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Abstract
We analyze the kinematic dynamo in a conducting fluid where the stationary
shear flow is accompanied by relatively weak random velocity fluctuations.
The diffusionless and diffusion regimes are described. The growth rates of the
magnetic field moments are related to the statistical characteristics of the flow
describing the divergence of Lagrangian trajectories. A degree of anisotropy of
the magnetic field is estimated. We demonstrate that Zeldovich’s ‘antidynamo
theorem’ is wrong.

PACS numbers: 47.35.Tv, 47.65.−d, 94.05.Lk, 95.30.Qd

1. Introduction

The dynamo effect is the magnetic field generation by hydrodynamic motions in a conducting
medium. We investigate the effect in a conducting fluid (plasma) experiencing a random flow.
The principal example of such a flow is the hydrodynamic turbulence [1, 2] responsible for the
magnetic field generation in different geophysical and astrophysical phenomena [3–10]. We
consider the case where the magnetic field grows from small initial fluctuations and examine
the evolution stage when the magnetic field is weak enough, so that one can ignore the feedback
from the magnetic field to the flow. The stage where the flow is independent of the magnetic
field is called kinematic. The kinematic approximation becomes invalid when the increasing
magnetic field starts to affect the fluid motions essentially. In this case the velocity field is
strongly influenced by the Lorentz force, so that the induction dynamics is no longer linear
in the magnetic field. In most cases that leads to the saturation of the magnetic field and
its fluctuations maintained by the hydrodynamic flow. Though the magnetic field cannot be
described by a linear equation in the regime, the kinematic stage produces magnetic structures
similar to those occurring at the saturation state [11].

We assume that the random flow is statistically homogeneous in space and time. Usually
an additional assumption is made that the flow is statistically isotropic. If the velocity field is
short-correlated in time, then it is possible to derive closed equations for the magnetic induction
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correlation functions (see, e.g. [12]). The pair correlation function has been analyzed in
[13, 14]. The complete statistical description of the magnetic field for a short-correlated
smooth statistically isotropic flow has been made in [15], where growth rates and spatial
correlation functions of arbitrary order were found. However, in astrophysical applications
shear flows are widespread. Such flows are anisotropic and need a special analysis [16].
Here we examine the case where a steady shear flow is complemented by a relatively weak
random component. We focus on the analysis of growth rates of moments of the magnetic
field (magnetic induction) and on the degree of its anisotropy. We do not specify further the
flow statistics but aim to relate the magnetic statistical characteristics to those of the flow, thus
revealing the most universal features of the dynamo effect.

An additional motivation for our research comes from dynamics of polymer solutions that
in many respects is similar to magneto-hydrodynamics [17, 18]. Particularly, we have in mind
the coil-stretch transition [19] (see also [20, 21]) that is an analog of the dynamo effect. A
decade ago the so-called elastic turbulence was discovered [22–24] that is a chaotic motion
of polymer solutions; the state can be realized even at small Reynolds numbers. The elastic
turbulence is a natural frame for applying the dynamo theory to polymer solutions.

The structure of our paper is as follows. In the second section we present basic equations
describing the magnetic field in a conducting fluid and formulate a qualitative picture of the
kinematic dynamo. In the third section we formulate the Lagrangian formalism enabling us
to relate statistical characteristics of the magnetic field to the statistics of the hydrodynamic
flow. The fourth section contains an overview of the properties of the evolution matrix and
its relation to the divergence of the Lagrangian trajectories. In the fifth section the results
concerning the magnetic induction moments and its anisotropy are presented. In the last
section we summarize our achievements and discuss perspectives. In the appendix we present
analytical results for the short-correlated flow fluctuations.

2. Basic relations

We consider magnetic field in a conducting fluid (plasma) where hydrodynamic motions are
excited. Then the dynamics of the magnetic field is governed by the following equation (see,
e.g., [25]):

∂tB = (B · ∇)v − (v · ∇)B + κ∇2B. (1)

Here B is the magnetic induction, v is the flow velocity and κ is the magneto-diffusion
coefficient, inversely proportional to the electrical conductivity of the medium. The flow is
assumed to be incompressible, ∇ · v = 0. We also assume that the magneto-diffusion term in
equation (1) is small in comparison with those related to the flow. We consider the case where
the magnetic field is relatively weak and, therefore, its feedback to the flow is negligible.
Then equation (1) is a linear equation describing the magnetic field dynamics in a prescribed
velocity field. This regime is called kinematic.

