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Passive scalar structures in peripheral regions of random flows
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We investigate statistical properties of the passive scalar near walls in random flows assuming weakness of
its diffusion. Then at advanced stages of the passive scalar mixing its unmixed residue is concentrated in a
narrow diffusive layer near the wall. We conducted numerical simulations and revealed structures responsible
for the passive scalar transport to bulk, they are passive scalar tongues pulled from the diffusive boundary
layer. The passive scalar integrated along the wall possesses well pronounced scaling behavior. We propose
an analytical scheme giving exponents of the integral passive scalar moments, the exponents agree reasonably

with numerics in 3d.
PACS: 05.10.—a, 05.20.—y, 05.40.—a, 47.27.—i

Stochastic dynamics of such fields, as temperature or
concentration of pollutants, in random flows is of great
importance in different physical contexts, from cosmol-
ogy to microfluidics. Speaking about random flows we
have in mind turbulent [1, 2] or chaotic flows [3]. Some
intermediate position between the turbulent and chaotic
flows has the so-called elastic turbulence [4]. The main
effect of the random flows is mixing leading to essential
acceleration of the temperature or concentration homog-
enization. Our consideration can be extended to chem-
ical reactions that are accelerated in the random flows
due to the same mixing effect [5].

If the feedback of the field to the flow is negligible
then the field is called usually passive scalar. Dynam-
ical and statistical properties of the passive scalar in
random flows are extensively examined during the last
two decades experimentally, analytically and numeri-
cally, see, e.g., Refs. [6—12]. It was established that
the passive scalar has complicated statistics exhibiting
such features as multifractality and intermittency. It is
a consequence of a complicated interplay of diffusion and
random advection determining the passive scalar evolu-
tion.

The passive scalar field 8 in an external flow is de-
scribed by the advection-diffusion equation

8,0 + vV0 = kV20, )

where v is the flow velocity and « is the diffusion (ther-
modiffusion) coefficient. The equation (1) should be
supplemented by boundary conditions at the walls that
are zero normal gradient for density of pollutants and
a fixed value of @ for temperature. We assume that the

Peclet or the Schmidt number is large (that is & is small
in comparison with the fluid kinematic viscosity v). Be-
low, the fluid is assumed to be incompressible (that is
Vv =0).

In this paper, we investigate the passive scalar sta-
tistics in peripheral regions of a vessel where developed
turbulence or a chaotic flow is excited. Speaking about
the peripheral regions, we imply a laminar (viscous) sub-
layer formed near walls where the velocity field can be
treated as smooth, it varies on distances of the order
of the thickness of the peripheral region, being a ran-
dom function of time. We are interested in advanced
stages of the passive scalar decay. Then the unmixed
fraction of the passive scalar (or of unreacted chemi-
cals) is located mainly in peripheral regions near walls.
The same is true for a statistically stationary situation
related, say, to a permanent heat flow through the walls.
A theoretical approach to the problem was developed in
Refs. [13—16], general predictions of the approach were
confirmed by mixing experiment with elastic turbulence,
see Ref. [17].

Since the Peclet or the Schmidt number is assumed
to be large, the passive scalar dynamics in the periph-
eral region is slow in comparison with bulk. Therefore
at the first stage the passive scalar is well mixed in bulk,
that leads to a homogeneous distribution with § = const.
We assume that bulk can be treated as a big reservoir,
then the constant is practically time independent. Be-
low, we imply that the passive scalar field is shifted by
the constant, that gives § = 0 in bulk. And after the first
stage the passive scalar evolution remains appreciable in
the peripheral regions. In the case the unmixed passive
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scalar is concentrated mainly in a narrow diffusive layer
near the wall, thinner than the thickness of the periph-
eral region [13, 14]. Then the passive scalar transport
to bulk goes through the peripheral region outside the
diffusive layer. Just this peripheral region plays a cru-
cial role in formation of statistical characteristics of the
transport. Note that our assumptions lead to an expo-
nential decay of the passive scalar [14]. A power decay
observed in Ref. [18] is probably related to the exper-
imental setup, where bulk cannot be treated as a big
reservoir.

