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Abstract—This paper presents a method that allows evaluating
the performance of an optical fiber system where bit errors result
from a complex interplay of spontaneous noise generated in optical
amplifiers and birefringent disorder of the transmission fiber. We
demonstrate that in the presence of temporal fluctuations of bire-
fringence characteristics, the bit-error rate (BER) itself is insuffi-
cient for characterizing system performance. Adequate character-
ization requires introducing the probability distribution function
(PDF) of the BER obtained by averaging over many realizations
of birefringent disorder. Our theoretical analysis shows that this
PDF has an extended tail indicating the importance of anomalously
large values of BER. We present the results of comprehensive anal-
ysis of the following issues: 1) The dependence of the PDF tail shape
on detection details, such as filtering and regular temporal shift ad-
justment; 2) the changes in the PDF of BER that occur when the
first- or higher order polarization mode dispersion (PMD) com-
pensation techniques are applied; 3) an alternative PMD compen-
sation method capable of providing more efficient suppression of
extreme outages.

Index Terms—Bit-error rate (BER), optical fiber telecommuni-
cation systems, polarization mode dispersion (PMD) compensa-
tion, probability distribution function (PDF).

1. INTRODUCTION

OLARIZATION mode dispersion (PMD) constitutes one

of the main limiting factors for reliable optical fiber system
performance at transmission rates of 40 Gb/s or higher. PMD
causes broadening of initially compact pulses in a data stream
that eventually leads to bit-pattern corruption [1]-[4]. This ef-
fect can be characterized in terms of the PMD vector [5]-[8],
[37]. It has been also recognized that the PMD vector does
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not provide a complete description of the PMD phenomenon
and some more sophisticated approaches that take into account
“higher order” PMD effects, have been recently discussed in the
literature [9]-[12].

It is well known from experiment that birefringence in optical
fiber systems is slowly, but substantially changing with time
under the influence of fluctuations in environmental conditions
(stresses, temperature, etc.), see, e.g., [13], [14]. Thus, dynam-
ical PMD compensation becames a major issue in modern high-
speed optical-fiber telecommunication technology [15], [16].

Development of new techniques capable of first- [15], [19],
[20] and higher order [20], [21] PMD compensation has raised
a question of how to evaluate the compensation success (or
failure). Traditionally, the statistics of the PMD vectors of first
[5], [6], [371, [8] and higher orders [9]-[11] are considered as
a measure for any particular compensation method’s perfor-
mance. However, these objects are only indirectly related to
fiber system reliability.

In this paper, that develops the ideas briefly described in a
series of recent publications [22]-[25], we clearly demonstrate
that PMD effects should be considered together with impair-
ments due to amplifier (and other types of) noise. Indeed, the
system performance for a given realization of birefringent dis-
order is characterized by a certain value of BER, i.e., proba-
bility of detecting an error, which is nonzero because of the
noise. However, the value of the bit-error rate (BER) is varying
together with the temporal variations of the birefringent dis-
order. The characteristic time scale of such variations is much
longer than the times related to signal transmission, however,
it can substantially exceed the overall system operation time.
Therefore, evaluating system performance should be based on
the analysis of fluctuations in the value of BER. We show that
fluctuations of BER caused by variations of the birefringent dis-
order are substantial. Large fluctuations of BER originate from
the very different nature (temporal correlations) of the ampli-
fied spontaneous emission (ASE) noise compared to that of the
birefringent disorder. Birefringent disorder is practically frozen
(i.e., it does not vary at least on the time scales related to the op-
tical signal propagation). Optical noise originating from ASE
constitutes an impairment of a different nature: the amplifier
noise is short correlated on the time scale of the signal width.

We demonstrate that the probability of extreme outages (i.e.,
such situations or, stated differently, realizations of birefringent
disorder when the BER substantially exceeds its typical value)
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is much larger than one could expect from naive estimates based
on singling out effects of either of these two impairments. This
phenomenon is a consequence of a complex interplay between
these two different impairments. It may not be rationalized in
terms of just an average value of BER, or statistics of any PMD
vectors of different orders. Complete description of this phe-
nomena requires studying the probability distribution function
(PDF) of BER, and specifically its tail.

The emergence of an extremely extended (algebraic or
algebraic-like) tail in the PDF of BER constitutes the major
result of the paper. The result is general, i.e. it applies to a
whole variety of transmission regimes (linear, nonlinear, and
quasi-linear), various signal modulation formats [return-to-zero
(RZ), nonreturn-to-zero (NRZ), differential phase-shift
keying (DPSK)-RZ, differential quadrature phase-shift keying
(DQPSK)-RZ, etc.], and detection techniques (optical and
electrical filtering, decision threshold choice, etc.). However,
for the sake of simplicity and clarity and also to be specific, we
consider the following situation of major practical interest in
optical fiber communications: 1) the modulation format is RZ
(on—off keying); 2) transmission is linear, i.e. Kerr, Raman, and
other nonlinear terms are not taken into account. Besides (and
less importantly), the other two model assumptions (which
do not restrict the generality of the model independent results
reported in the paper) are that: a) the electrical filter (window)
is represented by a symmetric step function; b) the optical filter
is of Lorentzian shape.

After brief technical introduction into the problem given in
Section II, our theoretical analysis starts in Section III with eval-
vating the signal BER due to the amplifier noise for a given real-
ization of birefringent disorder. We next study the PDF of BER,
where the statistics are collected over different fibers or, equiv-
alently, over the birefringence states of a given fiber at different
times. At the second step, we focus on evaluating the proba-
bility of anomalously large BER. This general scheme will be
applied to four situations of interest. We start with the basic (no
compensation) case in Section IV-A and compare it with the
case of the simplest compensation scheme known as “setting
the clock” in Section IV-B, and also with the cases of first- and
higher order PMD compensations schemes in Sections V-A and
V-B, respectively. Finally, in Section V-C, we discuss a com-
pensation scheme referred to as (quasi)-periodic that appears to
be more efficient in reducing the extreme outages compared to
the traditional high-order compensation scheme with the same
number of compensating degrees of freedom. Section VI is re-
served for discussions and conclusions.

II. TECHNICAL INTRODUCTION

In this section, we introduce the basic relations and termi-
nology that describe data transmission (signal propagation) in
an optical fiber system. The goal here is to set the problem in
formal terms, introduce the objects of interest, and also make
some preliminary evaluations.

A. Amplifier Noise and Birefringent Disorder

The envelope of the optical field propagating in a given
channel in the linear regime (i.e., at relatively low optical
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power), which is subject to PMD distortion and amplifier noise,
satisfies the following equation [26]—[28]:
0.W — i A(2)W — 1(2)0, W — id(2)0?W
= ()Y +9(2)¥+&(2,0). (1)

Here z, t, €, as well as d, vy, and g are the position along the fiber,
retarded time (i.e., time associated with the reference frame
moving with group velocity of a chosen frequency channel), the
amplifier noise, and the chromatic dispersion, attenuation, and
gain coefficients, respectively. (We assume that neither gain nor
damping are polarization dependent, leaving the more general
problem for future investigation.) The envelope W is a two-com-
ponent complex field, the two components represent two states
of the optical signal polarization. Our approach allows us to
treat discrete (erbium) and distributed (Raman) amplification
schemes within the same framework. The birefringent disorder
is characterized by two random 2 X 2 traceless matrix fields
related to the zero-, A and first-, /m, orders in the frequency ex-
pansion with respect to the deviation from the channel carrier
frequency wy. Birefringence that affects the light polarization
is practically frozen (¢-independent) on all propagation-related
time scales.