The hydrodynamic motion in the fluid is assumed to be random (turbulent) and the velocity
statistics is assumed to be homogeneous in space and time. We examine the magnetic field
growth from initial fluctuations distributed statistically homogeneously in space at the initial
time t = 0. The correlation length of the initial fluctuations l is assumed to be smaller than
the velocity correlation length η. If we consider the hydrodynamic turbulence, then the role
of the velocity correlation length is played by the Kolmogorov scale. At scales less than η the
velocity field v can be treated as smooth. The magnetic growth (dynamo) can be characterized
by moments of the magnetic induction that exponentially increase over the time t:

〈|B(t)|2n〉 ∝ exp(γnt); (2)
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here the angular brackets mean averaging over space. The exponential character of the growth
is related to the statistical homogeneity of the flow in space and time and to smoothness of the
flow responsible for the growth. The laws (2) are characteristic of the kinematic dynamo.

Our main goal is to express the growth rates γn in equation (2) via the statistical
characteristics of the flow. The natural measure for the growth rates γn is the so-called
Lyapunov exponent of the flow, λ, that is equal to the average logarithmic divergence rate of
close fluid particles. A special question concerns the n-dependence of γn. If the magnetic
induction statistics is Gaussian, then γn ∝ n. Deviations from the linear law signal about an
intermittency of the magnetic field. The intermittency implies that the high moments of the
magnetic field are determined by rare strong fluctuations.

There are two different regimes of the kinematic magnetic field growth. The first regime
is realized if all characteristic scales of the magnetic field are much larger than the magnetic
diffusion length rd, rd = √

κ/λ. The assumed smallness of the diffusion coefficient implies
the inequality η � rd . If l � rd, then the diffusion term in equation (1) is negligible at
the first stage that we call diffusionless. The magnetic force lines are deformed by the flow
without reconnections in this regime. However, distortions of the magnetic field by the flow
inevitably lead to appearing scales of order rd. After that the magnetic diffusion is switched
on that admits reconnections. This second (diffusion) stage is characterized by the growth
rates different from the ones describing the diffusionless regime.

Let us present a qualitative picture explaining the magnetic field evolution at the kinematic
stage. The initial magnetic field distribution in space can be thought as an ensemble of blobs
of sizes ∼l. Then the blobs are distorted being stretched in one direction and compressed
in another direction. In the isotropic case the directions of stretching and compressing are
chaotically varying in space, whereas in our case they are attached to the shear flow: stretching
occurs mainly along the shear velocity. At the first (diffusionless) stage blobs are deformed
without intersections, and the magnetic field induction grows like a separation between close
fluid particles at the stage since equation (1) at κ = 0 coincides with the equation for a
separation of two close fluid particles.

The diffusionless stage finishes when the characteristic blob width diminishes down to
the diffusion length rd. Then the diffusion is switched on that leads to two effects. First, the
diffusion prevents further shrinking of the blob widths, so that they remain of the order of rd,
whereas the blobs continue to be stretched in the direction of the shear velocity. Second, due to
reconnections of the magnetic force lines admitted by diffusion the blobs start to overlap. As a
result, new blobs of a characteristic longitudinal size η are formed, see figure 1. The magnetic
induction in such new blobs can be found by averaging the induction of a large number N of
initial blobs, the number N grows exponentially over time. Averaging over the large number
of random variables leads to the appearance of an exponentially small factor ∼1/

√
N in the

amplitude of the magnetic induction. Besides, the amplitudes of the initial blobs remain to
increase over time as a separation between fluid particles. We conclude that at this second
(diffusive) stage the magnetic field is still growing exponentially over time but slower than at
the first stage.