We assume that the walls of the vessel are smooth
and that the boundary layer width is much less than the
curvature radii of the wall. Then it can be treated as
flat in the main approximation. Let us introduce the ref-
erence system with the Z-axis perpendicular to the wall
and assume that the fluid occupies the region z > 0.
Smoothness of the velocity leads to the proportionality
laws vz,vy & 2z and v, « 2> for the velocity compo-
nents along and perpendicular to the wall, respectively.
The laws are consequences of the non-slipping boundary
condition v = 0 at the wall and of the incompressibility
condition Vv = 0. Below we assume that the velocity
statistics is homogenous in time, and also assume its ho-
mogeneity along the wall. However, the flow statistics is
non-homogeneous in z-direction and highly anisotropic.

Since the velocity tends to zero at approaching the
wall and the diffusion is assumed to be weak, the passive
scalar dynamics in the peripheral region, determined by
an interplay of advection and diffusion, is slower than
the velocity dynamics. Thus at investigating the passive
scalar evolution the velocity can be treated as short cor-
related in time, and therefore closed equations can be
derived for the passive scalar correlation functions (see,
e.g., [8, 14]). Say, the equation for the first moment of
0, (6) (where angular brackets mean time averaging), is
written as [14]

Bu(0) = 8. (uz*9.(6)) + r020), @)

where the second term is caused by random advection,
its z-dependence is related to the law v, 22 and the
factor u characterizes strength of the velocity fluctua-
tions.

Comparing the advection and the diffusion terms
in the equation (2) one finds a characteristic diffusion
length ry; = (k/u)'/%. Due to smallness of x the dif-
fusion length is much less than the thickness of the pe-
ripheral region. At advanced stages of the passive scalar
decay or in the statistically stationary situation (caused
by the permanent passive scalar flux through the wall)
the passive scalar is concentrated mainly in the diffu-
sive boundary layer, at z < ry;. However, we are inter-
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ested in the passive scalar transport through the region
2z > Ty, where the passive scalar is carrying from the
diffusive boundary layer to bulk. There it is possible to
neglect the diffusion term in Eq. (2) and we arrive at
the law (0) o< z73.

To check theoretical predictions we conducted exten-
sive numerical simulations of the problem. Details of the
simulations will be published elsewhere, here we give a
short overview of our results. We have chosen the scheme
where dynamics of a large number of particles subjected
to flow advection and Langevin forces is examined. The
set of the particles is used instead of the passive scalar
field @, that can be treated as density of the particles.
A big advantage of the approach is ability to produce
simulations for arbitrary dimension of space d.

To establish principal qualitative features of the pas-
sive scalar transport, we perform mainly 2d simulations.
The setup is periodic in & (coordinate along the wall)
and in majority of simulations the velocity was

Ve = 2 [&1 cos(2ma /L) + & sin(2wa /L)) L/,
v, = 22 [ sin(2wz /L) — & cos(2mz/L)], (3)

where L is period (we have chosen L = 10) and & and
&> are independent random functions of time. The veloc-
ity field satisfies the incompressibility condition d,v, +
+ 9,v, = 0 for any functions &; () and & (t). They pos-
sess identical Gaussian probability distributions, then
the velocity (3) has statistics homogeneous in z (along
the wall). Since the velocity correlation time is much
less than the passive scalar mixing time, one should as-
sume that &;(¢) and &2 (t) are short correlated in time.
We model the functions by telegraph processes, where
both functions, £; and &, remain constants inside time
slots of a small duration 7, and the values of £ and &
inside the slots are chosen to be random variables with
identical normal distributions. In our simulations the
variants were (£2) = (¢2) = 1, that gives p = 7/2.

