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The role of conformal degeneracy of the Helfrich energy for shape fluctuations
of vesicles .is discussed. For a vesicle with a nontrivial topology (genus g > 1) there
exists a two-parametric set of transformations of the shape which does not influence
the Helfrich energy, surface and volume of the vesicle [4]. We have shown that the
region L of the phase space corresponding to the transformations is finite. Higher
order corrections to the Helfrich energy which breaks the degeneracy are small in
comparison with the temperature T. It leads to the equipartition over the region
L. The characteristic time of the shape fluctuations of a vesicle is of the order of
nR3/T, where T is the temperature, n is the viscosity of the liquid surrounding
the vesicle and R is its size.

Recently vesicles (closed structures constructed from membranes that is bilayer
films) with non-trivial topology (genus g > 1) have been observed experimentally
[1]. The characteristic feature of such vesicles is the existence of strong shape
fluctuations, much larger than conventional bending fluctuations. To explain this
behavior the authors of the paper [2] have analyzed consequences of the conformal
degeneracy of the bending energy. They have used the numerical simulation for a
discretized version of the bending energy for so-called Lawson’s surfaces with g =2.
Their numerical results show the existence of a certain region in the phase space
where the volume and the area of vesicles are kept constant. Just this property
leads to strong shape fluctuations for Lawson’s vesicles. Here we are going to
investigate general physical consequences of this conformal degeneracy for vesicles
with ¢ > 2.

The incompressibility of the bilayer and of the liquid contained in a vesicle
imposes two constraints on the fluctuations of the vesicle shape which are the area
S and the volume V conservation laws. The fluctuations within the constraints
are governed by the Helfrich (bending) energy of a bilayer [3]
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where R;, R, are the local curvature radii of the film. The combination in the
brackets is the double mean curvature. Generally speaking the term with the
Gaussian curvature (R;R;)~' should be added to (1), but the integral of the
Gaussian curvature over the surface is proportional to its genus. Thus the term
is not influenced by fluctuations which do not change the topology of the vesicle.
We will consider only such fluctuations and therefore will not take the term with
the Gaussian curvature into account.

The Helfrich energy (1) is conformally invariant [4]. It means that any element
of the conformal group transforms a vesicle shape into a new one with the same
energy (1). The total symmetry group of the Helfrich energy (1) contains also
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translations, rotations, reflections and dilations. It is clear that a deviation of
a vesicle shape from the ground state relating to a transformation of the group
and consistent with both constraints V =const and S =const would be very soft
one because in the main approximation it does not change the thermodynamical
potential of a vesicle. In the following we will call such fluctuations conformal
ones.

Any transformation r — r’ from the group could be represented as a combination
of a conformal transformation with the center at the origin

r r
ot 2)
of a dilation r’' = Ar and of a translation, a reflection and a rotation. Certainly
translations, rotations and reflections do not change the shape of the vesicle. Thus
in the general case we have the four-parametric set of nontrivial transformations
of the vesicle shape which do not influence the energy (1), these parameters
could be thought as three components of a vector a determined by (2) and one
scaling parameter A describing a dilation. Frem the first sight it seems that
we might always satisfy two constraints S =const and V =const and retain two
free parameters for conformal fluctuations. However this statement is not true
for spheres and Clifford torii (torii with the ratio of the principal radii 1/v2)
providing a minimum of (1) with ¢=0 and g=1 correspondingly.

Indeed, a dilation or a conformal transformation of a sphere produces a sphere
again. Therefore the four-parametric set of transformations in this case is reduced
to the one-parametric set described by the radius of the sphere. The constraint
V =const determines the radius of this sphere unambiguously. For a Clifford torus
the dilation gives a Clifford torus again. Any conformal transformation (2) could
be represented as a result of two transformations with the vectors a) parallel
to the axis of the torus and a; perpendicular to it since the conformal group
is an Abelian one. The conformal transformation of a Clifford torus with a)
produces a Clifford torus again. Thus the four-parametric set of transformations
in this case is reduced to the two-parametric one describing by the size of the
Clifford torus and by the absolute value of a;. Both the parameters are fixed by
the constraints V = const and S =const. Thus in the cases ¢ =0 and g=1 the
minimum of (1) with two constraints S =const and V =const fixes the shape of the
vesicle unambiguously, it being the consequence of the high symmetry of spheres
and Clifford torii. For vesicles with g > 2 the two-parametric set of conformal
transformations exists. It describes introduced above conformal fluctuations. For
Lawson’s surfaces with g =2 it has been shown numerically in [2].

