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Two-dimensional turbulence generated in a finite box produces large-scale coherent vortices coexisting with
small-scale fluctuations. We present a rigorous theory explaining the �=1 /4 scaling in the V�r−� law of the
velocity spatial profile within a vortex, where r is the distance from the vortex center. This scaling, consistent
with earlier numerical and laboratory measurements, is universal in its independence of details of the small-
scale injection of turbulent fluctuations and details of the shape of the box.
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The generation of large-scale motions from small-scale
ones is a remarkable property of two-dimensional �2D� tur-
bulence. This phenomenon is a consequence of the energy
transfer to large scales �1–3�, realized via inverse cascade.
Simulations �4,5� and experiments �6,7� show that the accu-
mulation of energy in a large-scale coherent structure is ob-
served at sufficiently long times if the friction is small
enough and does not prohibit the energy cascade from reach-
ing the system size. Recent interest in understanding the
structure of this state was sparked by experimental �8,9� and
numerical �10� observations of large-scale coherent vortices
associated with energy condensation in forced bounded
flows. One motivation for studying 2D turbulence comes
from its structural and phenomenological similarity to quasi-
geostrophic turbulence �11,12�, such as that observed in
planetary atmospheres �13�. Also as suggested in �7�, the
emergence of large-scale coherent structures in two dimen-
sions is related to the confinement transition in magnetic
plasmas whose slow dynamics is described by quasi-2D hy-
drodynamic equations.

In this Rapid Communication, we examine the large-scale
vortices, generated by inverse energy cascade in a finite box.
We begin our discussion with a brief review of the classical
theory of inverse cascade by Kraichnan, Leith, and Batchelor
�KLB� �1–3�. The essential difference of 2D turbulence and
three-dimensional turbulence is the presence in the former of
a second inviscid quadratic invariant, in addition to energy,
the enstrophy. Therefore, stirring of 2D flow generates an
enstrophy cascade from the forcing scale l, down to smaller
scales �direct cascade� and it also generates an energy cas-
cade from the forcing scale up scales �inverse cascade�. Vis-
cosity dissipates enstrophy at the Kolmogorov scale rvisc,
which is much smaller than l when the Reynolds number is
large. In an infinite system, the energy cascade is eventually
blocked at the scale of rfric by friction, thus resulted in
establishing the two-cascade stationary KLB turbulence for
rfric� l. In the Kolmogorov phenomenology �see, e.g., �14�
for a review�, KLB predicts the velocity power spectrum k−3

in the direct cascade and k−5/3 in the inverse cascade, where
k is the modulus of the wave vector. These KLB theoretical
predictions were confirmed in simulations �15� and labora-
tory experiments �16–18�. �Note also the discussion of ex-
perimental evidence of simultaneous inverse and forward
cascades in the infinite system setting �19�.� If the frictional
dissipation is weak and rfric exceeds the system size L, then

ultimately the KLB regime is not applicable and a large-scale
coherent flow �occasionally called a condensate� emerges
�20�.

Laboratory experiments showed that the coherent flow
contains one or two vortices, depending on the boundary
conditions, and takes roughly a half of the system size �9,21�.
Numerical simulations of �10� reported a well-defined scal-
ing for the average velocity profile in the interior, V�r−�, as
a function of distance r, from the vortex center, and
��1 /4. Similar scaling was also observed in the thin layer
experiment �9�. Figure 1 summarizes the results of �9,10� for
the average vorticity �, demonstrating the �r−5/4 behavior
corresponding to �=1 /4. �We mention the experimental re-
sults of �9� to emphasize emergence of the scaling range,
possibly not reached in preceding experiments, e.g., �21�,
presumably because of a somehow higher surface friction.�

Our main result is a rigorous derivation of the �=1 /4
scaling and an explanation of why this scaling is universal.
The universal scaling emerges as the result of a nonlinear
balance between the small-scale turbulence and the coherent
structure generated by turbulence. The key feature that al-
lowed us to derive this analytical result is the smallness of
the amplitude of the background velocity fluctuations in
comparison with the coherent part. In essence, this small
parameter provides an asymptotically accurate truncation of
the generally infinite system of Hopf equations on the level
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FIG. 1. �Color online� Average vorticity profile vs distance from
the vortex center observed in simulations ��A�, Fig. 2�C� from �10��
and experiment ��B�, Fig. 3 from �9��. On both plots straight lines
correspond to ��r��r−5/4.
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of third-order correlation functions of velocity and vorticity.
The �=1 /4 scaling emerges from an explicit solution of the
resulting system of equations. The main contribution to the
third-order Hopf equation �for the third-order correlation
function� is associated with a zero mode of the respective
integro-differential operator representing the homogeneous
part of the equation. This result is substituted into the
second-order Hopf equation, and thus treated as a linear in-
homogeneous equation for the pair-correlation function, with
the third-order correlation function calculated on the previ-
ous step. Similarly, the first-order Hopf equation is a linear
inhomogeneous equation with respect to the first moment
�the coherent term�, resulting in a closed expression for the
scaling exponent. Our strategy below is to derive the set of
equations, introduce the truncations, and show that a scale-
invariant expression with �=1 /4 gives a solution consistent
with the assumptions made in the process of the derivations.

