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We examine space and momentum probability distribution of inertial particles when they are placed in the

viscous boundary sublayer of a turbulent flow. We demonstrate that at varying elasticity of the particle colli-

sions with the wall the confinement-deconfinement transition occurs: at β < βc the particles are blocked near

the wall whereas at β > βc they gradually pass into bulk. Here β is elasticity coefficient and βc = exp(−π/
√
3).
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Statistical properties of inertial particles in turbulent

flows are subject of numerous investigations (see, e.g.,

Refs. [1–3]). The problem is of fundamental importance

and concerns many practically essential phenomena like

behavior of droplets in clouds, dust in atmosphere etc. If

the turbulent flow is inhomogeneous then the so-called

turbophoresis occurs: inertial particles migrate toward

regions of relatively weak turbulence [4–9]. That leads to

an inhomogeneous distribution of the particles in space.

Particularly, they are accumulated near walls where tur-

bulence is weakened in comparison with bulk.

One can consider another setup: inertial particles ini-

tially placed near an impenetrable wall are then washed

out into bulk due to turbulent motion. The question

is what are dynamical and statistical properties of this

transport process. The phenomenon was examined in

Refs. [10, 11] for non-inertial particles (passive scalar) in

the viscous sublayer of a turbulent flow. Here, we inves-

tigate inertial particles placed in the viscous sublayer.

Inertia changes drastically the process of particle migra-

tion since inertial particles lag the flow that diminishes

efficiency of sweeping the particles into bulk.

We demonstrate that the sweeping efficiency de-

pends dramatically on elasticity of the particle colli-

sions with the wall: at small elasticity the particles are

confined near the wall whereas at moderate elasticity

they are swept gradually by the flow to bulk. There is

a critical value of elasticity that is border of the two

regimes. The phenomenon is similar to the localization-

delocalization transition that was established for iner-
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tial particles in an inhomogeneous turbulent flow in

Ref. [12]. However, in our case the control parameter is

elasticity rather than the inertia degree as in Ref. [12].

The dynamic equation describing an inertial particle

motion in a fluid is written as (see, e.g., Ref. [13])

τ
dv

dt
+ v = u+ ξ. (1)

Here, v is the particle velocity, u is the fluid velocity, ξ is

Langevin force (responsible for the Brownian motion of

the particle), and τ is the Stokes relaxation time of the

particle associated with its inertial properties. One can

say that the second term in the left-hand side of Eq. (1)

represents “friction” between the particle and the (un-

moving) fluid whereas the terms in the right-hand side

of Eq. (1) are “forcing” terms. The terms describe the

particle drag produced by turbulent and thermal flow

fluctuations, respectively.

In the viscous sublayer of a turbulent flow the fluid

velocity is smooth in space that is it can be expanded

into the Taylor series. Assuming that the wall is flat we

find ux, uy ∝ z, uz ∝ z2, where z is separation from

the wall. The last relation is explained by the incom-

pressibility condition ∂xux+ ∂yuy + ∂zuz = 0. The pro-

portionality laws are valid at z ≪ L, where L is the

thickness of the viscous boundary sublayer (Kolmogorov

length). Being smooth in the viscous sublayer, the ve-

locity u remains a random function of time with the

correlation time that is determined by bulk velocity fluc-

tuations of the scale L, we designate their typical value

as uL. The velocity correlation time τc in the viscous

sublayer is estimated as τc ∼ L/uL.
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We examine the case where the velocity correlation

time τc in the viscous sublayer is much less than the

Stokes time τ . By other words, the Stokes number St,

defined as St = τ/τc, is large. Therefore both, the ran-

dom velocity u and the Langevin force ξ, can be treated

as short correlated in time (as white noises). Then sta-

tistical properties of the “forcing” in Eq. (1) are charac-

terized by the following correlation functions

〈uz(t1, x, y, z)uz(t2, x, y, z)〉 = 2µz4δ(t1 − t2), (2)

〈ξi(t1)ξj(t2)〉 = 2κδijδ(t1 − t2), (3)

where angular brackets mean averaging over time and

κ is the particle diffusion coefficient. One can say that

the expression (2) determines the turbulent diffusion,

the factor µ can be estimated as µ ∼ uL/L
3. Analogous

expressions can be written for the velocity components

ux, uy.

