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Large-scale properties of wave turbulence
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Wave turbulence for systems with only direct (small-scale) turbulent cascades is analyzed at
scales much larger than the scale of the pumping. At such scales, the turbulence spectrum is shown
to turn into an equilibrium Rayleigh-Jeans distribution with the temperature determined by the
pumping scale and energy dissipation rate (the turbulent flux). The behavior of the damping of
the waves changes drastically at a scale determined by the mean free path of turbulent waves. Two
particular examples of acoustic and capillary-wave turbulence are considered. We also carried out

numerics which confirm the theoretical predictions.

PACS number(s): 47.27.—i, 43.25.+y

We consider the turbulence of waves with the disper-
sion law w(k) = k“, which allows for the resonant three-
wave interactions so that there can be found k; and
k2, such that w(k; + k2) = w(k1) + w(k2). Generally,
only energy and momentum are conserved by the inter-
action. It is well known that an external isotropic pump-
ing acting at some scale k, 1 produces a turbulent en-
ergy cascade towards small scales so that the occupation
numbers of waves n(k) satisfy a Kolmogorov-like power
law at k > k, [1]. The possibility of decay processes
kp — ki + k2 means that the waves with k£ < k, should
also be excited. The distribution of the long waves and
their damping is the subject of the present paper.

A general theory is presented along with two exam-
ples of the most physical interest: acoustic and capil-
lary waves. The acoustic dispersion law with a = 1 is
a marginal one. For a < 1, resonant three-wave interac-
tions are forbidden. This means that acoustics have some
peculiarities since resonant three-wave processes are pos-
sible only for small angles. Nevertheless, they are not for-
bidden due to the finite damping, which leads to broad-
ening corresponding dynamical structure functions. We
show that the broadening is generally a more essential
effect than deviations of the dispersion law w(k) from its
linear form (see also [2]).

Since we consider an isotropic wave system with the
energy being a single integral of motion, an inverse tur-
bulent cascade is impossible. It is thus natural that the
distribution at k¥ < k, is shown below to be generally
an equilibrium Rayleigh-Jeans distribution. Turbulence
plays the role of a small-scale noise that sustains the equi-
librium. The effective temperature of the equilibrium
could be expressed via the characteristics of turbulence.
We also show that the interaction of long waves with the
short ones from the turbulent spectrum gives the main
contribution into the damping of long waves. We consider
moderate pumping so that the turbulence at k ~ k, is
assumed to be weakly nonlinear. We show that there ex-
ists a crossover scale k; ! (much larger than the pumping
scale) determined by the condition that w(k.) is of the
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order of damping of waves at the pumping scale. For
k > k., the standard formalism of the kinetic equation
is shown to be applicable for & > 1 so that both the
equilibrium distribution and the damping decrement can
be readily found. These results can be extended to the
acoustic case @« = 1. The effective temperature charac-
terizing the long-scale equilibrium is proportional to the
square root of the turbulent flux P (the energy dissipated
per unit volume per unit time). For k < k., one should
take into account high-order nonlinear corrections. The
waves with k < k, should be in thermal equilibrium with
the same effective temperature, yet the detailed theoreti-
cal description (including the k£ dependence of the damp-
ing) is more difficult. It will be briefly discussed at the
end of the analytical part of the paper.

We use the description of a wave system in terms of
the normal variables ax, which satisfy equations [1]

iaak = wrar + (sHint
ot kT daj,

+ fr — Yokak , (1)
Hint = % /V123a1a2a3(27r)d6(k2 + k3 - k1)dE1dE2dE3

1
+6 / U123a1a,2a3(27r)d
x8(ky + ko + ks)dk;dkadks + c.c.