In our scheme a particle trajectory g(t) obeys the
equation 8;0 = v(t, 0) + ¢(t), where the first term rep-
resents the particle advection and the second term rep-
resents the Langevin forces. Let us stress that the vari-
ables ¢ are independent for different particles whereas
the variables &; and £, are identical for all particles, ac-
cording to physical meaning of the variables. Again, ¢
is modeled by a telegraph process with the same time
slot duration 7 and with normal distributions of the val-
ues in the slots. To ensure a given value of the diffusion
coefficient k, one should accept {((2) = (¢?) = 2x/7. In
majority of simulations we have chosen k = 7/2, and
therefore the diffusive length was 7 = 1.

Inside a time slot all, &, & and {, are time-
independent constants and the equation 8;0 = v(t, o) +
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+ ¢(t) becomes an autonomous ordinary differential
equation. It was solved as follows. A time slot was
divided into a number of time intervals and the equation
was solved (without the Langevin force) using the second
order Runge-Kutta method. The number of intervals is
z-dependent, it is inversely proportional to z at z > 2.5.
For z > 12 we solved equations for g, and 1/g,. Both
features are motivated by the strong dependence of the
velocity on z, v, o 22. After solving the equation inside
a slot a term produced by the Langevin force was added.
To examine role of diffusion outside the diffusive bound-
ary layer, in some simulations we switched off diffusion
(Langevin forces) at distances z > z4 (where a choice of
24 is different for different cases).

The particles are permanently injected near the wall
in random positions at the beginning of each time slot.
The simulations were performed in the interval 0 < z <
< 100, the particles crossing the lines z = 0 and z = 100
were excluded from the consideration. A balance be-
tween the particle injection and losses leads to a sta-
tistical equilibrium achieving gradually in our numer-
ics. Thus, our simulations cover the statistically sta-
tionary passive scalar transport. It corresponds both to
the steady temperature distribution supported by a heat
flux from the wall and to the decay of the concentration
of pollutants that can be treated adiabatically.

The simulations reveal specific structures responsi-
ble for the passive scalar transport to bulk. It is related
to jets carrying the passive scalar from the wall towards
bulk, the jet produces a passive scalar tongue with width
(cross-section) diminishing as z grows. The property is
a consequence of the law v, o 22 reading that the z-
component of the tongue velocity increases as z grows.
Sometimes tongues are pulled upto z-infinity, and then
a portion of the passive scalar is pushed to bulk. After
some time the tongue is tilted and then pressed to the
diffusive layer. Then next tongue is pulled, usually from
the bump remaining at bottom of the previous tongue,
and is, in turn, pressed to the diffusive layer. As a result,
a complicated structure is formed, an example of such
structure is drawn in Fig.1, that represents a snapshot
generated in our simulations.

In terms of the particles, the passive scalar field 8 is
defined as a number of particles per unit area, that is as a
number of particles inside a box divided by the box area.
Of course, the definition works well provided the box is
small enough and the number of particles inside the box
is large. To satisfy these contradictory conditions one
should deal with a large enough total number of parti-
cles. That is why the injection rate in our numerics is
chosen to produce a large number of particles, 10% + 109,
in the statistical equilibrium. Statistical characteristics
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Fig.1. An example of a passive scalar structure formed
near the wall in the random flow. Different particles are
designated by small crosses

of the passive scalar can be characterized by correlation
functions (moments) that are obtained in our numerics
by averaging over a time interval ¢ ~ 10¢ + 1077.

We computed moments of § and realized that the
law (0) oc 272 is perfectly satisfied for z > r whereas
higher moments decay faster. Thus, we obtain results
inconsistent with the behavior oc 22 that can be derived
for all moments of 8 provided diffusion is neglected [14].
Based on the notion of tongues, one can explain rele-
vance of the diffusion term at z > 7. Indeed, the term
kV? in Eq. (1) can be estimated as x/I> where [ is a
characteristic tongue width that diminishes as z grows.
If I diminishes faster than z~! then the diffusion term ap-
pears to be relevant, as can be understood by comparing
it with the advection term in Eq. (2). A dependence of
l on z is a subject of special investigation. Any case, ne-
glect of the diffusion term should be specially grounded.
The only exclusion is the first moment since the z,y-
diffusion drops from the equation for the moment due to
homogeneity of the system in the directions.

