
November 15, 2003 / Vol. 28, No. 22 / OPTICS LETTERS 2159
Extreme outages caused by polarization mode dispersion
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We study the dependence on fiber birefringence of the bit-error rate (BER) caused by amplifier noise in a
linear optical fiber telecommunication system. We show that the probability-distribution function of the BER
obtained by averaging over many realizations of birefringent disorder has an extended tail that corresponds to
anomalously large values of BER. We specifically discuss the dependence of the tail on such details of pulse
detection at the fiber output as setting the clock and filtering procedures. © 2003 Optical Society of America
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Transmission errors in modern optical telecommuni-
cation systems have various causes. In systems with
a transmission rate of 40 Gbits�s or higher, polariza-
tion mode dispersion (PMD) is a major problem. PMD
leads to splitting and broadening of an initially com-
pact pulse.1 –4 The effect is usually characterized by
the so-called PMD vector, which determines the lead-
ing PMD-related pulse distortion.5 – 8 It is also rec-
ognized that the polarization vector does not provide
a complete description of the PMD phenomenon, and
some proposals to account for higher-order PMD ef-
fects were recently discussed.9 – 12 Birefringent disor-
der does not vary, at least on the time scales related to
optical signal propagation. Optical noise originating
from amplif ied spontaneous emission is different: It
is correlated on a short time scale of the signal width.
In this Letter we discuss the joint effect of amplif ier
noise and birefringent disorder on the bit-error rate
(BER). Our main goal is to estimate the probabil-
ity of special rare conf igurations of the fiber birefrin-
gence that produce anomalously large values of BER
and thus to determine the reliability of information
transmission. Evaluation of the signal BER that is
due to amplifier noise for a given instance of birefrin-
gent disorder is the first step in our theoretical analy-
sis. We also intend to study the probability-density
function (PDF; normalized histogram) of the BER, in
which the statistics are collected for various fibers or,
equivalently, for the states of a given fiber at different
times, and focus on the probability of an anomalously
large BER. We analyze the basic (no compensation)
situation and compare it with the simplest compensa-
tion scheme, known as setting the clock.

The envelope of the optical field propagating in a
given channel in the linear regime (i.e., at relatively
low optical power), which is subject to PMD distortion
and amplifier noise, satisfies the following equation3 – 5:
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≠zC 2 iD̂�z�C 2 m̂�z�≠tC 2 id�z�≠t
2C � j�z, t� .

(1)

Here z, t, j, and d are the position along the fiber, the
retarded time, the amplif ier noise, and the chromatic
dispersion, respectively. Envelope C is a two-com-
ponent complex field; the two components represent
two states of the optical signal polarization. The
birefringent disorder is characterized by two random
2 3 2 traceless matrix f ields related to the zero �D̂�
and first �m̂� orders in the frequency expansion with
respect to the deviation from carrier frequency v0.
Birefringence that affects the polarization of light is
practically frozen (t-independence) on all propaga-
tion-related time scales. Matrix D̂ can be excluded
from consideration by the transformations C ! V̂C,
j ! V̂j, and m̂ ! V̂ m̂V̂21. Here, unitary matrix
V̂�z� � T exp�i

Rz
0 dz0D̂�z0�� is the ordered exponen-

tial, defined as the formal solution of the equation
≠zV̂ � iD̂V̂ with V̂ �0� � 1̂. Hereafter, we always use
renormalized quantities. We further represent the
solution of Eq. (1) as C � w 1 f, where

w � Ŵ �z�C0�t�,

f �
Z z

0
dz0Ŵ �z�Ŵ21�z0�j�z0, t� , (2)

Ŵ �z� � exp
∑
i

Z z

0
dz0d�z0�≠t

2
∏
T

3 exp
∑Z z

0
dz0m̂�z0�≠t

∏
, (3)

and C0�t� stands for the initial pulse shape.
We consider a situation in which the pulse’s

propagation distance substantially exceeds the
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interamplifier separation. Our approach allows us
to treat discrete (erbium) and distributed (Raman)
amplification schemes within the same framework.
Additive noise j generated by optical amplifiers is
zero on average. The statistics of j are Gaussian,
with the spectral properties determined solely by
the steady-state features of the amplifiers (gain
and noise f igure).16 The noise correlation time is
much shorter than the pulse’s temporal width, and
therefore j can be treated as d correlated in time.
Equations (2) and (3) imply that the contribution of
noise to output signal f is a zero-mean Gaussian
field characterized by the following pair correlation
function: �fa�Z, t1�f�

b �Z, t2�� � DjZdabd�t1 2 t2�.
Therefore it is statistically independent of both d�z�
and m̂�z�. Here Z is the total system length, where
the product DjZ is the amplified spontaneous emis-
sion spectral density of the line. Coeff icient Dj is
introduced to reveal the linear growth of the amplified
spontaneous emission factor with Z.16 The matrix of
birefringence m̂ can be parameterized by a three-com-
ponent real field hj , m̂ �

P
hj ŝj , where ŝj is a set of

three Pauli matrices. Field h is zero on average, and
its correlation scale in z is short. Transformation
m̂ ! V̂m̂V̂21 guarantees that the statistics of hj will
be isotropic. As h enters the observables described by
Eqs. (2) and (3) in an integral form, the central-limit
theorem implies that field hj can be treated as a
Gaussian field with �hi�z1�hj �z2�� � Dmdijd�z1 2 z2�,
where averaging goes over the instances of birefrin-
gent disorder. For weak birefringent disorder the
integral H �

Rz
0 dzh�z� represents the PMD vector.

Thus Dm � k2�12, where k is the so-called PMD
coeff icient.

We consider the return-to-zero modulation format
when the pulses are well separated in time. The sig-
nal detection at the line output, z � Z, corresponds to
measuring output pulse intensity I :

I �
Z

dtG�t� jKw�Z, t� 1 Kf�Z, t�j2, (4)

where G�t� is a convolution of the electrical (current)
filter function with the sampling window function.
Linear operator K in Eq. (4) stands for an optical
filter and a variety of engineering tricks applied to the
output signal, C�Z, t�. Of a variety of such tricks,
we discuss here only those that are related to optical
filtering and to setting-the-clock compensation, the
latter of which can be formalized as KclC � C�t 2 tcl�,
where tcl is the optimal time delay. Ideally, I takes
two distinct values that correspond to the 0 and 1.
However, noise and disorder force deviation of I from
ideal values. We detect the output signal by introduc-
ing a decision level Id and declaring that the signal
code is 1 if I . Id and is 0 otherwise. Sometimes
information is lost, i.e., an initial 1 is detected as 0 at
the output or vice versa. The BER is the rate of such
events that is extracted from measurement of many
pulses coming through a fiber with a given instance
of the birefringent disorder, hj �z�. For successful
system performance the BER should be extremely
small; i.e., typically both impairments can cause only
a small distortion of a pulse or, stated differently, the
optical signal-to-noise ratio (OSNR) and the ratio of
the squared pulse width to the mean-square value of
the PMD vector are both large. The OSNR can be
estimated as I0��DjZ�, where I0 is the initial pulse
intensity, I0 �

R
dtjC0�t�j2, and the integration goes

over a single slot populated by an ideal (initial) pulse,
encoding 1.

Based on Eq. (4), one can conclude that input 0 is
converted into output 1 primarily as a result of noise
f and therefore that the probability of such an event
is insensitive to the birefringent disorder. Therefore,
anomalously large values of BER originate solely from
the 1 ! 0 transitions (note that corrections to the BER
associated with interference with a pulse from neigh-
boring slots are not considered here, as the correc-
tions are small). Let B be the probability of such an
event. Because the OSNR is large, B can be estimated
as the probability of an optimal f luctuation f lead-
ing to I � Id. Then one concludes that the product
DjZ ln B depends on the disorder, the chromatic dis-
persion coefficient, and the method of measurement,
whereas it is insensitive to the noise characteristics.
Because the OSNR is large, even weakly birefringent
disorder could produce a large increase in the value of
B. This fact permits a perturbative evaluation of the
dependence of B on disorder, starting with an expan-
sion of the ordered exponential [Eq. (3)] in powers of h.
If no compensation is applied, the linear term prevails.
It is convenient to introduce a dimensionless coeff icient
m1 in accordance with �DjZ�I0�ln�B�B0� � m1H3�b 1
O�H2�, where the initial pulse C0 is assumed to be lin-
early polarized and C0 ~ �1, 0�, where b and B0 are
the signal width and a typical value of B that corre-
sponds to hj � 0, respectively; ln B0 � 2I0�DjZ�; and
Hi �i � 1, 2, 3� denote the components of vector H.
Setting-the-clock compensation cancels out the linear
H contribution, i.e., m1 � 0 if tcl is chosen to be equal
to H3. In this case and also when the output signal
is not chirped one gets �DjZ�I0�ln�B�B0� � m2�H1

2 1
H2

2��b2 1 O�H 3�, where m2 is another dimensionless
coefficient.