Here vor is the bare (linear) damping, d is the dimen-
sionality of space, dk = d?k/(2m)?, a; = a(k;), and fi
is the pumping force. The coefficients of nonlinear in-
teraction V and U are generally independent. There are
two alternative ways to excite turbulence. The first one
is to use a random pumping force with a characteristic
wave vector k,. The second way is related to instability
of the waves with k,, which can be described by taking
negative yo(k) at k = k,. Our analytical results do not
depend on the way of excitation. The numerics are based
on the second scheme. The properties of both turbulence
at k > k, and equilibrium at k¥ < k, are universal and
do not depend on the way of excitation.
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The main objects of the analysis are the pair corre-
lation function F(¢,k) and the Green’s function G(t, k)
‘determined as the following averages:

F(t,k)(2m)%(k — k') = (a(t, k)a*(0,K')), (2)
G(t,k)(2m)46(k — k') = (da(t,k)/5f(0,K')), (3)

where da designates the response of a solution of (1) to
the variation éf of the pumping force. One can develop
the standard Wyld diagram technique [3,4] for calculat-
ing the objects (2) and (3). This technique enables one
to represent (2) and (3) as a series over the interaction
vertices V', U introduced by (1). We start by considering
the case of the weak nonlinearity and restrict ourselves
by the first contributions to (2) and (3), then we shall
discuss high-order corrections.

It is covenient to investigate contributions to (2) and
(3) in terms of the so-called self-energy function ¥ and
the mass operator ® defined as follows:

-1

b

G(q) = [w — wk + ivor — X(q)] (4)
F(q) = [®(q) + ®0(q)]IG(q)]?- (5)

Here we passed to Fourier representation in time, and
introduced the shorthand notation ¢ = (w,k). The real
part of ¥ determines the correction to wy due to inter-
action, the imaginary part v+ = —Im ¥ determines the
damping of the waves, ®¢ is the pair correlator of the
pumping force f, and ¢ has the meaning of the renor-
malized pumping. The first (so-called one-loop) contri-
butions to ¥ and ® read

Y(q) = —(/ |Vi12|°Gq, F, 6(q — a1 — g2)dg1dg2

+ / |Vlk2|2(GQ1Fq2 + G;zF‘JZ)
x8(q — q1 + g2)dg1dg2
+ / Uk12|* Gy, Fau8(a + a1 + qg)dqldth) » (8)

B(g) = / Vika|2Foy Find(q — a1 + 42)dgadgz
+1/2 f Viera|? Py Fy8(q — a1 — 42)dq1daz
+ / U122 Fy, Fry$(q + a1 + g2)dardaz . (7)

Here dq designates dwd®k(27)~ 9! and, say §(q), means
the product (2m)?+1§(w)é(k).

The expressions (6) and (7) together with (4) and (5)
can be considered as a closed system of one-loop equa-
tions for the objects (2) and (3). It is convenient to
introduce the function n:

F(q) = =(1/m)n(¢)ImG(q), (8)

having the meaning of the occupation numbers of waves.
For weak turbulence, the factor InG(g) has a sharp max-
imum near w = wg. That means that for @ > 1, one
can substitute n(g) by n(k) = n(wk, k) into (6) and (7).
Then, using the sum rule [dwImG(q) = —m, one can
derive from (6) and (7) the standard kinetic equation.
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The case of acoustic waves (a = 1) deserves special con-
sideration: the substitution n(gq) — n(k) is incorrect in
this case since both n(g) and ¥(g), treated as functions
of w — wg, have the same characteristic scale, which is
v = —ImY¥. Nevertheless, both at @« > 1 and at @ = 1,
a solution of the diagrammatic equations for n in the re-
gion k 2 k, is the Kolmogorov-like turbulent spectrum
with the energy flux P. Below we will be interested in
the behavior of (6) and (7) at k£ < kp.

For small k, the main contribution to the integrals (6)
and (7) is determined by the region k ~ k,. That means
that if k£ > k. (where wyg, is of the order of the damping
of waves with k ~ k), then for a > 1 we can neglect the
width of G in (6) and (7) and to substitute n(q) — n(k),
ImG(g) - —7é(w —wy). After the substitution, we come
to the standard expressions that follow from the kinetic
equation for waves [1]

7(g) = ~Im¥ = 7 / Vi 2(ns — n2)5(ks — ks — k)
x8(wk, — w — wg, )dkydks , (9)
2
®(g) = % / [Vaka|*nzni6(ks — ki — k)