To exclude the effect of diffusion, we introduce an-
other object, © that is an integral of the passive scalar
field along a surface parallel to the wall. Due to narrow-
ness of the tongues, one expects that the passive scalar
is short correlated along the wall at z > rp;. Then we
obtain closed equations for the ® moments

8:(0™) = u [2*02 + 4n2%0, + 4n(n — 1)22] (O™). (4)

In the stationary (or quasi-stationary) case (where
0;{O™) is negligible) we obtain a homogeneous differen-
tial equation for the n-th moment that admits a power
solution (™) oc z7%», where

Gh=2n—-1/24++/2n+1/4. (5)
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The positive sign of the square root is chosen to repro-
duce the reference value (; = 3.

In our numerics, © is represented by a number of
particles in a stripe parallel to the wall, divided by its
width. The moments of O, (O"), were computed in
2d by time averaging over a long time ~ 1077. To
check robustness of the results we performed compu-
tations for different time slots, 7 = 0.001,0.002, 0.004,
and for four different values of the diffusion coefficient .
The Fig.2 demonstrates that the values of each moment
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Fig.2. Moments of ©, (©"), in log-log coordinates, n =
= 1+ 6. In the region z > 7y the results collapse onto
single curves for three times 7 = 0.001,0.002,0.004 and
four different values of the diffusion coefficient

collapse to a single curve in the coordinates In(z/ry)
and In((®™)/C,) where the factors C,, are of the order
of the corresponding moments near the wall. We also
checked that the moments of © are insensitive to diffu-
sion, switching diffusion off at z > 12 in some simula-
tions. One can observe no difference between the data.
One can also try to use a more complicated than (3)
velocity field. We calculated the moments for a velocity
field with four random factors instead of two, as in Egs.
(3). Again, there are no visible differences in compari-
son with Fig.2.

We observe that the moments of © are decreasing
functions of z that are power-like, (®") o z ¢, in the
region z > ry. Extracting the scaling exponents (,
for n = 1 + 6 we obtain values that are presented in
Fig.3 as the upper set of points (some smooth curve is
drawn through the points for better visualization). We
conducted analogous simulations for higher dimensions,
upto d = 5. The results are depicted in the same Fig.3.
We see that the exponents (, depend on d, however,
they are close for d > 3, and are close to the theoret-
ical values (5). Deviations of the numerical values of
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Fig.3. Exponents of the moments (0"), for n = 1+ 6 and
space dimensions d = 2+5. For comparison the theoretical

curve (, = 2n —1/2 + 4/2n + 1/4 is plotted

(n from the theoretical predictions (5) can be explained
by long correlation of the passive scalar along the wall
that can be produced by the multi-fold structures of the
type drawn in Fig.1. It is naturally to expect that the
fold effect becomes less pronounced in high dimensions.
Indeed, Fig.3 shows that the deviations from the values
(5) diminish as the space dimensionality d grows. That
confirms our explanation. Really, the exponents (5) are
close to ones, found in numerics, already in the dimen-
sionality d = 3.

Any case, we observe anomalous scaling, that is a
non-linear dependence of (, on n. The scaling behav-
ior leads to estimates (") ~ O (ry/z)", where O
is a characteristic value of © inside the diffusive layer.
Since the curve (, is convex (see Fig.3), we conclude
that higher moments are much larger than their naive
estimates in terms of the first ones. Say, (O™) > (©)™.
By other words, the probability distribution function of
the moments has “thick” tails, reflecting strong intermit-
tency, naturally explained by the tongues.

There remains a set of questions. We were not ex-
amined tongue shapes in 3d, particularly, aspect ratio
of their cross-section. There was no average flow in our
numerics whereas an average shear-like flow occurs usu-
ally near the wall. Another natural extension of our ap-
proach is related to chemical reactions in random flows.
One can also note polymer solutions, where the polymer
elongation is very sensitive to the character of the flow.
The problem is significant, e.g., for the elastic turbu-
lence. We considered smooth walls. A roughness of the
wall can modify essentially our conclusions. We consider
all the problems as subjects for future investigations.
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