We consider the case where the steady shear constituent of the flow is stronger than the
random one. Quantitatively, the condition is written as s � λ where s is the shear rate. Indeed,
the Lyapunov exponent in a pure shear flow is zero, and its non-zero value is associated with
the presence of the relatively weak random constituent of the flow. The distorted magnetic
blobs are elongated mainly along the shear velocity. However, they are tilted with respect to
the velocity direction due to the presence of the random velocity component, see figure 1. The
tilt possesses the same dynamics as the direction of the polymer stretching in the same flow,
see [21]. Therefore, the tilt angle θ , see figure 1, can be estimated as θ ∼ λ/s. The tilt angle
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θ

η

rd

Figure 1. Sketch of typical magnetic blobs during the diffusive kinematic stage.

determines the typical ratio of the magnetic field components B2/B1 ∼ λ/s 	 1, where the
first axis is directed along the shear velocity that varies along the second axis. Thus, the ratio
s/λ characterizes an anisotropy degree of the magnetic field.

3. Lagrangian dynamics

The magneto-dynamic equation (1) can formally be solved in the framework of the Lagrangian
approach to the fluid motion. Passing to the Lagrangian frame, one then finds a formal
solution for the induction field B in terms of its initial value B, B(r) = B(0, r). Exploiting
a generalization of the scheme proposed in [26, 27] we write the solution as

B(τ, r) = 
Ŵ (τ )B[y(0)]�, (3)

where y(t) is a function of the time t defined over the time interval 0 < t < τ with the
boundary condition posed at the final time, y(τ ) = r. The function satisfies the following
stochastic equation:

∂ty = v(t,y) + ξ, (4)

where ξ is the white noise (Langevin force) with the pair correlation function

〈ξi(t1)ξj (t2)〉 = 2κδij δ(t1 − t2). (5)

The floors in equation (3) mean averaging over the ξ statistics. Note that at ξ = 0 equation
(4) describes Lagrangian trajectories (trajectories of fluid particles). The noises ξ disturb the
trajectories simulating diffusion of the magnetic field. The matrix Ŵ (t) in equation (3) is
determined by the following equation:

∂tŴ = �̂Ŵ , Ŵ (0) = 1, (6)

where the last term represents the boundary condition. The matrix �̂(t) is the velocity
gradients matrix, �ji = ∂ivj (t), taken at the spacial point y(t). We will call Ŵ an evolution
matrix. One can say that expression (3) describes back in time the evolution of the magnetic
field.

In the framework of the formalism, correlation functions of the magnetic field have to
be obtained by averaging the product of factors (3) taken at the respective points over the
statistics of the noises ξ, besides averaging over space. Thus, the moments 〈|B|2n〉 should
be calculated in two steps. First, one should average the product |ŴB|2n over the ξ -statistics
given by equation (5), the averaging catches the diffusion effects. (Let us underline that the
fields ξ have to be treated as independent for all 2n factors in the product.) Second, one should
average the result over space that is equivalent to averaging over the velocity statistics. This
logic was realized for the isotropic random flow in [15].
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The evolution matrix Ŵ has some universal statistical properties that can be obtained by
averaging over Lagrangian trajectories. Our flow is incompressible, that leads to the conclusion
that averaging over initial positions of fluid particles is equivalent to averaging over their final
(or intermediate) positions. Therefore, averaging over Lagrangian trajectories is equivalent
to space averaging. Since the magnetic diffusion is weak one can neglect its influence to the
statistical properties of the matrix Ŵ . Postponing a discussion of the statistics (see below) we
formulate here only some general assertions concerning eigenvalues of the matrix Ŵ (t). Its
determinant is equal to unity, since the velocity gradient matrix �̂ is traceless, tr �̂ = 0, that,
in turn, is a consequence of the incompressibility condition ∇ · v = 0. Next, the eigenvalues
of Ŵ can be written as exp(ρ1), exp(ρ2) and exp(ρ3) with ρ1 + ρ2 + ρ3 = 0. We order the
eigenvalues as ρ1 > ρ2 > ρ3; then ρ1 is positive whereas ρ3 is negative. One can say that ρ1

is responsible for a forward in time Lagrangian evolution whereas ρ3 is responsible for a back
in time Lagrangian evolution. One can estimate ρi as λt .