The matrix A as well as the attenuation and gain coefficients
7 and g can be excluded from consideration by the followmg
transformation ¥ = AV, §= AV§ and 7 = ViV L. Here

A = exp {/O d2'[g(2' 7(2')]}

is a z-dependent number, and the unitary matrix

V(z) = Texp |:L / dz'AA(z’)}
is the ordered exponential defined as a formal solution of the
equation 9,V = iAV with V(0) = 1. We assume that the
gain coefficient is properly chosen to perfectly compensate for

damping, so that A(Z) = 1, where Z is the total system length.
The renormalized quantity ¥ satisfies the equation

0.U — m(2)0, ¥ — id(2)0}W = €(z,t). 2)

The solution of (2) can be represented as

U= p+¢
o =W (2)To(t) 3)
¢ = / AW (2)W ()€, 1) (4)
0
W(z) = exp 'L'/dz'd(z')at2 U(z) 5)
0
U(z) =T exp / dz"m(2")0, (6)
0

where ¥, (t) stands for the initial pulse shape and T" exp denotes
the so-called ordered exponential operator

T exp [/ dz'd(z')] =V(2)
that can be formally described as the solution of the operator
equation 9.V (z) = a(z)V (z) with the initial condition V (0) = I

(note that when the operators a(z) commute for all z the ordered
exponential coincides with the usual one). Solving the operator
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equation iteratively leads to a very useful representation of the
ordered exponential in a form of a functional infinite series

rexp | [ aa)|

Z/ dzl/ dzz---/‘% dznd(z1)d(z2) -+ - a(zn)
— /o 0 0

n=0

that will be used in this manuscript for performing perturbative
computations.

We consider a situation when the pulse propagation distance
substantially exceeds the inter-amplifier separation (the system
consists of a large number of spans). The additive noise &, gen-
erated by optical amplifiers, is zero on average. The statistics of
& are Gaussian with spectral properties determined solely by the
steady-state features of amplifiers (gain and noise figure) [30].
The noise correlation time is much shorter than the pulse tem-
poral width, and, therefore, £ can be treated as §-correlated in
time. Equations (4) and (5) imply that the noise contribution to
the output signal ¢ is a zero mean Gaussian field characterized
by the following pair correlation function:

($a(Z,11)5(Z, t2)) = DeZbapd(ts — t2) @)

with the product D¢ Z being the ASE spectral density accumu-
lated along the system. The coefficient D, is introduced into
(7) to reveal the linear growth of the ASE factor with the total
line length Z [30]. Provided the noise £ is short-correlated in
space (that is, correct for both erbium and Raman amplifiers),
the factor Dy in (7) is statistically independent of both d(z) and
m(z), as immediately follows from (4)—(6).

The matrix of birefringence 7 can be parameterized using a
three-component real field hj, m = ) h;o;, with ¢, being a
set of three Pauli matrices. The field h is zero on average and
short-correlated in z. Therefore, in accordance with the central
limit theorem (see, e.g., [31]) the integral H = fOZ dz h(z) has
Gaussian statistics (with zero average) characterized by the pair
correlation function

(H;H;) = D, Z6;; ®)

where the average is taken over the birefringent disorder realiza-
tions (corresponding to different fibers or, equivalently, states of
birefringence in a single fiber at different times). The isotropy of
the pair correlation function (8) is guaranteed by the above trans-
formation . = ViV =" since the presence of V leads to fast
rotations of the vector h along z. In the case of weak birefringent
disorder H represents the PMD vector. Thus, D,,, = k2 /12,
with k being the so-called PMD coefficient that is usually mea-
sured in units of picoseconds per square root of a kilometer
(ps/ v/km) and has the following meaning. In a system of length
Z short enough so that effects of PMD are typically weak, kv/Z
represents a typical time splitting between the two principle po-
larization components of a pulse accumulated along the system.
The factor of 12 is obtained in the following way: kv/Z is twice
the typical value of the differential group delay (DGD) vector
resulting in k2 Z to be four times the typical (defined as the av-
erage) value of its square, the latter being naturally given by
3D,, 7. As we will see later, some observables contain the field
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h in a more sophisticated form than just the integral H. Statis-
tical properties of these more sophisticated objects can be estab-
lished by using the relation

(hi(21)hj(22)) = Dy6ij6(21 — 22) ©)
instead of (8).

B. BER as a Functional of Birefringent Disorder

We consider the RZ modulation format when the pulses are
well separated in time. The signal detection at the line output,
z = Z, corresponds to measuring the output pulse intensity /

I= / dt G(t) |[K®(Z, 1)) (10)

where G () is a convolution of the electrical (current) filter func-
tion with the sampling window function. The linear operator
in (12) stands for an optical filter and a variety of engineering
“tricks” applied to the output signal ¥(Z,t). These tricks con-
sist of the optical filter K¢, and the compensation K. parts, re-
spectively, assuming the compensation is applied first followed
by filtering, i.e.,

K = K;K.. (11)

We can replace W by W in (10) since A(Z) = 1and V is a
unitary matrix. Upon substituting the representation (3) into (10)
we obtain

I= /dt G(t) |[Kp(Z,t) + Kp(Z, 1) . (12)

Compensating options, coded in specific form(s) of the operator
K., are discussed in Sections II-C and II-D. Filtering options,
formalized by specific choices of the function G(t) and oper-
ator K are described in Appendix I, where we also discuss the
specific form of the initial pulse ¥ used for the modeling anal-
ysis.

Ideally, I takes two distinct values corresponding to the bits
“0” and “1,” respectively. However, the impairments enforce
deviations of I from the ideal values. The output signal (bit of
information) is identified by introducing a threshold (decision
level) I; and declaring that the signal encodes “1” if I > I
and “0” otherwise. Sometimes, the information is lost, i.e., an
initial “1” is detected as “0” at the output or vice versa. BER
is the probability to detect a false event measured by counting
many pulses coming through a fiber with a given realization of
the PMD (birefringent) disorder h;(z). For successful system
performance BER should be extremely small, i.e., typically both
impairments (noise and disorder driven) can cause only a small
distortion of a pulse or, stated differently, the optical signal-to-
noise ratio (OSNR) and the ratio of the squared pulsewidth to
the mean squared value of the PMD vector are both large. OSNR
can be estimated as Iy/(D¢ Z) where, according to (10)

I - / At G0 (1) 2

is the intensity of the unperturbed signal, ¥y being the input
signal normalized to one. Therefore, the two small parameters
of our theory are represented by

D.Z
¢” <1 (13)
0
D, 7
<1 (14)

b2
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b being the pulsewidth, and the condition (14) is assumed to hold
for all cases considered in the paper except for the one discussed
in Section V-C.!

We distinguish events associated with the 1 — 0 transition
(loss of the signal), and with the 0 — 1 transition (false pulse de-
tection) and designate the corresponding probabilities as By,
and By_,1. These two objects are defined as

I oo

By .= /dI Py (D), Bo_1 = /dI Po(I) (15)
0 Iy
and according to (12), the PDF P of the output signal intensity
which can be written as

Po.1 = <5 <1 - / dt G(t)|Ko(Z,t) + Ké(Z, t)|2> >
(A()),= [ PoAL}PLO)

é

oo

1
b7 / dt 9()]?

where P is the PDF of ¢, N is normalization constant, and A{$}
is an arbitrary functional of ¢. Also the subscript 0 in the defi-
nition of Py, corresponds to the “zero” input bit ¢ = 0, while
the subscript 1 corresponds to the “one” input bit ¢ = ¥q. In
(16), averaging is performed over the noise statistics. Experi-
mentally, such an average is measured by collecting the statistics
over many pulses propagating along a fiber with the same bire-
fringent disorder realization h(z) since different pulses experi-
ence different realizations of the noise the latter being stochastic
in nature. Formally, this constitutes averaging an observable that
can be represented by any functional A{¢} over all possible re-
alizations of the noise ¢ with the probability distribution P{¢},
whereas a specific form of P{¢} also given in (16) corresponds
to the situation under consideration, i.e., Gaussian statistics of
the noise fully determined by the pair correlation function of (7).
Since realizations of noise are represented by functions ¢(t) of
time that represent the field ¢(z,t) at z = 7. (16) constitutes a
path (functional)-integral representation for Py.q (see, e.g., [32],
[33] for an introduction to path-integral techniques). This, how-
ever, does not constitute a major conceptual problem since path
integrals can (and strictly speaking should) be considered as fi-
nite-dimensional integrals where functions are represented by
sets of values at a large but finite set of points %o, . .., t,.