Comparing the expressions (2) and (3), one finds the

scale rd = (κ/µ)1/4 = L/Pe1/4. Here Pe is Péclet num-

ber defined as Pe = τκ/τc, where τκ = L2/κ is the char-

acteristic diffusion time in the viscous layer. The scale

rd determines the thickness of the diffusion boundary

sublayer formed near the wall: at z < rd the particle

diffusion dominates whereas at z > rd the turbulent

diffusion does. There is another scale in the problem,

z∗ = 1/
√
µτ = L/

√
St. At z < z∗ the “friction” term

v in Eq. (1) dominates over the ballistic term τdv/dt

whereas at z > z∗ the last one dominates. Particles de-

lay essentially from the fluid motion here. We assume

the following set of inequalities: rd ≪ z∗ ≪ L.

There is a closed description of the particle motion

along Z-direction in terms of its coordinate z and v ≡
≡ vz = dz/dt. Since both the flow velocity and the

Langevin force are short correlated in time, it is possi-

ble to derive from Eq. (1) the Fokker–Planck equation

for the probability density of a particle distribution in

the z, v-space, ρ(z, v). Then
∫

dz dv ρ = 1. Alternatively,

ρ can be treated as the particle density in the z, v-space,

if one considers an ensemble of large number of particles.

Then the integral
∫

dz dv ρ is equal to the total number

N of the particles.

Following the standard procedure (see, e.g., Ref.

[14]) one obtains the following Fokker–Planck equation

∂tρ = −v∂zρ+
1

τ
∂v(vρ) +

µ

τ2
(z4 + r4d)∂

2
vρ, (4)

that follows from the equation (1) and the relations (2),

(3). The first term in the right-hand side of Eq. (4) can

be called the “advection” one, whereas the second term

in the right-hand side of Eq. (4) is produced by the “fric-

tion” term in (1).

The Fokker–Planck equation (4) has to be supple-

mented by boundary conditions. We assume that ρ(z, v)

tends to zero fast enough as v → ±∞ and z → ∞. Next,

a boundary condition at the wall (at z = 0) should be

posed. We consider the case of partly inelastic scatter-

ing, assuming that the particle loses a definite part 1−β

of its velocity along the Z-axis after each collision with

the wall, where β is some factor, β ≤ 1. Then

ρ(z = 0, v) = β−2ρ(z = 0,−v/β) for v > 0. (5)

The factor β−2 in Eq. (5) is related to the particle num-

ber (or probability) conservation: the outcoming flux

ρ v dv for positive v should coincide with the incoming

flux for −v/β.

Integrating over v the Fokker–Planck equation (4),

one obtains the local conservation law ∂tn = −∂zj.

Here, the particle density n(z) and the particle flux j(z)

in Z-direction are defined as the integrals

n(z) =

∫ +∞

−∞

dv ρ(z, v), (6)

j(z) =

∫ +∞

−∞

dv vρ(z, v). (7)

Below we demonstrate that regimes with zero and non-

zero flux j can be realized. However, even the non-zero

flux is relatively small. That means validity of a quasi-

stationary approach since then all parameters of the sys-

tem vary slowly in time and the distribution ρ(z, v) ad-

justs adiabatically to the parameters.

Let us explain qualitatively the distribution of the

inertial particles in the viscous sublayer. Majority of

particles are accumulated in the diffusion sublayer, at

z . rd, where they undergo the Brownian motion. Some

particles are distributed in the layer rd . z . z∗ where

a z-dependent Maxwellian distribution is formed. The

most fast particles move at larger z, where the parti-

cles form strongly non-equilibrium distribution. The fast

particles undergo random acceleration due to the fluid

velocity fluctuations. However, the fluctuations force the

particles to move toward the wall from time to time. Col-

lisions with the wall lead to losing particles’ energy. The

balance between the acceleration and the losses deter-

mines the result. If β is small then the losses dominate

and the particle velocity diminishes in average. Then

the flux is zero. If β is moderate then the random accel-

eration dominates and the particle velocity increases in

average. Then fast particles can reach z larger than L

escaping to bulk. In this case the particle flux to large

z is non-zero. Below we show, that the two regimes are

separated by the critical value of β, βc = exp(−π/
√
3).