In the diffusionless regime, realized at t 	 λ−1 ln(l/rd), one can neglect diffusion
effects. Then while calculating the moment 〈|B|2n〉 one can take a product of the
identical factors (3) where y(t) is simply a Lagrangian trajectory terminated at r. Then
|B(r)|2n ≈ exp(2nρ1)|B|2n where B should be taken at the origin of the Lagrangian trajectory.
Here just the factor exp(2nρ1) is responsible for the exponential growth of the moments, and
therefore, we can restrict ourselves to the estimation |B(r)|2n ∼ exp(2nρ1)B2n

0 where B0 is the
characteristic value of the initial magnetic field fluctuations. In the diffusion regime, realized
at t � λ−1 ln(l/rd), the situation is a bit more complicated.

Let us consider the second moment. Then we should deal with two trajectories, y and
y′, terminating at the same point r at t = τ , but characterized by independent noises ξ and
ξ′. The second moment is a spacial average of B2 = 
{ŴB[y(0)]}{Ŵ ′B[y′(0)]}� (recall
that floors mean averaging over the ξ -statistics). An appreciable contribution to the second
moment is related to the trajectories with |y(0) − y′(0)| � l. Since |y(0) − y′(0)| 	 η and
|y(τ ) − y′(τ )| = 0, the difference 
y = y − y′ stays to be much less than η at any time
from the interval 0 < t < τ for such event. Then we obtain from equation (4) expanding the
velocity up to linear in 
y terms:

∂t
y = �̂
y + ξ − ξ′, (7)

where �̂ is taken at the point y. A solution of equation (7), equal to zero at t = τ , is written
as


y(t) = −Ŵ (t)

∫ τ

t

dt1Ŵ
−1(t1)[ξ(t1) − ξ′(t1)]. (8)

Since the separation 
y is a linear combination of ξ, ξ′ it possesses the Gaussian statistics
characterized by variances of its components.

We are interested in the 
y statistics at t = 0. Then the integral in equation (8) is gained
at t1 ∼ λ−1. The different components of 
y have different variances; they are estimated as
Y1 ∼ rd exp[−ρ1(τ )], Y2 ∼ rd exp[−ρ2(τ )] and Y3 ∼ rd exp[−ρ3(τ )] for the components of

y along eigenvectors of the matrix Ŵ−1. The first variance Y1 is always less than l, whereas
the third one Y3 is larger than l in the diffusive regime. As to the second variance, Y2, it
could be larger or smaller than l depending on the sign of ρ2. Therefore, a probability (in the
diffusion regime) for the trajectories y and y′ to be closer than l at t = 0 can be estimated as
l/Y3 ∼ (l/rd) exp[ρ3(τ )] if ρ2 > 0. Next, we should include the factor exp(2ρ1) associated
with the matrix Ŵ (τ ) in equation (3). Finally, for ρ2 > 0 we arrive at


|B|2� ∼ B2
0(l/rd) exp(ρ1 − ρ2), (9)

where we used the condition ρ1 + ρ2 + ρ3 = 0 and B0 is the characteristic value of the initial
magnetic field fluctuations.

5
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The situation with ρ2 < 0 is slightly different. In this case calculation of 
|B|2� is
reduced to the integration of e2ρ1B1[y(0)]B1[y′(0)] over 
y2 and 
y3 with the statistical
weight (Y2Y3)

−1 exp
[−(
y2)

2
/(

2Y 2
2

) − (
y3)
2
/(

2Y 2
3

)]
. Typical values of 
y2 and 
y3 in

the integral are estimated as l, whereas Y2, Y3 � l. Therefore, in the main approximation
the exponent in the integral can be substituted by unity. However, that leads to a zero
value of the integral due to the solenoidal nature of the magnetic field B. Therefore, one
should expand the exponent in (
y2)

2
/(

2Y 2
2

)
; the first term of the expansion gives 
|B|2� ∼

l4Y−3
2 Y−1

3 e2ρ1B2
0, that is for ρ2 < 0


|B|2� ∼ B2
0(l/rd)

4 exp(ρ1 + 2ρ2), (10)

where, again, we have used the condition ρ1 + ρ2 + ρ3 = 0.
Note that expressions (9) and (10) are equivalent to the ones obtained in the Fourier

representation for the isotropic case in [15]. However, expressions (9) and (10), written for
real space, are correct for the anisotropic problem as well, and are in fact more convenient for
the problem.