An important difference between B1_,¢ and By_., defined
by (15), is in the strong dependence of the first case and inde-
pendence of the second one on the h realization (i.e., the bire-
fringence profile along the fiber). This difference stems from
the fact that ¢ = 0 in the case of By_,; whereas By_,( is a non-
trivial functional of h, as well as from statistical independence
of ¢ and h. One concludes that even though By _.¢ and By_,1 are
of the same order in the absence of birefringence, anomalously
large values of BER (which is the focus of this paper) originate
solely from the “1 — 0” transitions. Therefore, in what follows

Pl{gy=N""exp (16)

ISection V-C is devoted to a special case where without compensation,
the condition (14) is essentially violated, however, a weaker condition,
D,,Z/b* « 1/N still holds. It is shown then that by using a new quasi-peri-
odic compensation strategy of N'th order one can still get an operable system,
i.e., a system with typical BER essentially smaller than one.
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we concentrate primarily on the analysis of B _. thus dropping
the 1 — 0 subscript (B1_o = B) to simplify notation.

The PDF P;(I) has a maximum near I = I, and decays
quickly as I departs from Iy. The tail of the transition proba-
bility at |I — Iy| > D¢Z is exponential (see Appendix II for
details). This implies that the integration in the right-hand side
(RHS) of (15) is actually concentrated near I = I; thus yielding
the following estimate for BER, B:

In B zlnpl(Id). (17)

C. “Setting the Clock” Compensation

An essential part of the signal loss can be compensated using
a simple procedure, in the fiber-optics jargon usually called
“setting the clock.” This procedure accounts for adjusting the
overall time shift which is a functional of the birefringent dis-
order. (We are not discussing here an important engineering
problem of how to make this dynamical adjustment, simply as-
suming that a device capable of doing this operation does exist.)
Formally, the “setting the clock” procedure can be described by
the following modification of (12):

1= [@6+ 1) Kpp(z.0 + Ko Z0F a9
or returning to the notation of (11), (18) corresponds to the fol-
lowing form of the compensation operator: K. = exp(—t¢0;).
As discussed in Section IV-B, the one-parameter flexibility one
gains through . can be used to minimize system outage. The
important question to be addressed is: What is dependence of
the “optimal” shift on the birefringent disorder?

D. PMD Compensator

Effects of PMD can be reduced by using a device usually
called a PMD compensator (PMDC). Any optical PMDC con-
sists of two parts: a compensating (optical) part responsible for
the compensation itself, and a measuring part that extracts (mea-
sures) relevant information on the transmission fiber birefrin-
gence. We start by considering the optical part of the compen-
sator that usually consists of a set of relatively short elements.
Each element includes a piece of polarization-maintaining fiber
(this is a fiber characterized by uniform, i.e., position-indepen-
dent, birefringence vector) usually surrounded by two polariza-
tion controllers that allow rotation of the polarization state [15] .
This implies that the optical part of a PMDC (hereafter referred
to as a PMDC itself when it does not lead to confusion) is char-
acterized by its transfer function that can be parameterized by a
finite number of parameters (degrees of freedom). Additionally,
one would naturally distinguish between i) describing a com-
pensator in terms of available transfer functions (the subject of
this subsection), and ii) compensating strategy, i.e., a prescrip-
tion of how to fix the compensating degrees of freedom based
on the measured data. The compensating strategy part of the
problem is discussed in Sections V-A, V-B, and V-C.

The so-called, first-order PMDC corresponds to /. = K4

K1(M) = exp(~M;;0,) (19)

with j = 1,2, 3. Such a form of the compensating operator .
offers richer adjustment options compared to the “setting the
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clock” compensation as it actually contains three compensating
degrees of freedom, i.e., the three components of the compen-
sating vector M, instead of one.2 Note also, that the transfer
matrix U of the transmission fiber is defined as an ordered ex-
ponential (6), whereas the compensating operator X; is defined
in terms of the usual exponential (19). This important difference
stems from the fact that the birefringence profile along the trans-
mission fiber h(z) is a random function of z, while the birefrin-
gence of the compensating part is flat, as it is accurately con-
trolled to be z’-independent, with 2’ being the position marker
along the polarization maintaining piece.

A compensation strategy that allows for more compensating
options (more degrees of freedom) is potentially better. Thus, a
compensator, hereafter referred to as an Nth-order PMD com-
pensator consists of /N concatenated PMD compensators of the
first order [15]. Each of the N compensators is characterized
by its own three-component compensating vector M,,, where
n = 1,---, N, so that the compensating operator generalizes
that of (19)

ICC :/Cl(Ml)ICl(MQ)---ICl(MN) (20)

and the set of M, vectors introduces 3N compensating degrees
of freedom that are at our disposal for outage optimization.

Once the set of compensation options, described by (19), (20)
is fixed, the next task, addressed in Sections V-A, V-B, and
V-C is about how to use the compensating degrees of freedom
offered by the compensators (19) or (20) to minimize the effects
of the system outages. Or rephrasing the question in more formal
terms: What are the optimal values of the 3N compensating
degrees of freedom M, that correspond to a given realization
h(z) of the transmission fiber birefringence profile?

III. AMPLIFIER NOISE AVERAGING

In this short section, we present only the basic results, while
all derivations can be found in the Appendixes.

Since the OSNR is large, the expression for the transition
probability (16) allows for an asymptotic saddle-point evalua-
tion. The details of an analytical calculation, resulting in an alge-
braic system of equations that implicitly relate the saddle-point
value of the transition probability to the inhomogeneous part of
the measured signal are given in Appendix II.

2A three-parameter compensator with the transfer function given by (19) can
be implemented by surrounding a polarization-sensitive delay line with two
polarization controllers (PC). The transfer function of such a device has the
form K, = U}lK.(t4)U. where U} and U. are frequency independent of
the PC located after and before the delay line, respectively, and Ka(ta) =
exp(—tqbs Bi) is the delay-line transfer function with ¢4 being the relative time
delay. If the time delay ¢, is controlled, such a compensator provides the transfer
function of (19) since with a proper choice of U, provided by the PC we can
obtain any vector M with |M| = 4. A possible implementation of a delay line
with adjustable ¢, involves a free-space optical-mechanical device that achieves
a relative time delay by varying the relative value of the optical paths for two
polarization states. Such a device naturally offers three-parametric compensa-
tion, as it is capable of dynamically generating any value of the three-compo-
nent vector M. A less expensive and maybe more practical option is to use a
piece of polarization-maintaining fiber instead of a complicated free-space op-
tical-mechanical device. In this case, only two parameters (the components of
M) are dynamically adjusted with the value of |[M| = t, being determined
by the polarization-maintaining fiber length. The dynamical adjustment is only
two-parametric, as it originates from changes in the polarization controllers ori-
entation, while the birefringence of the polarization-maintaining fiber is fixed.
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T/b

Fig. 1.

Dependence of the dimensionless coefficients 'y = —D¢Z In By / Iy,
1, fto, b/ 3, and g, entering (21), (26), (28), (33), and (34), on the electric
filter width T', and the optical filter width 7 (both measured in units of the
pulsewidth b) for the model introduced in Appendix 1. Details of calculations
resulted in the dependencies shown in the figure are explained in Appendix II.