One can expect completely different consequences whether the region £ of
conformal deformations in the two-dimensional parameter space is finite or not.
Let us suppose for a moment that this region. £ is infinite. It means e. g. that
there exists a combination of a dilation and of a transformation (2) conserving S
and V with unrestricted value of a. One can represent this combination as
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For large |a] (3) is reduced to |
a; A aiar \ T
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This expression is the principal term of the expansion of (3) in the limit a > r~1.
The transformation (4) is the product of the translation (the second term in the
Lh.s. of (4)), of the dilation (the first factor in the r.h.s.), of the reflection of
the coordinate along the vector a (the combination in the brackets) and of the
inversion with the center at the origin (the third factor in the r.h.s.). Since the
reflection keeps V and S we have only one free parameter in (4), namely, )/a?,
and it is impossible to satisfy both constraints V =const and S =const. Therefore
our assumption leads to the contradiction what proves that the region £ should
be finite. It is reasonable from the physical point of view since it is hard to
imagine a strong deformation of the vesicle shape conserving V, S and the energy
(1).

The conformal degeneracy of the bending energy is broken by higher order
terms:

Fa=7/dS(Vl(R1‘1+R2‘1))2+... , (5)

where V, is the gradient along the film. We have written in (5) explicitly only
one term, other contributions denoted in (5) by dots have structures similar to
one of the term and can be evaluated identically. The natural estimation for the
coefficient v is

N
Y~ Ka, ,

where a,, is the typical molecular scale. The characteristic scale of the conformal
fluctuations is of the order of the size R of the vesicle and therefore for conformal
fluctuations the energy (5) is

Usually the modulus x is larger than the temperature T but does not much exceed
it (as a rule it is of the order of T ~ «/10) and a,, < R. Thus the energy F,
is much smaller than the temperature. It means that the character of conformal
fluctuations is not sensitive to Fj.

Thus the conformal fluctuations are governed only by thermal noise what leads
to the equipartition over the allowed region L in the phase space. Using the
equipartition we can estimate the mean-square amplitude of the shape fluctuations
related to the conformal mode

((AR)*) ~ R? . (6)

Let us emphasize that the crucial fact for this conclusion is the existence just
a finite region £ in the phase space where conformal transformations take place.
Expression (6) shows that the amplitude of conformal fluctuations is much larger
than one of conventional bending fluctuations which are weak due to the smallness
of T/k.

To investigate the dynamical behavior of conformal fluctuations one should an-
alyze the hydrodynamic motion of the liquid near the vesicle. There exist specific
degrees of freedom associated with variations of the shape of the vesicle including
ones associated with conformal fluctuations. The latters are the most soft ones
and to describe their dynamical behavior one can use some kind of adiabatic
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approximation. The rigorous procedure to investigate dynamical fluctuations is
described in our monograph [5] (see also the paper [0] especially devoted to bend-
ing fluctuations of membranes). However qualitative results concerning conformal
fluctuations can be deduced without using this rather cumbersome technique. Since
the bending energy in the region £ is negligibly small we deal with the -passive
motion or with the advection of the vesicle shape over the region L. Properties of
the motion are determined by the competition of the thermal noise and the viscous
forces what means that the characteristic time ¢ of the conformal fluctuations is

t~nRT . (7

To derive the estimation one should remind that according to (6) the characteristic
amplitude of the conformal fluctuations is just of the order of R. One can call
dynamics of the fluctuations the conformal diffusion since the estimation (7) for ¢
is no other than the conventional Einstein diffusion time (see e. g. [7]).

In summary we have shown that fluctuations of the shape of a vesicle with
g > 2 are associated with the conformal degeneracy of the Helfrich energy. They
can be thought as the diffusion over the finite region £ in the phase space, this
diffusion is characterized by (6, 7).
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