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NEARLY SPHERICAL VESICLES: SHAPE FLUCTUATIONS
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Isolated vesicles with “insufficient” area have a finite surface tension and
spherical shapes, whereas vesicles with “excess" area are necessarily non spherical.
We consider the crossover behavior between both kinds of vesicles occurring at
increasing the equilibrium area. In the mean field approximation it is a second
order phase transition from the spherical to a non spherical shape. We demonstrate
that fluctuations smear the transition. The critical behavior of amplitudes of
fluctuations and of their characteristic times is investigated.

PACS 05.20, 82.65, 68.10, 82.70.-y

A vesicle is a water droplet within a membrane of a closed shape. Vesicles are
formed spontaneously in solutions of lipid molecules and these fascinating physical
systems have generated considerable current interest (see e.g. the book {l] and
the review [2]). In the present work we consider the role of shape fluctuations of
nearly spherical vesicles.

There are two principal contributions into the energy of a vesicle. The first
one is the bending energy [3]. We are interested in fluctuations which do not
change the topology of the vesicle. Then we can take into account only the term
with the mean curvature:

F, ='°/dA L, ’ 1
curv 2 Rl R2 H ()

where the integral is taken over the surface of the vesicle and R;, Ry are its local
curvature radii. The second contribution is the elastic energy [4, 5] related to
variations of the surface density of molecules n, of the membrane:

n, —ng)?

Fe1=/dAB-(-—iZ—Lgi, 2)
where B is the elastic modulus of the membrane and ng is its equilibrium density.

The water 1inside the vesicle is practically incompressible and therefore the
volume V of the vesicle is the conserving quantity. The next quantity which can
be regarded as the conserving one is the number N of the molecules constituting
the membrane. The behavior of the vesicle depends on the relation between the
equilibrium area Ap = N/no and the area 4wR? of the sphere with the volume
V: V=4xR3/3. Tt is convenient to characterize the relation by the dimensionless
parameter z = (4wrR% — Ap)/4wR?. In the case of “insufficient area” z > 0 the
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membrane is stretched and the energy (2) forces the membrane to have the
spherical shape. In the case of “excess area” z < 0 the energy (2) forces the
membrane to have the surface density n, =no that is to have the equilibrium area
Ao = N/ng. Then the shape of the vesicle cannot be spherical. We will examine
the crossover behavior between these two tegimes occurring at small z.

From (2) it follows that the equilibrium condition with respect to n, at a
given number of molecules N reads n, =const. Substituting n, = N/A4 into {2} we
find Fy as a function of A. At small z the area A is close to Ay or to 47R?
and we find from (2) in the main approximation

Fy=2xR*Bz? + Bz A, + Q%Ai, (3)
where A; = A — 4xR?. Note that A; is a positively defined quantity since the
surface area of the vesicle with the volume V cannot be less than the surface of
the sphere with the volume V.. Therefore the mean field analysis reproduces the
above mentioned picture: the minimum of the energy (3) at = > 0 is achieved
at A; =0 what corresponds to a sphere while at =z < 0 minimizing (3) gives
Ay =4nR%|z| what means that the equilibrium shape is non spherical one.

Thus in the mean field approximation we deal with the continuous phase
transition with z as the control parameter. Below we will study fluctuational
effects which play a crucial role at small z. Note that bending fluctuations lead
to the logarithmic renormalization of the modulus x introduced by (l). The
renormalization is associated with nonlinear fluctuational effects described by the
same bending energy (1) and is characterized by the dimensionless parameter
T/(8xx) (see for details [6], [7]). We will believe 7'/(8xx) to be the small
parameter of the theory (it is usually equal to 10~2 — 10-3) and therefore we
may neglect this renormalization. The main our observation is that at small z
nonlinear fluctuational effects related to the elastic energy (3) are much stronger
than ones associated with (1).

To describe shape fluctuations we introduce the displacement u of the vesicle
from the sphere of the radius R. Then the shape of the vesicle is determined by
the equation r =R+ u(d, ), where r,0,p are spherical coordinates. At small z the
shape of the vesicle is slightly deviated from the sphere. It means that « < R
and all quantities can be expanded in u. The second order term of the Helfrich
energy (1) is

K
Foury = ﬁ§l(1+ D% +1—2)|wum|?, (4)

where up, are coeflicients of the expansion of u in the series over the spherical
harmonics. The same manner one can rewrite the energy (3) using the main term
of the expansion of A;:

A1=% S (@ +1- 2wl (5)

I>0m

Here and below the value of ugo is implied to be expressed via wup, with [ >0
from the incompressibility condition V = const and is consequently excluded from
the set of independent variables u,. Note that the terms with !=1 in (4,5) are
zero as it should be since the contributions corresponding to the first spherical
harmonic are displacements of the vesicle as a whole.
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From (5) it follows that the energy (3) contains the forth order term in u. It is
convenient to exclude formally this anharmonic term introducing the auxiliary field

4100
¢. Namely, exp(—(Feury + Fa1)/T) = [ dé¢/idoexp(—Fy/T), where ¢2=T/(2BR?)

and
Fy = Feyry — 27R2B¢® + Bé(A; + 47R%z). (6)

Correlation functions of v can now be rewritten as averages with the probability
distribution function exp(—Fy/T) over both u;, and ¢.