The bottom line of these calculations, accounting for aver-
aging with respect to the stochastic noise (i.e., many pulses) in
(15), (16) is the saddle-point [i.e. asymptotic, applied whenever
the condition (13) holds] expression for the loss probability
that is obtained (see Appendixes I and II for the details) by
first representing the §-function in (16) as a Fourier trans-
form of an imaginary exponent [see, e.g., (46)] which yields
P1 as an integral over dAD¢, with the integrand in a form
exp[—Sett (A, ¢, h)]. Note that Seg depends parametrically on
h through ¢ [see (3), (6), and (16)]. Evaluating the path integral
(16) using the saddle-point approximation (see, e.g., [32], [33],
for the general description of the method) and making use of
(17) we obtain with the exponential accuracy

I'{h
B = Bgexp [;E Z} By = exp v 21
Io IO

where (I'y — ['{h})Io/(D¢Z) is the saddle-point value of the
action Seg. In particular, By corresponds to zero PMD, h = 0,
value of B and I is a dimensionless quantity with a smooth de-
pendence on h. By definition, I" tends to 0 with A — 0. The
quantity Iy, that determines a typical value of BER, is a dimen-
sionless parameter of order unity. The dependence of I'y on the
electric filter width 1" and the optical filter width 7 calculated
numerically for the model introduced in Appendix I is displayed
in Fig. 1.

The dependence of I" on the birefringence profile h(z) is the
key subject of the analysis presented in Sections IV and V.

IV. PDF oF BER AND EXTREME OUTAGES

This section constitutes the core of the paper. The bottom line
here is that fluctuations of BER from one realization of birefrin-
gence to another are strong. To demonstrate that, we study the
extended (toward larger values of BER, B > B) tail of the
PDF (histogram) of BER, B.
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The exponential form of the BER dependence on I' (21)
suggests that one can get an essential enhancement of BER at
the expense of a moderate change in the integral birefringence
vector, when T' > D¢ZI;'. Since the OSNR I/[D¢Z] is
large, the condition is consistent with I' < 1 (i.e., the regime
described by 1 > I'g > D¢ Z/I is possible). In other words,
one expects that in this “perturbative” region, where the ordered
exponential (6) can be approximated by the leading terms in its
expansion in the series in h, BER can be substantially enhanced
in comparison with its typical b = 0 value, i.e., B >> By. This
expectation is indeed confirmed, and detailed in a quantitative
way, through our consideration of this section, where we
discuss the PDF tail corresponding to the “perturbative” region.
We have also studied a universal remote tail of the PDF of
BER corresponding to huge fluctuations of the disorder when
the signal is almost destroyed by the PMD fluctuations. This
remote tail is discussed in Appendix IV.

One concludes that the “perturbative” tail of the PDF of BER
can be computed by finding the leading terms in the expansion
of ' in h, i.e., the key question is how I" scales with h at small
values of h. We demonstrate later that I' = O(h*), where the
power k depends on the compensation scheme applied.

Our final result is formulated in terms of the PDF of BER
defined as

s o[- (5]

Averaging in (22) is performed over the statistics of h (see Ap-
pendix III).

In Section IV-A, we consider the bare case (no compensation
applied). Note, that the PDF of BER is not only an interesting
object to study but also the key object that characterizes the

probability of the system outage due to PMD defined as
1

o= / dB S(B)
B.

where B, is the tolerance value for BER outage, B. > B with
By being the zero-disorder value of BER. This explains why
suppression of the PDF tail is the prime target of a compensa-
tion strategy. It underlies the analysis of “setting the clock™ as
well as first- and two different higher orders PMD compensa-
tion strategies described in Sections IV-B, V-A, V-B, and V-C,
respectively. Since B, > By, the outage is determined by the
tail of the PDF that decays fast enough so that

InO ~ InS(B,).

(22)

(23)

(24)

A. Bare Case

In this subsection, we consider the bare case, assuming that
the output signal is real, i.e., that the chirp part of the input signal
(45) was adjusted to compensate for the d(z)-induced dispersive
part of W, defined in (5). Following the procedure explained in
detail in Appendix II, we find the main contribution to I" to be
first order in the field h

H;

zZ
% Hiz/dzhi(z)
0

where (11 is a dimensionless coefficient of order one that de-
pends on the signal shape and the detection procedure and it is

Fbarc ~ (25)
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also assumed that the initial (z = 0) polarization of the pulse

is (10). For our simple model, the coefficient yu, is displayed

in Fig. 1 as a function of T'/b and 7 /b, where T is the electric

filter width, 7 is the optical filter width, and b is the pulsewidth.

(See Appendix I for explicit definitions of 7', 7, and b.) Substi-

tuting (25), (21) into (22) and averaging over disorder according
D2 7Zb?

to (73) one derives
& 1n? E
2Dmu1]2 By )’

Note also, that for a given OSNR, the larger Z is, the more
extended the tail is.

In Spare(B) = — (26)

B. “Setting the Clock” Compensation

The degree of freedom associated with the “setting the clock™
transformation (18) allows us to reduce the effect of anomalous
fluctuations of birefringence and thus to reduce the extended
tail (26) to a certain extent. It is clear from the standpoint of the
tail reduction task that the weaker the dependence of I on h is,
the better. Therefore, with the single degree of freedom offered
by (18) the optimal value of ¢.; corresponds to cancellation of
the first (linear) term in the expansion of I" in h. As shown in
Appendix II-C, such an optimal value of ¢ corresponds to .| =
H3, with the main term in the expansion of I in h

T otock & ’b‘j H>, H> =H?+H2
wo being a dimensionless coefficient of order one and, as before,
the output signal is assumed to be real. For our simple model, po
is displayed in Fig. 1 as a function of dimensionless electrical
T'/b and optical 7/b filter widths. Substituting the expressions
(27), (21) into (22) and averaging over disorder according to
(74) we arrive at

By Deb?

Sclock(B) Bl+a7 — m
Note, that the “setting the clock” result (28) shows a steeper
decay compared to the bare case one (26) [due to the additional
small factor D¢ Z /1y in (26)] which is a natural consequence
of the compensation procedure applied. We reiterate that the
outage is determined by (24).

27)

(28)

V. PMD COMPENSATION

As already explained in Section II-D, the key ingredient of
any PMD compensation strategy is finding the “optimal” rela-
tion between the compensating degrees of freedom (e.g., M in
the case of first-order compensation scheme) and the birefrin-
gence profile h(z) in the transmission fiber.

The standard PMD compensation strategy, discussed in the
literature, boils down to compensating for as many terms as pos-
sible in the expansion of the received signal I given by (12) in
the series in h [9]-[11], since the more terms in the expansion
are compensated the smaller is the PMD-induced signal distor-
tion, and the number of compensated terms in the expansion is
usually referred to as the compensation order. In view of (3), (6),
and (12) this boils down to compensating the terms in the expan-
sion of KK, U — 1 in powers of h. For example, in the first-order
compensation case (19) the choice M = H = fo dz'h(z")
guarantees that the expansion of X; U —1 in the series in b starts
with the O(h?) terms.
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Even though the standard PMD compensation criterion was
not initially designed to minimize the outage probability (23),
we will see below (Sections V-A and V-B) that it efficiently
reduces the outage in the case when even without compensa-
tion typical realizations of disorder still cause reasonably small
values of BER (i.e., when the condition (14) is satisfied). This is
not surprising, since this is exactly the combined operator KU
that enters the value of I" according to (3), (5), (6), and (18).
Thus, the weaker the dependence of ICCU on hisath — 0, the
weaker the dependence of I" on h is, and, therefore, a more sub-
stantial reduction of the outage probability is achieved.

