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Interaction of solitons through radiation in optical fibers with
randomly varying birefringence
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Propagation of solitons in optical fibers is studied taking into account the polarization mode dispersion (PMD)
effect. We show that the soliton interaction caused by the radiation emitted by solitons due to the PMD
disorder leads to soliton jitter, and we find its statistical properties. The theoretical predictions are justified
by direct numerical simulations. © 2004 Optical Society of America
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Optical lines are widely used for transmission of
information. In modern high-speed fiber communi-
cation the noise induced by optical amplif iers and the
birefringent disorder are two major sources of trans-
mission failure. Although the amplif ier noise is short
correlated in time, the birefringence is practically
frozen. The birefringent disorder leads to fast ran-
dom rotation of the principle axes of the polarization
tensor along the f iber. Under certain conditions, this
results in effective averaging of the nonlinearity in the
signal propagation.1 – 8 Then the signal is described
by the Manakov equation.9 A frequency dependence
of birefringence leads to splitting the pulse into
two polarization components, which results in pulse
broadening known as polarization mode dispersion
(PMD).10– 12 Since the first report of this phenome-
non, the PMD effect has been studied extensively.13 – 22

In this Letter we investigate the inf luence of the
PMD disorder on information transmission in the non-
linear regime when solitons are information carriers.
We assume that the signal propagation is described
by the Manakov equation and the PMD disorder is
weak. In the presence of the PMD disorder, solitons
are perturbed during propagation. This leads to
soliton degradation23 and soliton jitter.24,25 Here we
are interested in the effects related to the radiation
emitted by solitons due to the PMD disorder. The
radiation moves away from the soliton and inf luences
other solitons, making it a mediator of the soliton
interaction, which was first observed numerically in
Ref. 26. Here we examine the statistical properties
of this interaction.

In the reference system rotating together with ran-
domly varying principal polarization axes one finds
(after averaging over distances larger than the corre-
lation length of the rotations) an equation for the en-
velope of the electromagnetic field1 – 4:

i≠zC 1 i bm�z�≠tC 1 ≠2
tC 1 2jCj2C � 0 . (1)

Equation (1), written with proper dimensionless units,
describes the signal propagation on scales larger
0146-9592/04/111245-03$15.00/0
than the birefringence correlation length. Here z
is the position along the fiber and t is the retarded
time. The envelope C is a two-component complex
field in which the components stand for different
polarization states of the optical signal. The additive
noise factor is omitted (this contribution leading to
the Elgin–Gordon–Haus effect27,28 can be examined
separately). Equation (1) is the Manakov equation
supplemented by an additional term responsible for
the PMD effect. The PMD matrix bm is a random
Hermitian 2 3 2 traceless matrix. The birefringent
disorder is stable at least on all the propagation-related
time scales, i.e., bm can be treated as t independent.
It is expressed as bm � h1ŝ1 1 h2ŝ2 1 h3ŝ3, where ŝi
are Pauli matrices and hi are real-valued functions
of z. Since the correlation length of random fields
hi is short and observable quantities are expressed
by integrals along the line of hi�z�, one can apply the
central limit theorem. Hence hi�z� can be treated as
a Gaussian random process characterized by

�hj � � 0 , �hj �z1�hk�z2�� � Ddjkd�z1 2 z2� , (2)

where D represents the disorder intensity. We as-
sume that PMD disorder is weak, i.e., D ,, 1. The
isotropy of Eq. (2) is due to averaging over rotations
of the principal axes.

The pure Manakov equation has exact solutions
corresponding to solitons with different polarizations.9

We assume that at the input to the line the perfect
soliton profiles with a linear polarization are gen-
erated, corresponding to each bit 1. Then, during
the signal propagation, the disorder perturbs the
profile and leads to the emission of radiation by the
solitons. The signal can be decomposed to a localized
part (solitons) and a delocalized part (radiation). We
assume that the solitons are well separated. Then,
near a given soliton, the solution envelope C can be
written as

C � exp�iw�
Ω

he
cosh�h�t 2 y��

1 v
æ

. (3)
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Here h and y are the amplitude and position of the
soliton, respectively, and w is a z- and t-dependent
phase. The unit complex vector e characterizes the
polarization of the soliton, and v describes radiation in
its vicinity. Because of the weakness of the disorder,
the radiation can be examined in the linear approxima-
tion. It is convenient to expand v over the eigenfunc-
tions of the linearized Manakov equation near a given
soliton pattern. To find the eigenfunctions, we use the
Kaup perturbation technique29 around each soliton and
match the expressions of the eigenfunctions in the re-
gions between the solitons. Then we find an explicit
profile for v that is a superposition of contributions
produced by sources proportional to hj and localized
at the solitons.