Integrating the probability distribution function exp(—F4/T) over up, one
obtains the effective energy Feg: [1,,,. [ duim exp(—Fs/T) = exp(—Feg/T), containing
the full information about correlation functions. For example

+ico
T
(fam ) :__/ 49 expl=Fea/T) G o) (wii + 1)/ B 4 B3) ()

Since the energy (6) is harmonic in u the integration to find F.s can be performed
explicitly. Omitting unessential ¢-independent terms we obtain

Feg — —2xR*B¢° + 47 R* Bz ¢

K

+§Z(2z+1)1n e+ 155+ 9] - (8)

If || > k/BR? then the summation over [ in (8) can be substituted by integration
and we find (again omitting ¢-independent terms)

F.g — —2nR*B¢% + 4xR*Bz¢+ T

BR? e

5 élIn . (9)
One can check that the integral in (7) is determined by the narrow vicinity of

the saddle point ¢ if |¢| > «/BR?. Then ¢ in the denominator can be substituted

by ¢ and we find (jwm|?) = T/[(I* +1 - 2)(xI{l + 1)/R® + B$)]. The equation for

¢ is the extremum condition for the energy 9)

¢;=:c+—’—T—ln:. (10)

Note that the logarithmic term in the right-hand side of (10) has the same
origin as the logarithmic contribution to the surface tension associated with the
compressibility of the membrane discussed in [8]. If r » 7/(87x) then ¢ ~ z. The
value of ¢ diminishes with decreasing z and for ¢ « T/(8rk) we find from (10)

$zexp(§7r—nz) ) (11)

this regime is realized at negative z. Thus in this region ¢ decreases fast at
decreasing z. Since the expression (9) is correct at |¢| > x/BR? we conclude from
(11) that the expression (9) can be used at z > —zo where z¢ = (T/87x)In(BR?/x).
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Note that In(BR?/x) should be treated as a large parameter of the theory, in
real experimental situation it is usually 15 — 20.

B has the meaning of the gap in the excitation spectrum and it plays the
role of the surface tension. The equation (10) coincides with one formulated by
Swift [9] for the gap in the structure function of mass density fluctnations near
the nematic—smectic-C phase transition. It is not an accidental coincidence since
there is an analogy between the proposed theory and the weak crystallization
theory developed by Brazovsky -[10] (the description of the theory can be found
in our review [l1]). However there exists an essential difference between the
considering crossover and the weak crystallization. At the crystallization the first
order phase transition occurs what means that near the transition point there are
two phases (symmetric and non symmetric) with close energies but separated by
the potential barrier proportional to the volume of the specimen. For the vesicle
the energy of the non symmetric (non spherical) phase becomes close to the energy
of the symmetric (spherical) phase only for ¢ near —xzo where the potential barrier
between the phases is of the order of temperature 7. It means that instead of a
sharp transition from the spherical to the non spherical phase one should observe
a smooth crossover caused by fluctuations. At z close to ~zo we cannot find
explicit expressions for averages over the fluctuations but estimations are obvious,
eg (|Juim|?) ~ TR?*/(xl*). Let us stress that smearing the phase transition is
not a conventional finite size effect. Fluctuations smear the tramsition even in the
limit R — oo and therefore the crossover region does not shrink in this limit.

To examine the region z < —zg it is convenient to return to the representation
(3). Expressing the quantity U, =2)"  |usm|?, (determining the excess area stored
by uzm) via A; from (5) one obtains

6x B
Fa + Feurv =27R?Bz? + (B:B-l- RZ) AL+ 5 ST R? Az +
tam 2 (P 1= 60 + 1= Dunl. (12)

1>2,m

If 2 <0 the minimum of the energy is achieved at A; ~ 4rR%{z|. Nevertheless
at |r| < zo fluctuations of A; appear to be larger than 47R?|z| because of the
condition A; > U where U =(1/2) E,>2,m(12+l——2)|u1m|2 determines the excess area
stored by wpn with I > 2. It means that the small Bolizmann factor determining
the distribution function is compensated by the large phase volume of fluctuations.