However, as argued in Section V-C, the standard N th-order
compensation strategy is not the optimal one when N is large
enough. The standard PMD compensation is especially bad in
the case when the condition (14) fails, however, a weaker con-
dition, with 1/N replacing one in the RHS of (14) still holds.
Therefore, in Section V-C, we present an alternative N th-order
compensation strategy that outperforms the standard /Vth-order
compensation strategy in the case of a relatively large IV, and
is even capable of restoring transmission in the aforementioned
case of a really bad system, when the standard N th-order com-
pensation applied under the same condition would fail.

A. First-Order PMD Compensation

One deduces from (12), (19) that the output intensity depends
on the birefringent disorder via the factor K; U. Replacing M
with its optimal value H, expanding K1 U in h followed by sub-
stituting the result into (12), and evaluating B according to anal-
ysis of Appendix II leads to

poYe | psYe H*
0
b2 + b3 + s
zZ z'
v.= [ / 02 (2 Yha2) = o (=) (2)]
0
zZ zZ1
Y; = /le /d72 / d23{2h3(21)H(2’27 23)
0
— h3(22)H(21,23) — h3(23)7'f(21,22)} (€29)
H(Zl,ZQ)E hl(zl)hl(ZQ) + hz(zl)hg(ZQ) (32)
where in (29) we present the general expression for the first two
terms of the expansion of I in a series in H/b. In the general
position case, the dimensional coefficient p is nonzero, the p3
term is subleading and can be neglected. If, however, a degen-
eracy leads to ph-term cancellation, the p3 term becomes the
principal contribution.

Thus, for the Gaussian initial pulse shape, described in Ap-
pendix I, the case of nonzero ) and the degenerate case of
zero w4 correspond to the complex (uncompensated chirp) and
real (compensated chirp) output signal, respectively. (In the first
case, the dimensionless coefficient ) is related to the output
signal chirp, produced by initial signal chirp and/or the nonzero
integral chromatic dispersion n = fOZ dz d(z). Thus, if the ini-
tial chirp is small, 3;, < 1, the output signal chirp becomes

B = Bin+mn.) The dependence of the dimensionless coefficients
wh /B and p3 on T'/b and /b, found numerically for the model

= (29)

(30)
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introduced in Appendix I using the saddle-point equations of
Appendix II, are displayed in Fig. 1. Substituting (29) into (21),
(22) and averaging over disorder according to (85) and (91), re-
spectively, yields the PDF tail in a form

Bg ’/Tl){b2
SelB)~pre V= gygp,n
2
b2 (D:Z. B\?
Sy, (B) ~ — 425 <M;IO In B_0> (34)

where (33) and (34) correspond to the nonzero p}, and the degen-
erate zero p4 cases, (33) and (34) are valid when ln(B/By) >
|1ty Dy 1o /[Deb?] and D¢ Z In(B/Bo) > jua(Dm Z)>/ %1y /b3,
respectively, and the outage is given by (24).

Note, that although (28) and (33), which correspond to the
“setting the clock” compensation and first-order compensation
(with uncompensated chirp), respectively, look similar the ex-
ponents « and y that determine the tails of the PDF in these two
cases are of different nature: they originate from different bi-
linear combinations of h(z) [compare (27) with (29) and (30)].

B. Standard High-Order Compensation

The fiber system performance can be improved even further.
First, special filtering efforts can enforce the output pulse sym-
metry under the { — —t transformation (theoretically this can
be achieved by a proper choice of the optical filter transfer func-
tion, however, practical implementation still remains an open
question). Then the O(H?) contribution to I will be also can-
celed and (29) will be replaced by I' = O(H*/b*). Second, and
more important, instead of first-order compensation Ky one can
use a higher order compensation K, described by (20) with the
N parameters M ,,, where n. = 1,--- N, chosen in such a way
that the first N terms of the operator KU -1 expansion in the
series in H /b would cancel out, so that I' = O(HN*+1/pN+1),
(Note that in counting the degree of cancellation we do not as-
sume that the system possesses any kind of degeneracy, e.g.,
one of the kind that led to I'; reduction from being O(H?/b?)
to O(H?/b).) In this case, the logarithm of the PDF tail of I"
can be estimated by —(b?/D,, Z)(T 5 )%/ (N+1), This results in
the following expression for the tail of the PDF of B:

b2 <D§Z B ) eEa)

In —

D7 \ Iy By
valid for D¢Z In(B/By) > (D Z/b*)N+1/2]. Equation
(35) generalizes (26), (33), (34), correspondentto N = 0, 1,2,
respectively. We conclude that, as anticipated, the com-
pensation does suppress the PDF tail. The corresponding

estimate for the outage probability defined by (23), gives
IO ~ —[(Iy)"*D¢ Z In(B./Bo)|? N+V82 (D, Z).

IIISN(B) ~ —

(35)

C. Periodic and Quasi-Periodic PMD Compensation: Or How
to Resurrect PMD-Damaged Fiber Line

The main purpose of this subsection is introducing new com-
pensation strategies that substantially outperform a standard
PMD compensation scheme (discussed in Sections II-D and
V-B) with the same number of degrees of freedom N in the
case of relatively large N.

Assume that an optical line can be divided into N segments,
each of length | = Z/N, and apply first-order compensation at
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Fig. 2. Cartoon scheme of fiber-line elements installation corresponding to
periodic and quasiperiodic compensation strategies.

the end of each segment (as schematically shown in the upper
panel of Fig. 2, with “c” denoting the compensating elements).
The noise-independent part of the compensated signal for the
“periodic compensation” strategy is determined by

Kep = exp (ind2) KinUn ... KU1 ¥o(t)  (36)
nl

U, =T exp dz hj(2)6;0; (37)
(n 1)1
nl

Kin = exp | — / dz hj(2)6;0; (38)

(n—1)1

where Wy (t) is the input signal profile, n = fOZ dzd(z)isthein-
tegral chromatic dispersion, and the ordered product on the RHS
of (36) is taken over all the N segments. T exp is the standard
notation for the so-called ordered exponential. The exponential
factor KCy,, represents the first-order compensation at the end of
the nth segment.

Such a “periodic” compensation is not particularly conve-
nient since it requires installation of compensating elements at
multiple places along the system. However, one can naturally
modify this scheme and have the same compensating elements
inserted subsequently but all at once at the fiber output as shown
in the lower panel of Fig. 2. If the disorder profile h; is known
(technically such endpoint measurements are possible through
the anti-Stokes refraction technique [34]) one can have an end-
point, but multiple, compensation as K. = [] K1, leading to
the following “quasi-periodic”” modification of (36):

Kep = exp (L’I](?,Z) K11 ...’ClNUN...UllI’o(t) 39
where Ky, and U, are defined by (37) and (38). The idea that
stands behind the “quasi-periodic” compensation is obvious:
We construct (in the compensating part) the best possible ap-
proximation (with the given number of the compensating de-
grees of freedom) for the inverse of the ordered exponential
U=Uy...U.

Note that the (quasi)-periodic compensation does not influ-
ence the statistics of the noise-dependent part of the signal, i.e.,
K. has the same correlation function (7) as ¢. Therefore, one
arrives at the same expression In(B/By) = I'ly/(D¢Z) with
a new h-dependent factor I'. Furthermore, in the region of our
main interest, I' can be analyzed perturbatively, just as before.
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Expanding the factors in (36) up to the second order and making
use of (7), (12), and derivations of Appendix II one derives

, N bz
ra kY / dz / A2’ [h(2)ha(2') = ha(2)ha ()] (40
n=1an an

where a,, = (n—1)I. Here, 1}, is the same dimensionless coeffi-
cient that has been already discussed in Section V-A, and is also
displayed in Fig. 1 for the Gaussian chirped model described in
Appendix 1. As follows from (39), the same expression (40) is
obtained in the second order for the quasi-periodic case. Substi-
tuting (40) into the expression for B and evaluating the PDF of
B, with the Gaussian statistics of h described by (9), leads to
the following expression for the tail of the PDF of BER:

Bg
~
B1+V ’

NWD§b2

Sn(B = >
n(B) Y= 204 Do

(41)

Equation (41) holds for In(B/Byg) > 1y Dy 1o /[Deb?]. The ex-
ponent v in (41) contains an additional factor N compared to «
that explains a steeper tail of S(B) for (quasi)-periodic compen-
sation compared to the first-order endpoint compensation. It is
also instructive to compare the outage probability for the peri-
odic case with the case of higher order endpoint compensation
described by (35). One finds that for higher order compensa-
tion, i.e., when N > pb In(B./By)ly/(D¢ Z), the (quasi)-pe-
riodic scheme becomes more efficient compared to the straight
Nth-order compensation scheme.