The 2D velocity field v is assumed to be controlled by the
Navier-Stocks equation

�t� + �v��� = − �� + ��2� + curl f , �1�

formulated in terms of the vorticity �=curl v. One assumes
that the fluid is incompressible, � ·v=0. The terms on the
right-hand side of Eq. �1� represent the bottom friction, the
viscosity, and the turbulent forcing, respectively. The force
per unit mass f is assumed to be random, of zero mean, and
statistically homogeneous in space and time, and correlated
at an intermediate scale l called the pumping scale. We study
the case in which the pumping scale is much smaller than the
size of the system �of the box�, L, and it is much larger than
the Kolmogorov �viscous� scale rvisc. The energy density �per
unit mass� � injected by the forcing f in a unit of time per
unit mass is considered constant in space and time.

If one starts from zero velocity and turns on the pumping
f at t=0, in time 	d� l2/3 /�1/3 a direct enstrophy cascade is
established in the range of scales between the pumping and
the viscous scales. The establishment of this direct cascade is
followed by a much slower growth of the inverse energy
cascade from the pumping scale to larger scales. The energy-
containing scale of the inverse cascade grows as
linv��1/2t3/2, until the scale reaches the system size L at time
	inh��L2 /��1/3. After that the system has no choice but to
deviate from spatially homogeneous KLB regime, producing
a large-scale coherent flow. This picture is correct provided
that the bottom friction is sufficiently weak, �
�1/3L−2/3, as
assumed in the following. Establishing the spatial profile of
the resulting average velocity at times t�	inh is our main
objective.

Once the large-scale coherent flow has emerged, the total
velocity field v�t ,r� can be decomposed into coherent and
fluctuating parts, v�t ,r�=V�t ,r�+u�t ,r�. By definition of the
coherent part, �u�=0, where angular brackets indicate aver-
aging over the temporal scale of the vortex turnover time,
�L /V. After a transient period, i.e., once the large-scale flow
has matured, the injected energy is mainly accumulated in
the coherent component of the velocity V�t ,r�, which grows
slowly in time, �	t, corresponding to the linear in time
growth of the total energy. Ultimately, the average velocity
profile V is stabilized by the bottom friction, then the veloc-

ity amplitude is determined by the balance between energy
injection and dissipation, where thus V�1 /	�. Let us con-
sider averaging Eq. �1�,

��t + ��� + V � � + ��u
� = 0, �2�

where �= ��� is the average vorticity and 
=curl u stands
for respective fluctuations. In Eq. �2� we have ignored vis-
cosity and dropped pumping, which are both irrelevant at
scales larger than l. Our description, detailed below, is based
on the assumption that the coherent flow dominates fluctua-
tions, V�u, possibly everywhere except for a small neigh-
borhood of the vortex core. �This assumption can be accu-
rately verified via a self-consistent multistep procedure
including an analysis of the multipoint correlation functions.
A detailed discussion of these technical details is postponed
for a longer publication.�

In the periodic setup, e.g., realized in simulations �10�, a
pair of vortices forming a dipole is formed, whereas in a
bounded box setup one observes a single vortex, as seen in
the experiment of �9�. Other structures, e.g., more than one
pair of vortices or stripes or combinations of stripes and vor-
texes, can also emerge in boxes of special shapes, such as
those with large aspect ratios or nontrivial topology �e.g.,
stripes and rings� �22,23�. In the following we will focus on
an analysis of a vortex, which applies equally well to either
of the two cases mentioned above. �Note also that our ap-
proach to describing the shape of the vortex is based on the
analysis of stochastic Navier-Stokes, and as such it is dis-
tinctly different from the quasiequilibrium 2D approach
�22–24�, postulating a distribution of Gibbs kind controlled
by the set of Lagrangian multipliers associated with different
moments of vorticity.�

An emergence of the coherent vortices results in an inho-
mogeneous redistribution of energy. After a vortex �or pair of
vortices� has emerged, the global profile of V�t ,r� shows two
regions, corresponding to a vortex exterior and an interior,
respectively. In the vortex exterior the average velocity is
estimated as V�	�t or V�	� /� �the latter corresponds to
the stationary case, in which the turbulence is stabilized by
friction�, while inside the vortex the coherent part is much
larger and �up to small variations we are ignoring� its com-
ponents are V�=V�r� and Vr=0. Inspired by the results of the
numerical �10� and laboratory �9� experiments, we assume
that the spatial profile of the coherent part in the interior of
the vortex is algebraic, that is,

V�t,r� = V0�L/r��, �3�

where the distance r is measured from the vortex center and
V0 estimates the coherent part of the velocity in the vortex
exterior. Equation �3� is correct for the rcore
r
L range.
Here, rcore is the size of the vortex core. The term, V��, in
Eq. �2� is zero due to the isotropy of the vortex. Therefore,
the vortex profile is determined by a balance of the first and
third terms in Eq. �2�. Obviously, Eq. �2� is not closed and
one naturally needs to consider an additional equation for the
pair correlation function of velocity and vorticity fluctuations
inside the vortex.

In fact, it is convenient to derive these extra equations for
the averages in two steps, first rewriting Eq. �1� as

CHERTKOV, KOLOKOLOV, AND LEBEDEV PHYSICAL REVIEW E 81, 015302�R� �2010�

RAPID COMMUNICATIONS

015302-2



��t + ��ur + ��N̂−1K̂ur − ��r2N̂−1�u � 
� = 0, �4�

where both the force and the viscosity terms are dropped.
The differential operators in Eq. �4� are

N̂ = r���� + 1�2 + ��
2� , �5�

K̂ = V���
2 + 2�� + 2 + ��

2� − ���
2V� , �6�

where �=ln�r /L�. Then, we introduce the pair correlation
function of the radial velocity fluctuations

��t,r1,r2,�� = �ur�t,r1,�1�ur�t,r2,�2�� , �7�

where �=�1−�2. The correlation function is invariant under
the transformation �→−�, r1↔r2, corresponding to the per-
mutation of the points labeled by 1 and 2. Using this prop-
erty and assuming analyticity of the pair correlation function
�7� for small � and �=ln�r1 /r2�, we derive the following
expression for the single-point cross object of the second
order, �ur
�, appearing in Eq. �2�,

�ur
� = −
2

r
B̂����

−1��r,�,��
�=0,�=0, �8�

where r=	r1r2 and B̂=1+r�r /2. Note that only the antisym-
metric in � term in � contributes to �ur
�.

Multiplying Eq. �4� by the velocity at another spatial point
and averaging the resulting equation over fluctuations, one
derives

N̂1
−1N̂2

−1�N̂2K̂1 − N̂1K̂2���r1,r2,��

= r1
2N̂1

−1�1�u�r1�
�r1�ur�r2��

− r2
2N̂2

−1�2�ur�r1�u�r2�
�r2�� , �9�

where the irrelevant �asymptotically small� terms, containing
the time derivative and the friction coefficient �, are omitted.
The operator on the left-hand side of Eq. �9� can be rewritten
as

N̂2K̂1 − N̂1K̂2 = �r2V1 − r1V2�����
2 + ��

2 + B̂2�2 + �1 − �2����
2

+ ��
2 + B̂2� − 4B̂2��

2 + 2B̂�1 − �2�coth��1

+ ���/2���� . �10�

When the separation r1−r2 is sufficiently small, the
right-hand side of Eq. �9� controls the inverse energy flux,
exactly as in the traditional KLB case. Indeed, in the spa-
tially homogeneous case, the correlation function
�u��r1�
�r1�u��r2���� depends solely on r1−r2 and it is
also divergenceless due to �u=0. Substituting the Kolmog-
orov estimate �−��0����
r1−r2
�2/3 into the left-hand side
of Eq. �9�, one finds that the term is negligible for

r1−r2
=r12
��, where ���r�=�3/4r3/2�−1/4�r /L�3�/2 is thus
an important scale dependent on the distance from the vortex
core, r. One concludes that, for r12����r�, the inverse cas-
cade is modified by the coherent flow.

However, due to isotropy the term in � related to the
KLB cascade does not contribute to the object of our prime
attention, �u
�. First, we look for such solutions, also re-

maining regular at small r12, in terms of the zero modes of
the operator on the left-hand side of Eq. �9�, thus ignoring
the smaller right-hand side in the equation. However, these
zero modes do not contribute to �ur
�, because the last term
in operator �10� prohibits odd in � zero modes to be regular
for small �. Therefore, to extract a nonzero contribution to
�ur
�, one has to account for a correction to �, ��, related
to the right-hand side of Eq. �9�. To get a nontrivial contri-
bution one ought to carry our analysis to the next order in the
Hopf hierarchy describing the triple velocity correlation
function, F= �vr�r1�vr�r2�vr�r3��.