X8 (wky — wh, — w)dkydksy (10)
where n; = n(k;). To characterize the damping and
spectral density of the waves, we can substitute here
w — wg. The above derivation is not precisely cor-
rect for the acoustics, since in this case the argument
of §(wg, — wk, — wi) is equal to zero only for the zero
angle between k; and k;. That means that one should
take into account the concrete form of ImG as a func-
tion of w — wy, which leads to a complicated dependence
of both v(k) and ®(k) on w — wg. In three dimensions,
nevertheless, the expressions (9) and (10) can be suc-
cessfully used for evaluating long-scale values of v and
® and consequently for extracting their k£ dependence.
For this, one can take in (9) and (10) as n; the values of
n(q) again at w = wi and to treat an integral over an-
gles like [ d605(A(1 — cosf)) as (24)~*. One can check
that in the region k. < k < kp, high-order contributions
into ® and v can be neglected. Indeed, those contribu-
tions contain additional dimensionless factors of the type
J Ve12Var13Gq, Gy Fo, 6(9—91—92)8(9' —q1—93)dg1dg2dgs,
which are of the order of v/w (only in three dimensions
where there is enough angle integrations) [5].

Since the steady state is given by n(k) = ®(k)/v(k),
then it is evident from (9) and (10) that the contribution
into (k) from k; > k will contain the extra factor w(k)
as compared to ®(k). Therefore, n(k) oc w~(k), which
is the equilibrium Rayleigh-Jeans distribution.

Let us consider the interaction vertex V having the
homogeneity index m and asymptotic behavior at k < ky
as follows:

[Viey ks [* 0 K™ 77T (11)
k; = k — k; being assumed. Steady Kolmogorov-like
turbulence spectrum n(k;) oc P1/2k7™ "¢ exists at k; 2

kp if the locality condition m; > m + 2 — 2a is satisfied
[1]. One thus gets for k, < k < k,
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'Y(k) o P1/2km1+a—1k;n+1——2a—m1 ,

®(k) oc Pk™ " lglmemmmd,

(12)
(13)
where as previously v(k) = y(wk, k), ®(k) = ®(ws, k).

A steady distribution could be found from I, =
—y(k)n(k) + ®(k) = 0:

ng o< k™ kg™ mepl/2 (14)

This is an equilibrium Rayleigh-Jeans distribution n; =
T /wy, with the effective temperature related to the energy
flux P carried by the turbulent waves

Teg ox kg™~ 2PY/2, (15)

Note that the distribution also turns into zero the part of
the collision integral that corresponds to the interaction
with k1 ~ k.

For capillary waves, wy, = (0/p)Y/2k%2, where o is
the coeflicient of the surface tension and p is the density
of the liquid. The dimensionality for capillary waves is
d = 2. The interaction coefficient V is as follows:

Viaz = 7°%(0/p)/*(fr1z + fra1 — Fizk)

where
freiz = (kki/k2)*/*[(k — k1)? — K2].

We see that a = 3/2,m = 9/4, and m; = 5/2. Never-
theless, for k > k, one should use the value m; = 7/2
since there occurs a cancellation of the main contribu-
tion to Vii12 on the resonance surface where wy + w; =
wz. Thus, the Kolmogorov-like spectrum is [1] ny =
APY/2[=17/% with X ~ 8m(4p®/a)'/* [1], which leads to

k, ~ PY/2pt/4 (p/co®) Y4 For k., < k < kp, we get
Tew ~ (0/p)/2APY/2k;11/4
y ~ PP 2G4 =13/ g8

For acoustics wy, = ck,

V12 = /ckkika/p (3g + cos 01 + cos O, + cos 0;2),

where g is of the order of unity [1]. One thus gets m = 3/4

and m; = 1. For d = 3, we find k. ~ \/Pk,/(poc3).

Then one can obtain

Teﬂ' ~ V PPoC/k; )
Y(k) ~ 4/ P/(pockp)k .