Note, that an important computational step that leads to (41)
rests on evaluating I" perturbatively in h. Besides, in the peri-
odic case, I is a direct sum of the individual segment contri-
butions I',,, and the perturbative treatment applies separately to
each I',,, requiring the weakness of the PMD effect at each seg-
ment only, i.e., D, Z/N < b2. Therefore, one concludes that
even an optical line with not really operable (without compensa-
tion) characteristics (D, Z is of the order or larger than %) can
still be used for transmission if NV is sufficiently large. More-
over, this observation on the applicability of (41) also extends to
the quasi-periodic case, in the sense that (41) provides an upper
bound for the PDF of BER. This implies that the quasi-peri-
odic arrangement can be superior with respect to the periodic
one due to an additional, oscillatory with h, suppression of T',,
in the quasi-periodic case versus periodic. This suppression is
especially important for segments strongly separated from their
compensating counter-segments.

To conclude, in this subsection, we have proposed (quasi)-pe-
riodic compensation scheme that appears to be a strong alterna-
tive to the standard higher order compensation strategies. The
efficiency of the scheme has been demonstrated and even though
the technical implementation of this procedure requires expen-
sive equipment, the reduction in the probability of extreme out-
ages can result in an essential overall benefit.

VI. DISCUSSION AND CONCLUSION

In this paper, we evaluated the outage probability that charac-
terizes the reliability of an optical fiber communication system
with well-separated time scales related to two different noise
mechanisms. The two major impairments which contribute
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to the outage are represented by spontaneous emission noise
generated in optical amplifiers and birefringent disorder of the
fiber. The latter originates from temperature and stress vari-
ations in the fiber system. The outage—substantial deviation
of BER from its mean value—is characterized in terms of the
PDF of the BER. The BER represents the probability of a
transmission error (it is found by averaging over many bits of
information) for a given realization of birefringent disorder.
The outage probability is expressed in terms of the far tail of
the PDF of BER (23). This formulation, together with the fact
that the object of interest is described in terms of rare events
makes numerical or experimental studies extremely difficult (if
practical at all).

The proposed method to estimate outage probability is based
on first averaging over the amplifier noise, followed by aver-
aging over birefringent disorder. These averaging procedures
are very different in nature. The spontaneous noise is short-cor-
related in time, while birefringent disorder is frozen, i.e., it does
not change on the time scale associated with a given pulse trans-
mission throughout the entire system. In an efficient communi-
cation system the OSNR is large, thus bit errors, due to fluctu-
ations of the optical field that are large compared to their typ-
ical values, occur rarely. The saddle-point (optimal fluctuation)
method, developed within the functional integral approach, be-
comes an adequate (and currently the only) tool for BER eval-
uation. The BER is a functional of birefringent disorder. As is
seen from the general expression (21), even relatively weak vari-
ations in the disorder can generate a strong change (additional
orders of magnitude) in the value of BER.

It is impossible to compensate for amplifier spontaneous
emission noise, whereas effects of birefringent disorder are
curable, at least to a certain extent. Since the outage probability
characterizes system performance, compensation scheme
performance should be compared based on this measure. As
illustration, we briefly discuss a relevant example of how
efficient various compensation techniques can be. Typical
values of the parameters introduced in this paper for real fiber
links are: T'g = 0.06, uy = 0.06, uo = 0.12, ph = 0.15,
and p3 = 0.35. Typical bit-error probability is By = 10712
and the value of Iy/[D¢Z] =~ 460. We also assume that the
PMD coefficient k = /12D, is 0.2 ps/v/km, the pulsewidth
is b = 25 ps, and the system length is Z = 2500 km, i.e.,
D,.Z/b?> =~ 0.013. Then for these particular set of param-
eters, the outage probability corresponding to B, = 10710
is O = 0.35 if no compensation is applied, see (26). One
derives © ~ 0.04, O = 4-10"%,and O ~ 2 - 10~ "3 for (27),
(33), and (34), describing the cases of the “setting the clock,
“and two cases of the first-order compensations considered in
Section V-A, respectively.

Experimental and numerical verification of these results is
of considerable importance. Some moderate but significant
progress has been made in this direction. Numerical obser-
vations corresponding to the “setting the clock” case and
consistent with our results (28) are available. Thus, [35, Fig.
2(a)] replotted in log-log variables shows a relation between
In S and In B close to the linear one given by (28). In addition,
our major result, the emergence of an extremely extended tail
in the PDF of BER that is algebraic or algebraic like (i.e.,
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which is much more extended than any log-normal, Gaussian
or even exponential expectation would offer), is consistent with
experimental measurements on an artificial PMD-modulator
system reported in the same volume [36].

We conclude by emphasizing the generality of the theoretical
approach developed in the manuscript. Although we restricted
our quantitative analysis to the linear model of optical propa-
gation and the RZ modulation format, the fact that even minor
variations of birefringence can lead to major variations of
BER constitutes a general and key feature of the approach.
This leads to relatively straightforward generalizations that
allow us to consider any other modulation format, account
for interchannel nonlinear interactions, and even export the
approach to the nonlinear (soliton) transmission regime. Those
cases are currently under study and the results will be published
elsewhere.

APPENDIX 1
OPTICAL AND ELECTRICAL FILTERS AND INITIAL
SHAPE OF THE PULSE

Our approach is general. However, for illustrative purposes,
we choose to stick to a simple model of signal coding (form
of initial pulse) and decoding (particular shape of optical and
electrical filters). We also consider the simplest choice of the
decision level value I; = Iy/2. These modeling assumptions
allow us to get quantitative results, i.e., results valid not only
parametrically [and here the major focus will be on the two-
dimensionless parameters entering the left-hand side (LHS) of
(13), (14)] but also up to numbers, the coefficients, generally
being dependent on the model.

Let us formulate our illustrative model. We assume a
Lorentzian shape of the optical filter

< ’ Y]
)Cf\Il:/dt’eXp <—t—> \I’u
T T
0

where T is the optical filter temporal width. Then, taking into ac-
count that the statistics of ¢ are insensitive to the birefringence
field h, one gets from (7) that the statistics of the inhomoge-
neous contribution are governed by the PDF P

(42)

P@%=N]e@{—5§a/&ﬁﬁz+#W@ﬂ} 43)

where q~5 = Kf¢, and N is a normalization factor. Equation (43)
defines the measure of averaging with respect to the noise: one
should integrate over realizations of ¢ with the weight (43). The
electrical (window) filter is chosen as

1, [t| <T

qnawm—nz{Q a7 (44)

where T stands for the electric filter temporal width. We assume
that the initial signal encoding “1” is Gaussian

Wy(1) o exp [—%“ - Wi“)} @

where b is the pulsewidth and [, stands for the initial pulse
chirp.

