergence of all intermed
integrals appearing at calculating the correlation functions
vorticity F2n .

We have also the same scaling law~4.16! for the correla-
tion function ~4.15! of the integrals~4.14! which are now
proportional to the circulations of the superfluid velocity. W
conclude that all the scaling laws for the correlation fun
tions of the vorticity and their asymptotic behavior rema
the same as previously.

VI. DISCUSSION

The main result of our consideration is the express
~4.12! for high-order correlation functions of the ‘‘charg
density’’ ~4.1! which is disclinicity for hexatic films and vor
ticity for superfluid films. We see from Eq.~4.12! that the
high-order correlation functions are much larger than th
normal estimates via the pair-correlation function. Name
in accordance with Eqs.~4.9! and ~4.12! we have

F2n /F2
n;y22n12@1, ~6.1!

wherey is the renormalized fugacity. The asymptotic beha
ior of the ratio at large scales is determined by the law~1.6!.
Though at developing our scheme we accepted that
defect-antidefect pairs constitute a dilute solution, we ho
that the scaling law~6.1! is universal. The ground for the
hope is the renormalization-group procedure~formulated in
Ref. @19#! which shows that on large scales we come to
effectively dilute solution of the pairs. We believe that t
most interesting fact to be compared with experiment or
merics is the scaling law~4.16! which is a consequence o
Eq. ~6.1!.

The physics behind the inequality~6.1! is as follows. The
main contribution to the correlation functions is associa
with a single defect-antidefect pair. Though the contribut
associated with a number of defect-antidefect pairs cont
an additional huge entropy factor it has also an additio
small factor associated with small probability to obser
defect-antidefect pairs with separations larger than the c
radiusa. The smallness is accounted for by the strong C
o-
r
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lomb attraction. The considered effect is a consequenc
the competition of those two factors. The result of the co
petition manifests in the law~4.17! which gives the estimate
for the contribution associated withk defect-antidefect pairs
For simultaneous correlation functions nothing similar o
curs and we have the conventional estimate~1.8!. That is the
reason why the effect cannot be observed in statics.
property is directly related to causality since a defe
antidefect pair cannot simultaneously pass through 2n points
and at leastn defect-antidefect pairs are needed to ge
nonzero contribution to the simultaneous correlation funct
F2n , see Fig. 2. That explains the estimate~1.8!. Thus we
have two different regimes for simultaneous and nonsim
taneous correlation functions. The characteristic bound
time separating those two regimes is written in Eq.~4.18!.

The considered effect resembles intermittency in tur
lence~see, e.g., Ref.@14#! leading to larger-dependent fac-
tors in the ratios like in Eq.~6.1! in the velocity correlation
functions of a turbulent flow. However, as is seen from E
~6.1!, for the defects, the larger-dependent factors are relate
to the ultraviolet cutoff parametera whereas for intermit-
tency in turbulence the larger-dependent factors are relate
to the infrared~pumping! scale. Our situation is thus close
to the inverse cascade~see Ref.@27#! realized on scales muc
larger than the pumping length. There are experimental d
@28# concerning the inverse cascade in 2D hydrodynam
and analytical observations concerning the inverse casc
for a compressible fluid@29# that indicate the absence of th
intermittency in the inverse cascades. Note that only sim
taneous objects were examined in the papers in Refs.@28#
and @29#, and there is no intermittency in our simultaneo
correlation functions. So, based on the analogy, one m
think that for the inverse cascades, nonsimultaneous obj
reveal some intermittency.

The consideration presented in our paper is applicabl
superfluid films. There exist also films and quasi-2D syste
of different symmetry. Huber@26# argued that the sam
equation as for quantum vortices is correct for spin vortic
in planar 2D magnets. We believe that our approach, ba
on Eq.~1.10!, is correct for the dynamics of disclinations i
hexatic films such as membranes, freely suspended fi
and Langmuir films. Next, the above scheme seems to w
also for dislocations in solid films. The system needs a s
cial treatment since a modification should be introduced i
the procedure. Maybe some features of the presented pic
can be observed also in superconductive materials, espec
in high-Tc superconductors. There are analytical and num
cal indications that for purely Langevin dynamics of the o
der parameter, there are logarithmic corrections to the
~1.10!, see Refs.@30–36#.
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