Let us turn to the high moments. One can check that a principal contribution to the
average 
|B|2n� is produced by configurations where the 2n points yα(0) are divided into n
pairs with separations � l in each pair. Because of the independence of the white noises ξα ,
the probability of such an event can be estimated as a product of probabilities for the second
moment, that is


|B|2n� ∼ 
|B|2�n, (11)

where the second moment is given by equation (9) or equation (10). We have ignored a
combinatoric factor in equation (11) being interested in the time dependence of the moments.

At the next step we should average expression (11) over the velocity statistics. Before
doing so, we formulate the basic properties of the evolution matrix Ŵ .

4. Properties of the evolution matrix

Here we overview the basic properties of the evolution matrix Ŵ defined by equation (6). Its
formal solution is

Ŵ (t) = T exp

[∫ t

0
dt ′ �̂(t ′)

]
, (12)

where T exp means a chronologically ordered exponent. Let us recall that the determinant of
the matrix Ŵ is equal to unity since the matrix �̂ is traceless (due to the incompressibility
condition). We are interested in the features of the evolution matrix Ŵ on times larger than the
inverse Lyapunov exponent, t � λ−1, where Ŵ possesses some universal statistical properties,
following from the fact that under the condition the evolution matrix (12) can be treated as a
product of a large number of random matrices, see [28–30].

It is convenient for us to use the Gaussian decomposition of the evolution matrix
Ŵ = T̂L
̂T̂R , where T̂L and T̂R are triangle matrices,

T̂L =
⎛
⎝1 χ χ1

0 1 χ2

0 0 1

⎞
⎠ , T̂R =

⎛
⎝ 1 0 0

ζ1 1 0
ζ2 ζ3 1

⎞
⎠ , (13)


̂ is a diagonal matrix and 
̂ = diag(
1,
2,
3). Since both triangle matrices, T̂L and T̂R ,
have unit determinants, the determinant of 
̂ is equal to unity as well.

Substituting the decomposition Ŵ = T̂L
̂T̂R into the evolution equation (6), one finds

T̂ −1
L �̂T̂L = T̂ −1

L ∂t T̂L + ∂t 
̂
̂−1 + 
̂∂t T̂RT̂ −1
R 
̂−1. (14)

6
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The terms in the right-hand side of equation (14) are the left-off-diagonal matrix, the diagonal
matrix and the right-off-diagonal matrix, accordingly. Therefore, one obtains a closed
nonlinear equation for the matrix T̂L that leads to a homogeneous in time statistics of the
matrix. Next, we obtain for components of the diagonal matrix ∂t 
̂
̂−1 expressions that
are random variables with the statistics homogeneous in time. Therefore, ln 
1, ln 
2 and
ln 
3 are subjects of the central limit theorem. Typically, the variables behave linear in
the time t with coefficients of the order of λ. The situation with the matrix T̂R is slightly
more complicated since there are the exponential factors 
1,
2,
3 in the last term of
equation (14). Therefore, some components of the matrix T̂R behave exponentially in time
like the factors.

For our flow, which is composed of the steady shear flow and the random component,
the matrix of the velocity gradients �ji = ∂ivj is a sum of the shear term and the random
component:

�ji(t) = sδj1δi2 + σji(t). (15)

Here the first axis of the reference system is directed along the shear velocity that varies along
the second axis, and s is the shear rate. The random matrix σji is zero in average and should
be characterized in terms of its correlation functions. Note that the trace of the matrix is zero,
tr σ̂ = 0.