(45)
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APPENDIX II
SADDLE-POINT EVALUATION OF BER
(FOR GIVEN REALIZATION OF DISORDER)

The transition probability (16) and the measure of averaging
over ¢, described by (43), are the two expressions that constitute
the starting point for the calculations presented in this appendix.
Substituting (43) into (16) and introducing an additional Fourier
transform leads to

P (Iout|Lin; {h}; Z) = N1 / % / D(t)

X exp {i)\ <Iout - /dtG(t)UC(p + (]3|2)
oz [l v ad] b o

where dependencies on I, and h are contained solely in the
Ko(Z,t) field. The condition (13) locates the path-integral over
(Z) and the usual integral over ) to the saddle point, i.e., the inte-
grals are dominated by a single configuration called the saddle
point. The saddle-point evaluation of (46) results in

202 ey — dap — uG(t)pep = uG(t)Kep
Lot = / G0 Kp + dup?

1
I PopFon)] % =7 [ (19l + 720 )

_ u
T DeZ

(47)
(48)

[Iout - / dtG(t)(Ky + ésp)icgo*]
(49)

where u = tAD¢ Z is a real number, and (47)—(49) thus consti-
tute the system of integrodifferential-algebraic equations. Sub-
script “sp” stands for saddle-point and we will skip it in all fol-
lowing formulas to shorten the notation.

Note that (47)—(49) are not singular in the 7 — 0 limit, which
should, however, be treated with caution since the corrections
to the leading saddle-point approximation (accounting for the
so-called determinant that accounts for Gaussian fluctuations
around the saddle point) are actually singular in this limit. The
condition that the fluctuations do not destroy the saddle-point
result reads 7 >> D¢ Zb/ 1. Thus, in the interesting asymptotic
range, b > 7 > D Zb/Iy, (47)~(49) transform to

~ u@G
i praweling (50)
_ G(t)|Kyl?
Lo = /dt(l G (51)
_ uG \* [Kel?
In [P(Iout)] - - /dt (m) DEZ . (52)

For a step-function shape of the electrical (window) filter (44),
one gets an explicit expression for « in terms of ¢ and I, from
(51) which, substituted into (52), gives

(/T HCOKP ~ VTow)
DeZ '

In the general 7 ~ b case, one does not get an explicit analog
of (53), however, the general system of (47)—(49) can still be es-

In[P(lowt)] = —

(53)
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sentially simplified for the step-function shape of the electrical
(window) filter (44). The solution of (47) that satisfies a zero
condition at ¢t = %00 is

) ¢a(t) + Biexp [-2] + B_exp [2], |t|<T
P(t) = ¢ Apexp[-1], t>T
A_exp [L], t< =T
(54

where ¥ = /1 + u, and ¢,(¢) is the solution of the auxiliary
problem described by modifying (47) with G(t) on the LHS of
(47) replaced by one. Thus

¢a(t) =

t—t'109
dt’|)C<p|( ") exp <—| . | > (55)

Four coefficients in (54) are fixed by four obvious conditions
imposing continuity for both ¢(t) and 9,¢(¢t) att = +T'. Taking
into account that ¢/ (£7) = FY9¢.(£T)/7, one derives

u
219

Bi 5(19—1)
DG FD 0D )
(140)2e 7 —(9—1)2e 7"
Ai E26M
O ANV D) (g

(1+0)2e 75 —(9—1)2e

that results in the following explicit expression for ¢ in terms
of Ke:
T

M) = - = / a' o))

-T
{ < |t—t’|z9>
X qexp| —
.
9 -1
_ 2T9

+ 2TY
(1 +9)2e7= —(9—1)2e= 2=

(o[22

)

[ 95 1 0 1]
— (T+t
+ exp [—T t 19} [(1—}—19) -

-
(9 — 1)6*—”‘?“} ) } (58)
where only the || < T part of the () function is shown. There-

fore, (58), substituted into the following two equations derived
from (48), (17):

T
= / dt|Co + (59)
‘T
I T
In[B] z% 3 - / dt(Kp + )Kyp (60)
T

gives a complete description of saddle-point approximation re-
sult. In (59) and (60) we have also assumed that I, = Iy/2.
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Note, that even though the explicit solution of (47), presented
in (58) is found, one still cannot solve (59), i.e., one cannot ex-
press u explicitly in terms of (t). Therefore, the remainder
of this appendix is devoted to numerical solution of (48). Step
by step, we analyze the situations corresponding to a variety of
cases studied in Section IV. In the remainder of this appendix,
we describe an exact recipe for numerical calculation of the di-
mensionless coefficients that lead to the results shown in Fig. 1.

A. T'g-Calculation

First, one studies the zero PMD, h = 0, case. Replacing Ky
in (58), (59), and (60) by K¢¥,, where K and ¥ are defined
by (42) and (45), respectively. Then, u = ug and ¢ = ¢ are the
numerical solution of (58), (59) for fixed 7'/b and 7/b. Finally,
from (21), (60)

1 ST dHCr R, + do) KT
T
2 e 2k

To=1uo (61)

where we have used Iy = f_TT dt|K s ¥o|?. Note that the initial
chirp f;, does not enter I'y.

B. p1-Calculation

The idea is to solve (58) and (59) perturbatively with respect
to h. Since in this case, Ky — (1 + H30,)K ;¥ (also with
Bin = 0), one presents « and ¢ in the forms v = ug+ Hzuy /b+
O(h?) and ¢ = ¢o + Hsg1 /b + O(h2). Then, for

Dngn[B/Bo]/IO — Fl = /1,1H3/b
one derives from (58)—(60)

b1 = p{Kp — K;0,Wo,u — up}
Ly dt( o + Ky %o) (1 + K50, %)
fTT dt(¢o + K;Wy) %

u—ug

(62)

(63)

uy =

uJ‘O (N
uo [T KTl

H1 = —

T
X /dt [ICfat\Ilo x (¥ + ng)
7

Koy + chat\Ifo)} . (64)

C. po-Calculation

A similar perturbative strategy will work in the zero chirp
“setting the clock” compensation case. The idea of the com-
pensation is to adjust the time shift ¢ in such a way that the
first terms of I"’s expansion in h vanish. Formally, pure “setting
the clock” compensation means: Kyp(t) — WICf\IIO (t—ta).
Substituting this expression into (58)—(60), assuming that
ta = O(h), and making respective variations with respect
to h, about © = wug, of ~(59)~one derives thaNt u = ug +
(Hs —ta)ur /b+ O(h?), ¢ = ¢o + (Hz — tar)d1 /b + O(h?),
and finally I' = py(Hs — to)/b + O(h?). Therefore, one
concludes that to cancel the O(h)-terms in I" one needs to set
the clock according to: t.; = Hs.
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Then, modifying the perturbative scheme from the pre-
vious subsection, according to K¢ — (1 + H292)K;,
(also with B, = 0), u = wug + H2us/b + O(h®) and
¢ = ¢o + H2da/b + O(h*), one arrives at expressions
equivalent to (62)—(64) with all “1”-subscripts replaced by “2”
and 9; replaced by 92, respectively.

D. ph-Calculation

Here we discuss the case when first-order PMD compensa-
tion is applied while the output signal has small but nonzero
chirp. Perturbative calculations, outlined in Subsection II-B of
this appendix, are applicable with the following modifications:
IC(p — (1 + Ycaf)le\Ilo, where \I,O = ‘I,O;R + ill/‘I,O;I»
Uy.p = Cyexp(—t?/[2b%]), ¥o.r = C, exp(—t%/[2b%])t? /b,
and Y. is defined in (30).