In the region z ,, D21, where the variations of the
soliton amplitudes are negligible, the principal disor-
der effect is in f luctuations of the soliton position y re-
lated to the soliton interaction through radiation. Let
us examine this effect assuming that the soliton polar-
ization is e � �1, 0� and h � 1. An inf luence of the
radiation on the soliton parameters can be found by
projecting Eq. (1) onto the eigenmodes, corresponding
to variations of the soliton parameters and radiation in
Eq. (3). Then in the second-order approximation in v
the equations describing variations of y are

≠zb � Fvv 1 Fvh 1 Fvv , (4)

≠zy � 2b 1 h3 1 P 1 P , (5)

where b is the phase velocity of the soliton. The h3
term in Eq. (5) corresponds to the direct jitter.24,25

The inf luence of radiation is described by the second-
order terms:

Fvv � 2
Z

dx tanh x cosh22 xjv2j2,

Fvh � 2Im
∑

�h1 2 ih2�
Z

dx
tanh x
cosh x

≠tv2

∏
,

P � 2
Z

dx x cosh21 x Re��h1 2 ih2�≠tv2� ,

Fvv �
Z

dx
tanh x
cosh2 x

�4jv1j2 1 v21 1 �v�
1 �2� ,

P � i
Z

dx cosh22 x�v21 2 �v�
1 �2� , (6)

where x � t 2 y and v1 and v2 are polarization compo-
nents of radiation field v .

In two-soliton dynamics, radiation v is a superpo-
sition of two contributions from the solitons. Calcu-
lating these contributions, substituting the result into
Eqs. (6), and then solving Eqs. (4) and (5), we find solu-
tions corresponding to a given disorder hj . Then the
soliton position shifts dy1 and dy2 can be expressed
as integrals of random processes. Hence, by the cen-
tral limit theorem, the quantities dy1 and dy2 can be
treated as Gaussian random variables asymptotically
at large z. Statistical properties of such variables are
completely characterized by their averages and vari-
ances. We find that the average values of dy1 and dy2
are negligible. Thus the main objects we need to cal-
culate are mean-square f luctuations of the quantities,
which determine the soliton jitter. Specifically, we ex-
amine two different cases: parallel and orthogonal po-
larizations. Averaging in accordance with Eq. (2), we
obtain in the first case

��dy1,2�2� �
4
3

GkD2z3 1 Dz , (7)

��dy1 2 dy2�2� �
8
3

�1 1 cos�2a��GkD2z3, (8)

where Gk � 0.204 and a is the phase mismatch of the
solitons. The z3 term of Eq. (7) corresponds to the
radiation-mediated jitter, whereas the last term cor-
responds to the direct jitter; i.e., the radiation effect
becomes dominant for z .. D21�2. The correlation be-
tween the soliton displacements is explained by the
strong correlation between the radiation emitted by
solitons, which is related to the long correlation of the
PMD disorder in time. For the orthogonal polariza-
tions we find

��dy1,2�2� � Dz , ��dy1 2 dy2�2� � 4Dz . (9)

In this case the radiation-mediated interaction gives
zero contribution.

To confirm the theoretical predictions, extensive
computational experiments are performed based on
direct Monte Carlo simulation of Eq. (1). In Fig. 1
we plot the average square f luctuation ��dy1 2 dy2�2�
of the intersoliton shift as a function of propagation
length z for the parallel polarization. We chose the
noise intensity D � 0.01252. For the sake of compari-
son with Eq. (8), three different phase mismatches
a � 0,p�4,p�2 are considered. For each a we aver-
age the f luctuations over 40 realizations. The solid
curves stand for the numerical results, and the dashed
curves stand for the theoretical predictions of Eq. (8).
The same setup is used for the orthogonal polarization

Fig. 1. Parallel polarization state: mean-square inter-
soliton shift as a function of z for three phase mismatches.
Dashed curve, theory; solid curve, numerics.
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Fig. 2. Orthogonal polarization state: mean-square in-
tersoliton shift as a function of z. Dashed line, theory;
solid curve, numerics.

case. In Fig. 2 we plot ��dy1 2 dy2�2� and compare
it with Eq. (9). The figures show reasonably good
agreement between theory and numerics.

In the N-soliton case radiation v is a superposition
of N contributions emitted by solitons. The princi-
pal terms on the right-hand side of Eqs. (4) and (5)
(leading to major z contribution to soliton jitter) can
also be written as a sum of N contributions originat-
ing from each soliton. This leads to the factor N in
the expression for ��dyi�2�. The average square of the
intersoliton displacement is sensitive to their phase
mismatch as in Eq. (8). However, the main contribu-
tion to the average is ~N at large N , and it is phase
independent.

The effect examined in this Letter is the interaction
between solitons mediated by their radiation. This
leads to random displacements ( jitter) of the solitons,
which appear to be Gaussian random variables. In
contrast with the nonintegrable case,30 the systematic
drift is zero, which is explained by the ref lectiveless
character of the radiation scattering on solitons in
the integrable Manakov equation, similar to the
case of random chromatic dispersion.31 The jitter
is independent of the soliton separation because of
the 1d nature of the fiber. The dependence of the
displacement variance on line length z and disorder
strength D for the two-soliton case is determined by
Eqs. (8) and (9) for the parallel and orthogonal po-
larizations, respectively. The jitter is suppressed for
the orthogonal polarization and the phase mismatch
a � p�2. In the multisoliton case no such cancella-
tion occurs and the typical displacement caused by the
radiation-induced interaction is proportional to z3�2 as
for the Elgin–Gordon–Haus jitter.27,28 Moreover, the
displacement variance caused by the PMD increases
~N1�2 as the number of solitons N grows in the
fiber, which can be potentially dangerous especially in
long-distance high-speed communication systems.
The authors are grateful to M. Chertkov, I. Gabitov,
and I. Kolokolov for valuable comments and useful
discussions. Y. Chung’s e-mail address is ychung@
cnls.lanl.gov.
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