Based on the leading role of the shear term in expression (15), one obtains from
equation (14) for T̂L a hierarchy χ � χ1 � χ2. Therefore, in the main approximation
in λ/s the only component, σ21, is relevant and the equation for T̂L is reduced to

∂tχ = s − χ2σ, (16)

where σ ≡ σ21. We conclude that the variable χ possesses a homogeneous in time statistics,
in accordance with our general expectations. Note that a similar equation was obtained for
the tilt angle in [21]. However, our approximation implies χ > 0 whereas the tilt angle
can be either positive or negative. Note that χ ∼ s/γ � 1 as follows from equation (16).
Keeping the main in χ contributions to the diagonal terms in equation (14) one obtains
diag(∂t 
̂
̂−1) = (−χσ, χσ, 0). Therefore, in this approximation

diag 
 = (e−ρ, eρ, 1), (17)

∂tρ = χσ. (18)

If t � λ−1, then typically ρ ∼ λt � 1.
One concludes from the equations for ζ1, ζ2, ζ3 following from equation (14) that the

variables ζ1 and ζ2 are ‘frozen’ at t � λ−1 at values much less than unity, whereas ζ3 ∼ eρ .
Based on the results obtained for the matrices T̂L, 
̂ and T̂R one finds the eigenvalues of the
matrix Ŵ . In the main approximation in λ/s we obtain ρ1 = ρ, ρ2 = 0, ρ3 = −ρ. Note that
the expressions together with equation (18) lead to the relation λ = 〈χσ 〉.

Since the variable ρ is an integral over time of a random quantity with homogeneous
in time statistics, see equation (18), the statistics of ρ possesses some universal features at
λt � 1. Namely, under the condition the probability distribution function (PDF) of ρ can be
written in a self-similar form [31]

P(ρ) ∝ exp[−tS(ρ/t)], (19)

where S is the so-called Kramer function (or entropy function). Expression (19) is a
manifestation of PDFs for the so-called intensive variables (see, e.g., [32]).

Let us consider moments of the divergence of close Lagrangian trajectories in our random
flow. The equation governing a separation between the trajectories R is ∂tRj = �jiRi , that

7
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has a solution R(t) = ŴR(0). Therefore, at t � λ−1 we arrive at the estimation R ∼ R0e
ρ .

Then the moments of R can be calculated in the saddle-point approximation (justified by the
inequality λt � 1):

〈Rn〉 =
∫

dρ P (ρ)Rn ∝ exp(λnt), (20)

λn = −S(xn) + nxn, where S ′(xn) = n. (21)

Thus, the exponents λn are determined by statistical properties of the flow. Note that the
Lyapunov exponent λ is expressed via λn as λ = dλn/dn|n=0. Therefore, λn ∼ λ, a separate
question concerns the n-dependence of λn.

The statistical properties of the stochastic variables χ and ρ can be analytically established
for the case where flow fluctuations are short correlated in time, see the appendix. The solution
illustrates a possible dependence of λn on the system parameters and on n.

5. Moments of the magnetic field

In our approximation, ρ2 = 0 and, therefore, expression (11) is correct where ρ1 can be
substituted for ρ, see above. To find a time dependence of the magnetic field moments one has
to perform an additional average of expression (11) over space that is equivalent to averaging
over the ρ statistics. Thus, the 2nth moment of the magnetic field induction is written as

〈B2n(t)〉 =
∫

dρ P (ρ)
B2n(t)�. (22)

One should substitute here B2n ∼ exp(2nρ)B2n
0 for the diffusionless regime or expression (11)

for the diffusion regime. Since in our case ρ1 = ρ and ρ2 = 0, both, equations (9) and (10),
give the same law


B2n� ∝ exp(nρ). (23)

Integral (22) can be calculated in the saddle-point approximation, like for moments (20).
Substituting into equation (22) expression (23) and function (19) and then performing the
calculation one finds γn = λ2n for the diffusionless regime and γn = λn for the diffusion
regime. Thus, we related the dynamo exponents introduced by equation (2) to the statistical
properties of the flow.