We are looking for perturbative solution of (58)—(60) in the
form: u=1wug+Y.ub/b?>+O(h?) and p=o+Y.po /b2 +O(h?),
where, however, both q1~>0 and q1~>2 are complex: g/;k = g/;k; R+
iﬁq@k; 1, where k=0, 2. Then, the analogs of (62)—(64) are

rp = ¢ {Ko — K0} ip,u — uo}
where k = 0,2and P = I, R

B 27 dt($o.r + K5 %o.r) (<£2;1 + ICfatZ‘I/O;I)
[T den + K W) 20 .
I dt(do,r + K %0,1) (§/~)2;R + ICfat?\IIO;R)
T (o + KW ) 220

r U,IQF() (')
Mo = — T 9
v g dt[KCs o]

(65)

Uy

(66)

u—ug

T
X /dt |:’Cfat2\1’0;] X (]Cf\I’O;R + éO;R)
Zr

—K ;079 0.r(Po.1 + ICf‘I’O;I):| . (67)

E. ps-Calculation

Perturbative calculations for this case (first-order PMD com-
pensation and no chirp, i.e., all the functions are real) are abso-
lutely analogous to those explained in Subsection II-B of this ap-
pendix. Then, with K¢ — (1+Y,.03)K Vg (also with B;, = 0),
where Y, is defined in (31), and u = ug + Y, u3/b* + O(h?),
¢ = ¢o + Yop3/b® + O(h*), and I = p3Y,./b*> + O(h*), one
derives from (58)—(60)

b3 =d {Kp — K0} ¥o,u— ug} (68)
4 f_TT dt(do + K5 ¥y) (¢~>3 + /Cfaf"l’3) )
uz = — < — =
3 fTT dt(do + Kp¥o) 920 .
’U,3F0 4’(1,0
M = — —_
R T
T
X / di [’Cfat?"l’o x (K% + o)
=T
+K ¥ ((;33 + ’Cfaf"I’o)] ) (70)
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APPENDIX III
h-AVERAGING

A formal definition of the h-averaging, i.e., averaging with
respect to the statistics of the birefringence pseudovector, reads

b)), = [ DhPuAR) an
zZ 2
Pr{h} = N, exp [—%’:ﬁ] (72)

where A{h} is an arbitrary functional of h, integration in the
RHS of (71) is functional (path-integral), and N,, is a normal-
ization coefficient enforcing (1), = 1. Obviously, (71) and (72)
are consistent with (9).

Our goal is to derive the PDFs for four auxiliary objects: Hs,
H i, Y., and Y, defined in (25), (27), (30), and (31), respectively,
starting from (71) and (72).

While the PDFs of H3 and H JZ_ follow directly from (71), (72)

H2

P1(Hs) ~ exp {— 5D 32} (73)
H2

P> (H?) ~ exp {— EDLZ} (74)

calculating the PDFs for the other two objects is less straight-
forward.

A. Statistics of Y.
The PDF of Y. can be recast as

Py(Ye) = / %exp(i)\Y)E(i)\) (75)
. z
E(S)Z/Dhexp —Fm/dz (ki + h3)
0
zZ z
—s /dz/dz’ [h1(2)ha(2") — ha(2)h1(2")] p . (76)
0 0
Differentiating (76) with respect to s one gets
zZ z
dsIn & = — /dz/dz’G,(&z’) (77)
0 0
G_(2,7') =G1a(z,2") — Ga1(2,2) (78)
Gij(2,2') = (hi(2)h;(2")) 79

where averaging in the definition of the correlation functions
G;; is performed using the Gaussian measure defined by (76).
Using the G-function definition and making a set of Gaussian
integral transformations (integration by parts) one derives

Gij(z,71)

z
) + s/sign(z — 2)eir|Grj(2', 21) = 6;6(z — 2)
" 0

(80)
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where ¢;; is the antisymmetric 2 — 2 tensor and summation
over k is assumed in the LHS of (80). Equation (80) transforms
into the following equation for G_:

+s/ dz’sign(z—2")G_(2', 21) = —26(2 — 22).
0

0.G_(z,21)
2D2s
8D
Equation (81) has to be supplemented by the boundary condi-
tions

G_(Z, Zl) = —G_(O,Zl), 8ZG_(Z, 21) = —BZG_(O,zl).
(82)

The solution of (81) that satisfies (82) has the form
G- (Z7 21 )
sin (Z+Ds (2(z—z1)+ Zsign|z1 —
_ sin (2 . s(2(z zl)' ign[zq z])) Signls1—2]. (83)
sin (54 DsZsign|z1 —2])

Substituting (83) into (77) and performing integrations over z,
2’ explicitly, one derives 05 In = = D,, tan(D,,,sZ), resulting
in

1
(s) = cos(Dy,8Z)

=

(84)

Combining (84), (75), and integrating over A, one arrives at

1 h_l WY;
oD, 7 % oD, 7 )"

Ps(Ye) = (85)
B. Statistics of Y,
The PDF of Y., defined in (31), can be written as

dA ) 1
Py(Yr) = / %exp(—L)\Yr)/Dpexp{ BB NA

1
dp > 2
x [ dr [(—) + A\2(3p% — 2p,p) ] } (86)
0/ d¢

where ( = z/7 and p; = p(¢ = 1). Calculating the integral
over \ one arrives at
Dp

Pal¥r)= / (271'V)%

1 ~
1 dp\> Y2
0
Y =D3 7%,
1
2
V= / d¢(3p%—2p,p) " (88)

0
The condition (14) allows saddle-point calculation of the path-
integral on the RHS of (87). The saddle-point equations support
the conservation of £ = const where
Bt 32— opmp)t. Py~

=p +W( p°—2p1p)”, In "R ops g8
and p corresponds to projection of p on p; (the other component
of p orthogonal to p is zero). One finds that (89) can be recast
in a form

(89)

2,4
. 2 KM
6% + (30" — 2no)” = 5

. V_2K2’I74
Yz 9

(90)
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where 7 = o(1) and p = (V/Y)p. Note, that 3 < k < oo.
Substituting (90) for E into (89) for In P and expressing V' via
o from (88) leads to

Wl

SY,
1 R — 91
n Py D.Z oD
S = “WZ
18453
1
. 2 2
A:n/dg 3<€> e (92)
n n
0
It is convenient to introduce a new parameterization
g:g(l—f—\/l—i—/ﬁsin(p) (93)
that leads to
@n d
0= / —— (94)
4;90 \/ (1+rK)—cos? ¢
Pn 2
1 —(1 cos?
A=t /dga[“ Urneorel | gy
9 . 2K
©0 (1+r)—cos? ¢
) 2
sin p, = (96)

N
One finds (numerically) that 3 = m — arcsin(2/v/1 + &) cor-
responds to the solution with the lowest possible value of S,
S, ~ 4.185, achieved at K ~ 3.145.

APPENDIX IV
REMOTE TAIL OF THE PDF OF BER

In this appendix, we study a universal remote tail of S(B)
corresponding to huge fluctuations of birefringent disorder
when the signal is almost destroyed by the fluctuations. Thus,
in the parametric range

max {(DinZ)?,(D¢Z)*} < DeZInB <1 (97)

the BER is formed by configurations of h(z), where the normal-
ized intensity of the signal, without the noise 7{h} = I{h,£ =
0}/I4 [see also (12)] satisfies inequality D¢z < J — 1 < 1.
In this case, the expression (21) for BER is replaced by

(7 {h} —1)°

-C D7

B =exp (98)
where C' ~ 1. (Strictly speaking, this coefficient also depends
on h, however, for configurations h that correspond to the
leading contribution into S(B) at (97), this dependence is
weak, and thus can be neglected.) The PDF of 7 = J{h}, as
follows from (9), adopts the following form:

P(T) o exp (— FU)) (99)

D, 7
where the function F'(J) does not depend of D,,,Z, and for
J ~ 1,itis O(1). Comparing (98), (99) and also making use of
J — 1 < 1, we obtain the following universal asymptotics for
the PDF of BER, valid on the interval (97):

“ —DE In l

S(B) ~ — 5 + o[ 5o In

(100)
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where C; = F(1) and Cy ~ |F’(1)] are constants of the order
one. The principal factor in (100) is exp[—C1 /(D 2)] supple-
mented by a relatively weak dependence on B.
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