At decreasing z the role of the Boltzinann factor increases and the inequality
A; > U ceases to play an essential role. Then fluctuations of the excess area A;
can be considered on the basis of (12) without restrictions on the value of A;. It
means that A; is “frozen” near the value A; &~ 47R%|z| since fluctuations of A;
are very weak:

< (47 R?|z|)?. (13)

4xRT
2\
(640 ~ 42

In the situation where the inequality A; > U is not relevant (12) leads to
(lum|?) =TR?/[x(1 + 1 — 6)(I12 + 1 — 2)]. Using this expression we find

2 2 2 p4
0 = TR ooy ~ TE.

2k K2 (14)
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The restriction A; > U is not relevant if

Ay —{U) > J((8U)?). (18)

We neglected in (15) fluctuations of A; determined by (13) since they are smaller
than fluctuations of U. Substituting (14) into (15) we find the “frozen condition”:
fz| — (T/87k)In(BR?/k) > T/8wx. The condition means that at decreasing z the
excess area A; is, frozen abruptly.

The equilibrium shape of the vesicle corresponding to the minimum of (12) is
deseribed in terms of nonzero i, {where tilde designates the average value). For
small |z| the term with [=2 dominates what leads to

> lim|* = 27 R 2] (16)

The condition (10) does not fix the equilibrium shape of the vesicle, it is related
to the degeneracy of (12). To find the shape one should include into consideration
higher order terms of the expansion of (1) in u lLifting this degeneracy. The
corresponding analysis {12, 13, 14] shows that for small |z| (that is for small
excess area) the equilibrium shape-of a vesicle is a slightly prolate uniaxial ellipsoid.
As a consequence fluctuations of us,, qualitatively differ from fluctuations of
at | > 2. There are five modes associated with wus,,. Two modes describe
rotations of the ellipsoid as a whole. The third mode is related to variations
of U,. Fluctuations of U, can be estimated using the condition A; = const:
((8U2)%) = {(6U)?) ~ T?R*/x*. We conclude that

M~<T)2R_2 (17)

U, 8xx) |z

The last two modes are so called ellipsoidal “quasi-Goldstone” ones corresponding
to deviations of the vesicle shape from a uniaxial ellipsoid [l14]. The analysis
based on the third-order term of the expansion of the energy (1) in u gives the
following fluctuational amplitude for the both quasi-Goldstone modes:

2y, T
<u2) 87”6\/{_1:—{

Comparing (18) with (17) we conclude that just the quasi-Goldsione modes
determine the amplitude of shape fluctuations of the vesicle.

The estimation (18) implies that the vesicle only slightly fluctuates near its
equilibrium shape what is correct if (u2) « 2rR?|z|. This inequality is broken for
small enough |z|, namely for —(T/(87x))*/3 < z < —z¢. In this region potential
barriers related to the high-order term of the expansion of (1) are less than the
temperature and do not play an essential role. In this case shapes of the vesicle
are more or less homogeneously distributed over shapes permitted by the condition
A; = const. It means that in this case (ul) ~ R%|z|. Note that this behavior
reminds so-called conformal fluctuations taking place for vesicles with nontrivial
topology [15-17].

It is not very difficult to obtain estimations for characteristic times of shape
fluctuations. They are based on the analysis of the hydrodynamic motion near the
membrane [4], [5], [18]) what leads to the purely relaxational dynamics of u with

R%. (18)
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the effective kinetic coefficient ~ I/(nR), where 7n is the viscosity of the water.
Thus we conclude that the characteristic time of the wy,-fluctuations for =z > —zg
is 7 ~nRI"YBé+ kl*/R?)"'. If £ < ~z¢ the same estimation is valid for [ > 2
where ¢ = 0. For negative z satisfying |z| > (T/(87«))*? the more interesting
is the relaxational time characteristic of the quasi-Goldstone modes which 1s
7 ~nR3/\/|z|x. Note that this time is much less than the conventional rotational
diffusion time nR3/T. For —(T/(87k))*/® < 2 < —z¢ we deal actually with the free
diffusion over the configuration space, the diffusion is determined by the above
kinetic coefficient. The characteristic time of the diffusion is 7 ~ nR3|z|/T, it is
the time needed for u; to vary on R\/l_;[.

The picture presented above has at least qualitative agreement with experiments.
Note also that the modern experimental technique (see e.g. [19-21]) enables
to obtain direct information about amplitudes and characteristic times of shape
fluctuations for different regimes examined above. Thus we hope on a detail
comparison of our predictions with observed data.
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