The main contribution to the moments 〈B2n(t)〉 is associated with the component B1 of the
magnetic induction directed along the velocity of the shear flow. Let us now analyze moments
of the component B2 directed along the gradient of the shear flow, 〈B2n

2 〉. The moments are
much smaller than the moments 〈B2n(t)〉; therefore, their ratio is a measure of the magnetic
field anisotropy caused by the strong shear flow. One finds from equations (13) and (17) that⌊
B2

1 (t)
⌋ = χ2

⌊
B2

2 (t)
⌋

. Thus, χ is a measure of the magnetic field anisotropy and χ−1 is
the tilt angle θ of the magnetic blobs to the shear velocity, see figure 1. Since the variable
χ possesses a homogeneous in time statistics, the factor χ−2 does not produce a difference
in growth rates, that is both moments,

〈
B2n

1

〉
and

〈
B2n

2

〉
, are proportional to the same exponent

exp(γnt). However, the prefactors at the exponents are different.
To find the difference in the prefactors is not enough to know the statistical properties of

the variable ρ that determine the exponent. Generally, one should know a mutual probability
distribution of the fields σ(t) and χ(t) that is quite complicated object that depends on the
details of the flow dynamics. However, the situation is simplified at large n; then the moments〈
B2

1,2(t)
〉
are determined by saddle-point solutions in the functional space (instantons), see [33].

8
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In our case, the instantons are quite simple: due to the homogeneity in time, they correspond
to the variables σ and χ , independent of time. Then we find s = χ2σ and ρ = χσ t , as follows
from equation (18). Comparing the expressions to ρ = xt one finds χ = s/x. Therefore, one
obtains for the diffusion case

〈
B2n

1

〉 ≈
(

s

xn

)2n 〈
B2n

2

〉
, (24)

where the quantity xn is determined by equation (21). In the diffusionless case xn should be
substituted by x2n in relation (24). Let us note that due to the assumed inequality s � λ the
moments of B1 are much larger than ones of B2, indeed. Relation (24) is correct for n � 1.
However, it estimates correctly the ratio of the moments even for n ∼ 1, then xn ∼ λ.

There is a question concerning moments of the third component of the magnetic induction,〈
B2n

3

〉
. To analyze their behavior one should take into account the components of the matrix

T̂R , that we ignored at investigating B1 and B2. Then we conclude that the time dependence of〈
B2n

3

〉
is characterized by the same exponents exp(γnt) at the diffusion stage. As to prefactors,

they depend on the details of the flow statistics and are not universal even at large n.

6. Discussion

We have analyzed the kinematic dynamo stage when the small-scale fluctuations of the
magnetic field grow in a shear flow complemented by a relatively weak random flow.
The weakness is characterized by the inequality s � λ where s is the shear rate and λ is
the Lyapunov exponent of the flow. The shear makes the flow strongly anisotropic, which,
paradoxically, simplifies the analysis of the dynamo phenomenon since a single component
of the random velocity gradient appears to be relevant. Probably, the assumption on a small
correlation length of the magnetic fluctuations is not crucial for our scheme, since the small
scales in the magnetic field are inevitably produced by the hydrodynamic motion. Let us
explain the assertion in more detail. We demonstrated that the principal contribution to the
magnetic field moments is related to the prehistory when the diffusion does not strongly
disperse the trajectories yi back in time. If the separation is smaller than both the magnetic
correlations length and the velocity correlation length, then the exponential dynamo effect is
guaranteed. If the initial magnetic correlation length is larger than the velocity correlation
length, then just the latter will determine the boundary between the diffusionless stage and the
diffusion one.

Let us underline that in the main approximation our problem is reduced to a purely two-
dimensional velocity field (with components along the shear velocity and along its gradient).
We have proved an existence of the dynamo in this case (that is the exponential grows of the
magnetic field moments). The result obviously contradicts the statement of [34–36] that there
cannot be the magnetic dynamo in two-dimensional flows. We assert that this statement is
wrong and the error of [34–36] is in ignoring the third component B3 of the magnetic induction
(perpendicular to the velocity plane). Let us explain the error in more detail for an unrestricted
2d linear velocity profile. Then the third component satisfies the passive scalar equation and,
consequently, decays exponentially. However, B3 cannot be ignored under the divergentless
condition ∇B = 0 since the characteristic scale of the magnetic field along direction of its
growth increases faster than the magnetic field itself. One can check that all the terms in
∇B = 0 decay with the same exponent, and therefore the condition ∇B = 0 leads to an
effectively divergent in-plane magnetic field. The dynamo effect is not forbidden for such
field. A detailed analysis of the discrepancy will be published elsewhere. An existence of the
dynamo effect for purely two-dimensional flows is a subject of numerical verification.