Further we pass to units of measurements where

µ = τ = 1. Then z∗ = 1, L ∼
√

St ≫ 1, rd ∼
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∼
√

St/Pe1/4 ≪ 1. The last inequality enables us to

neglect the term with rd in Eq. (4) for z ≫ rd. Due to

the adiabaticity we neglect also the term with the time

derivative in Eq. (4). Then we turn to the following sta-

tionary equation

v∂zρ = ∂v(vρ) + z4∂2
vρ, (8)

that determines the particle distribution in our setup.

Let us analyze the case z ≪ 1. For v ≪ z it is pos-

sible to neglect “advection” term in Eq. (8). Then it is

reduced to

∂v(vρ) + z4∂2
vρ = 0. (9)

We see that the typical v is of order z2 that justifies our

attention to the limit v ≪ z. The Eq. (9) has an “local

equilibrium” (quasi-Maxwellian) solution

ρ ∝ 1

z6
exp

(

− v2

2z4

)

, (10)

where the factor at the exponent can be established if

to return to Eq. (8) and to use the perturbation theory

[15, 16].

The solution (10) is even in v and, consequently,

does carry no flux. Note that the particle distribution

in the region z ≪ 1 depends weakly on the boundary

conditions since their velocities relax effectively due to

the leading role of “friction” in the region. Integrating

the expression (10) over v, one finds n ∝ z−4. The z-

dependence of the particle density n shows that the

integral N =
∫

dz n, giving the total number of par-

ticles, diverges at small z. Thus, majority of particles

are localized in the diffusive sublayer of the thickness

rd. Cutting the integral
∫

dz n at z ∼ rd, we obtain

N ∼ r−3
d n(z = 1). The concentration n(1) is an upper

estimation for the particle flux j from the wall. There-

fore N ≫ j (due to r ≪ 1) that justifies our adiabatic

approach.

The particles in the region 1 ≪ z ≪
√

St are far

from the “local equilibrium”. For the case v ≫ z the

equation is reduced to

v∂zρ = z4∂2
vρ, (11)

where we neglected the “friction” term in comparison

with the “advection” one. Eq. (11) admits a self-similar

substitution

ρ = z−5ah(ζ), ζ =
5

9

v3

z5
, (12)

where a is some scaling index. Then Eq. (11) gives

ζ∂2
ζh+ (2/3 + ζ) ∂ζh+ ah = 0. (13)

Multiplying the equation by ζ−1/3, integrating over

ζ and assuming that h tends to zero fast enough at

ζ → ±∞, we obtain

(a− 2/3)

∫

dv vρ = 0.

The condition means zero flux, j = 0, if a 6= 2/3.

The expression (12) for the self-similar variable ζ

shows that the typical v at a given z can be estimated

as v ∼ z5/3. Thus, the region v . z where Eq. (11) is

inapplicable is relatively narrow at z ≫ 1. Therefore

one can consider a solution of Eq. (11) at all ζ (all v)

regarding that the solution and its derivative at ζ = 0

are continuous.

Eq. (13) is the confluent hypergeometric equation, its

solutions are the Kummer function M(a, 2/3,−ζ) and

the Tricomi function U(a, 2/3,−ζ). Since the function

M(a, 2/3,−ζ) diverges exponentially at large negative

ζ, one should choose h = U(a, 2/3,−ζ) at negative ζ.

At positive ζ the function h is a linear combination of

M(a, 2/3,−ζ) and U(a, 2/3,−ζ). Equating the values of

the function h and of its derivative over v at ζ = +0 and

ζ = −0, one finds

h =
2√
3
ImU(a, 2/3,−ζ) +

Γ(1/3)

Γ(a+ 1/3)
M(a, 2/3,−ζ),

if ζ > 0. Exploiting the asymptotic behavior of M and

U at large values of their argument, one finds

h ≈ |ζ|−a if ζ < 0,

h ≈ 2√
3

{

sin(πa) + sin

[(

2

3
− a

)

π

]}

ζ−a, ζ > 0. (14)

If we consider the region v ≫ 1, z . 1 then the main

term in Eq. (8) is the “advection” term v∂zρ. Therefore

ρ is z-independent in this region, that corresponds to

ballistic motion of fast particles. Hence, the laws (14)

can be drawn to z → 0 to obtain

ρ(v) =
2√
3

{

sin(πa) + sin

[(

2

3
− a

)

π

]}

ρ(−v) (15)

at z = 0 for v ≫ 1. Comparing Eq. (15) with the bound-

ary condition (5) one obtains the relation

sin(πa) − sin[π(a− 2/3)]

sin(2π/3)
= β3(a−2/3). (16)

The Eq. (16) has a solution a = 2/3 at any β, that

corresponds to non-zero flux from of the wall to bulk.