Aiming to analyze the dependence of the pa-
rameters G0 	 2�DjZ�I0�ln B0, m1, and m2 on the
measurement procedure, we present here the re-
sults of our calculations for a simple model. We
assume a Lorentzian shape for the optical f il-
ter: KfC �

R
`

0 dt0 exp�2t0�t�C�t 2 t0��t, where t is
the optical filter’s width. Thus the PDF, P �Kf�, of
the inhomogeneous contribution satisfies

ln P 
 2
1

DjZ

Z
dt�jKfj2 1 t2j≠tKfj2� . (5)

The large value of the OSNR justifies the saddle-point
approximation for calculating B. The saddle-point
equation, found by varying Eq. (5) with respect to f,
reads as

�t2≠t
2 2 1 2 uG�t��Kf � uG�t�Kw , (6)

where u is a parameter to be extracted from self-consis-
tency condition (4). B can be estimated by P �f0�, with
f0 being the solution of Eqs. (4) and (6) for I � Id. We
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Fig. 1. Dependence of G0 and of m1,2 on T�b and t�b, i.e.,
the information slot width and the optical f ilter width mea-
sured in the units set by rescaling of the pulse width to
unity.

next assume that G�t� � 1 at jtj , T and G�t� � 0 oth-
erwise, where T is the information slot width, T . b.
Then, for a given value of u, the solution of Eq. (6)
can be found explicitly. The value of parameter u is
fixed implicitly by Eq. (4). Thus u (and then B) can
be found perturbatively in hj , i.e., as u 
 u0 1 du and
du ,, u0, where u0 is the solution of the system of
Eqs. (4) and (6) at hj � 0. For the Gaussian shape of
the initial pulse, where C0 ~ exp�2t2��2b2�� and Id
is half of the ideal output intensity [corresponding to
C�Z� � C0], the dependence of G0 and of m1, 2 on t�b
and T�b, found numerically, is shown in Fig. 1. We
can find the PDF of S �B� of B by recalculating the
statistics of Hj and substituting the result into the
corresponding expression that relates B to Hj . Our
prime interest is in describing the PDF tail that cor-
responds to Hj that substantially exceeds its typical
value

p
DmZ but remains, however, much smaller than

signal width b. In this range one gets the following
estimate of differential probability S �B�dB:

exp
∑
2

Dj
2Zb2

2Dmm1
2I02

ln2
µ
B
B0

∂∏
dB
B

, (7a)

B0
adB

B11a
, (7b)

where expression (7a) marks the no-compensation
case, expression (7b) stands for the optimal set-
ting-the-clock case, and a 	 Djb2��2m2DmI0�. Note
that the result that corresponds to expression (7b)
shows a steeper decay than that for expression (7a),
which is a natural consequence of the compensation
procedure that has been applied.

Summarizing, our major result [expressions (7)]
shows the emergence of the extremely long tail in
the PDF of the BER that is a result of a complex
interplay between noise and disorder. To illustrate
this focal point of our analysis we consider a fiber
line with parameters G0 � 0.06, m1 � 0.06, and
m2 � 0.12, which is also characterized by typical
bit-error probability B0 � 10212, which corresponds to
I0��DjZ� 
 460. Let us also assume that the PMD
coefficient, k �

p
12Dm, is 0.14 ps�

p
km; that the

pulse width is b � 25 ps; and that the fiber length is
Z � 2500 km, i.e., that DmZ�b2 
 6 3 1023. Then
we can find a probability for B to exceed, say, 1028,
that is, to become at least four orders larger than
B0. Our results [expressions (7a) and (7b)] give for
this probability 1024 and 1026, respectively, which
essentially exceed any naïve Gaussian or exponential
estimate of the PDF tail. Also note that some numeri-
cal results that are consistent with expressions (7)
are already available: Fig. 2(a) of Ref. 17 replotted
in log–log variables shows that the relation between
ln S and ln B is close to the linear relation given by
expression (7b).
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