9
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We do not specify the statistical properties of the random flow exploring only its
smoothness at scales less than the velocity correlation length η. Then it is possible to relate the
exponents γn characterizing the kinematic dynamo, see equation (2), to intrinsic characteristics
of the flow characterizing divergence of close Lagrangian trajectories, see equation (20). It
appears that γn = λ2n in the diffusionless regime and γn = λn in the diffusion regime. We
also related the anisotropy degree of the magnetic field to the same intrinsic characteristics of
the flow, see equation (24). Thus, the main features of the magnetic field statistics (including
its intermittency) are dictated by the flow statistics. Note that our general scheme does work
without essential modifications for the statistically isotropic flows or for the random flows
with other types of anisotropy too.

We have formulated the qualitative picture describing the structure of the magnetic field at
the kinematic dynamo stage. The picture can be elaborated to establish quantitative properties
of the magnetic induction correlation functions; it is the next subject of our investigation.
We hope that the structure of the functions will survive in its principal features even at the
saturation state. We believe that the strongly anisotropic case characterized by a strong shear
is more perspective from this point of view than the isotropic one. The ideology and the
analytical approach developed in our work can be expanded to the dynamics of polymer
solutions possessing elasticity that is described similarly to the magnetic field. In this way
we hope to clarify some aspects of the so-called elastic turbulence [22–24] that are still not
explained.
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Appendix. Short correlated random flow

Here we consider a strong steady shear flow complemented by a shortly correlated in time
random component. As we have already noted in the main body of the paper that, under the
condition λ 	 s (that is a manifestation of the weakness of the fluctuations), the only relevant
component of the random velocity gradients matrix is σ ≡ σ21. In the short correlated case it
can be treated as white noise, that is

〈σ(t1)σ (t2)〉 = 4Dδ(t1 − t2), (A.1)

where the factor D characterizes the strength of the noise. The value of the Lyapunov exponent
for the short-correlated case is

λ =
√

π 31/3

�(1/6)
D1/3s2/3, (A.2)

which is obtained in [37]. Thus, the condition λ 	 s is equivalent to the inequality D 	 s.
The next object of our investigation is the quantity χ statistical properties of which are

determined by equation (16). Note that one should consider large positive χ , otherwise
equation (16) would be incorrect. Introducing the variable ζ = χ−1, one derives from
equations (16) and (A.1) the following Fokker–Plank equation for the probability distribution
function P(ζ ):

∂tP = ∂ζ (sζ
2P) + 2D∂2

ζ P . (A.3)

10
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A stationary solution of the equation is

P ∝ exp

(
− sζ 3

6D

)
. (A.4)

We conclude that the characteristic value of χ is estimated as (s/D)1/3 that is much larger
than unity at our assumptions.

Let us now find values of the exponents λn. It is hard to do analytically even for the
simplest model formulated above. However, it can be easily done for a large n exploiting
the saddle-point (instantonic) approximation in the functional space [33]. The approximation
leads to the time-independent saddle-point values of χ and σ . Then we find from equations
(16) and (18) that χ = √

s/σ and ρ = √
sσ t . Therefore, to find λn one has to optimize the

product

exp

(
− tσ 2

8D

)
exp(n

√
sσ t),

where the first factor is the probability of realizing a given value of σ and the second factor is
exp(nρ). After optimizing the above expression over σ one obtains exp(λnt) with

λn = 3

25/3
s2/3D1/3n4/3 ∼ λn4/3. (A.5)

The nonlinear dependence of λn on n, λn ∝ n4/3, signals about strong intermittency of the
flow. Note that in our anisotropic case the growth rates λn increase with n slower than in the
isotropic case, where for the short-correlated flow λn ∝ n2 [15].
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