Let us now consider the largest scales with k < k..
The expressions (6) and (7) determined by the first dia-
grams give in this limit

Vi + iy |2 ( Ong, kki  9ng,
~ -+
’Y(q) / Yy Oky ki Ow,

2
B(k) ~ / ——_W’“;:"’“' n2 dk; .

w) dky, (16)

(17)
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Here we used (8) and estimated the integral over fre-
quences on the basis of (4). After substituting n(q) cor-
responding to the Kolmogorov spectrum into (16) and
(17), we conclude that v oc k2™ and that v is P inde-
pendent and that & o< v/ Pk?™ . For k < k., we cannot
neglect high-order contributions to v, ®. Let us take,
e.g., the fourth-order contribution to ®. Using the same
ideas, we obtain after integration over frequencies

@ [ di, die n®(k1)
P /dkldkz T(kl’kz’k)yz(kl)’
where T is some function independent on P, the asymp-
totic behavior of which is determined by the two border
vertices of the diagram and is o« k2™ as a consequence
of (11). Thus; we conclude that ®*) « /Pk?™  which
means that &4 is of the order of (17). The same story
is with all high-order contributions to ® and ~: All the
contributions have the same k dependence and are of the
same order. Most probably that means that ® and v can
be estimated using the first contributions (16) and (17).
One may thus assume that the equilibrium waves with
the effective temperature (15) that exist at largest scales
have v/wy o< k2™,

To see how a large-scale equilibrium spectrum turns
into a small-scale turbulent cascade, we carried out the
numerical simulation solving isotropic kinetic equation
for acoustic and capillary waves:

On. L+i
ot =I;+T;n; — Zni; W(],z)n]-_i. (18)

Here i = wy/wy is the mode number, L is the total num-
ber of modes, and I'; represents an instability growth
rate. The last term is a nonlinear damping that models
the absorption of waves by the region ¢ > L and provides
for an effective sink for the cascade (see [1] for details).

In order to show that our results are resolution inde-
pendent, we performed numerics for a variety of L. In
our simulations, I'; was chosen in the form of a equi-
lateral triangle with the width Aw and with the top at
ip = wo/wy = L/2, the maximum of I'; is ' = I'(49). The
thermal noise was used as the initial value of variable n;
in all regions ¢ < Lj its level was changed in our simula-
tions within the interval [107*-5x1072]. We set n;(t) = 0
at ¢ > L. The time derivative was approximated by the
first-order finite difference scheme. The time step was
sufficiently small (5 x 1074-103) to provide stability of
the numerical procedure.

Our numerics show that both for capillary and acoustic
waves, the evolution has two well-defined stages: during
the first (fast) one, the steady turbulent distribution is
formed in the inertial interval L/2 < i < L, then the
steady quasiequilibrium distribution slowly appears at
t K L. The exponent of the steady distribution

_ log(niy1/mi)
Y log[i/(i + 1)]

is shown in Fig. 1 as a function of log(:) at ¢ < L/2
for L = 1000. The equilibrium distribution with S; =1
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FIG. 1. Local index S(z) vs log,,(¢) for steady distribu-
tions. For capillary waves, curve 1 (io = 500, Aw/wo = 1,
I' = 100). For acoustic waves, curve 2 (i = 500,
Aw/wo = 8/5, ' = 100).

is distorted with the increasing of log(¢) and S; reaches
eventually the Kolmogorov values (9/2 for acoustics and
17/6 for capillary waves).

The prediction for the temperature could be re-
expressed solely in terms of the pumping characteristics
by using the relation Pl/2 ~ TbAkg—™ (1], wo = wg,.
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One thus gets
T ~ F(b/\)2k2a-—2m—d ~ FA2b(2m+d)/aw(()2a—2m—d)/a
~ > ~ .
For capillary waves, that gives
T ~ T(0*/p)/3k; /2 = (0 /p?) 3wy 7/ .

The simulations with iy being 300, 400, and 500 at con-
stant Aw and I' confirm the dependence T'(wg). For the
steady turbulence under Aw = wg, I' = 100, we found the
following dependence of the temperature on the pumping
frequency:
T(300)/T(400) = 1.95 ~ (3/4)""/* = 1.95 ,
T(400)/T(500) = 1.68 ~ (4/5)~ /3 = 1.68 .

For acoustics, the theoretical prediction is
T~ I‘(pcf)l/zk;4 ~ [(pett) 2wyt .

Numerically, we obtained the following ratios of temper-
atures for steady spectra under Aw/wo = 8/5, ' = 20:

T(300)/T(400) = 3.12 =~ (3/4)™* = 3.16 ,
T(400)/T(500) = 2.46 =~ (4/5)* = 2.44 .

The linear dependence T'(T") is also confirmed by numer-
ics.
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