The principal terms in the third-order Hopf equation gov-
erning F are


 �

��1
N̂1

−1K̂1 +
�

��2
N̂2

−1K̂2 +
�

��3
N̂3

−1K̂3�F = 0. �11�

where we again omitted asymptotically irrelevant terms, in-
cluding the time derivative term, the friction term, and also
the contribution related to the fourth-order correlation func-
tion. Formally, any zero mode of the operator K satisfies Eq.
�11�, and the quest is to find the scale-invariant zero mode of
K, Zm=exp�im�+�m��, where m is an integer �to guarantee
smoothness at the smallest scales� and �m=	m2+�2−1−1,
which generates a nonzero contribution into �ur
� via Eqs.
�8� and �9� and has the smallest possible �m. The first terms
in the hierarchy of possible candidates are

F � Zm�r1,�1�Zk�r2,�2�Z−m−k�r3,�3� + ¯ , �12�

where the ellipsis represents the sum of the terms that
are obtained from the first product in Eq. �12� by permuting
the indices 1,2,3. However, expression �12� generates an
odd outcome for the right-hand side of Eq. �9�, thus resulting
in an even correction �� giving no contribution
to �ur
�. Therefore, one has to look for higher-order terms in
the hierarchy. One finds that the desired zero mode
can be constructed with the help of an auxiliary object,

Xm=exp�im�+ ��m+1+����, satisfying �N̂m�−1K̂mXm
=AmZm, where Am are real numbers,

F = �mXm�r1,�1�Zk�r2,�2�Z−m−k�r3,�3� + ¯

+ �kZm�r1,�1�Xk�r2,�2�Z−m−k�r3,�3� + ¯

+ �−k−mZm�r1,�1�Zk�r2,�2�X−m−k�r3,�3� + ¯ ,

�13�

and the ellipses stand for the sum of terms which accounts
for respective permutations. Equation �13� is a solution of
Eq. �11�, provided �mmAm+�kkAk−�−m−k�m+k�A−m−k=0.
Choosing m=k=1 we find a term giving a nonodd

�r3�+	3+�2−3 contribution to the right-hand side of Eq. �9�.
Then the correction to the pair correlation function is

���r4�+	3+�2−2. This result, finally substituted into the last
term in Eq. �2�, translates into the 4�−3+	3+�2=−� rela-
tion, whose solution is �=1 /4. To conclude, the ZZZ and
ZZX terms, represented by Eqs. �12� and �13�, are the only
structures possibly contributing to the third-order correlation
function F, and of the various allowed �nonzero� contribu-
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tions, the ZZX term �13� with m=k=1 dominates F at
r1,2
L.

Substituting the expressions, corresponding to �=1 /4,
into the Hopf equations of the first, second, and third orders
and estimating all the terms dropped in the derivation pro-
cess confirms the validity of our asymptotic approximations.
This completes our derivations.

We now summarize our results. The main and somewhat
surprising result we just derived concerns universality of the
vortex mean profile. The scaling of the vortex shape is con-
trolled primarily by a nontrivial zero mode of the operator on
the right-hand side of Eq. �11� and otherwise it follows from
scaling relations between pairs of terms in the first- and
second-order Hopf equations. Nothing in this solution is sen-
sitive to the geometry of the box or the details of the pump-
ing. The solution also does not depend on the type of viscos-
ity �hyper or normal� or the damping coefficient. Our
conclusion does not depend on whether or not the coherent
part grows in time or if it was already saturated by damping.
Finally, our results make predictions going far beyond the
main scaling statement, in particular the detailed structure of

angular harmonics is predicted for pair and triple correlation
functions in the coherent regimes. Our theoretical statements
call for accurate experimental and numerical tests.

We conclude by mentioning a number of other compre-
hensive questions raised by this study. Suppose that a vortex
or a pair of vortices, internally tuned and built up from the
energy flux, is produced but then the pumping is switched
off. Will the initially formed vortex keep its shape dynami-
cally? Also if a somewhat different in shape, nonuniversal,
and large-scale vortex is created, will it transform via decay-
ing turbulence into the universal shape predicted above? We
conjecture that answers to both questions are affirmative.
These questions certainly require a careful investigation in
the future.
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