Another solution starts from a = 5/6 at β = 0, then a

decreases as β grows and corresponds to zero flux. At

β → βc, where

βc = exp

(

− π√
3

)

≈ 0.163, (17)
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the solution of Eq. (16) gives a = 2/3. When β grows

further, exceeding βc, the considered branch gives a <

< 2/3. In this case the flux
∫

dv vρ becomes infinite, that

is the solution is unphysical. We conclude that at β = βc

a transition occurs corresponding to switching from

zero-flux solution to non-zero flux solution. In terms of

observable quantities, the transition is the confinement-

deconfinement transition for the inertial particles near

a wall.

To check our predictions we performed numerical

simulations of the particle dynamics determined by the

equation (1) and the relations (2), (3). We take a large

number of particles (of the order of 103) initially located

at z ∼ rd with zero velocity and examine their trajecto-

ries. In our simulations, τ = 10, µ = 0.1, and κ = 10−5.

For a typical realization of the random processes, the

particles for a long time remain near the wall, at z . rd,

and then at some moment they go coherently away from

the wall. The particles crossing z = zmax where treated

as escaping to bulk. The quantity zmax can be treated

is the width of the viscous layer. The mean rate of the

particle escape from the region z < zmax at zmax = 100,

200 are plotted in Figure for different β. The rate is

Mean rate of particle escape from region z < L at L = 100

(pluses) and L = 200 (circles) at different β

practically independent of zmax at β & 0.2 and is less

for L = 200 than for L = 100 at β . 0.2. That is in

agreement with our analytic predictions.

It is also of interest to consider the case Pe1/4 .
√

St,

that corresponds to rd & z∗ (where we assume rd ≪ L,

as before). In the limit, the Maxwellian distribution

(10) is valid nowhere and the scale z∗ has no physical

sense. Nevertheless, the self-similar form of the solution

(12) remains valid after redefinition z5 → z5 + 5zr4d.

Moreover, our scheme can easily be generalized for the

Fokker–Planck equation (4) where the factor z4 + r4d is

substituted by an arbitrary function χ(z) growing faster

than z2 as z increases. In this case the particle confine-

ment has to be observed at β < βc with the same crit-

ical value (17). The case χ(z) ∝ z2 is marginal, then

the transition is driven by the elasticity and/or inertia

degree. The case χ ∝ z2 and β = 1 was investigated

in Ref. [12]. In the limit of strong inertia the particle’s

Lyapunov exponent changes its sign at the critical value

(17), see Ref. [17]. The case where χ(z) is growing slower

than z2 as z increases (the case corresponds, say, to the

turbulent boundary layer) needs a special analysis.

The crucial feature of the inertial particles dynam-

ics that is revealed by numerics is that escapes of the

particles from the viscous boundary layer of a turbulent

flow to bulk are related to rare events. That implies

a strong intermittency characteristic of turbulence in

general. From the other hand, that leads to the hope

that the events and their probability can be examined

in the framework of the instantonic technique (saddle-

point approximation) [18]. That implies a possibility to

determine analytically probability of such events and

also their statistics, leading to predictions, say, for high-

order correlation functions of the particle flux to infinity.

That is a subject of future investigations.

To conclude, we examined the inertial particle statis-

tics in the viscous layer of a turbulent flow. The system

is relaxed to the quasi-stationary regime where majority

of particles are concentrated inside the diffusion bound-

ary sublayer. The particles outside the layer can be di-

vided into relatively slow ones that have the “local equi-

librium” distribution (10) and relatively fast that are

characterized by the self-similar distribution (12). Just

the fast particles are responsible for a particle flux to

bulk. This flux is zero if the elasticity coefficient β of

particle collisions with the wall is smaller than the criti-

cal value (17). That is the confinement regime. At larger

β the flux becomes non-zero that leads to graduate es-

caping the particles to bulk. Our scheme admits a wide

generalization for other types of flows, the critical value

(17) remaining the same.
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