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Out of equilibrium dynamics in cold atom systems

Hofferberth, et al. Nature 449,
(2007)

A single 1D quasi-condensate is 
phase coherently split into two 
parts using r.f. potentials on an 
atom chip.



M. Greiner, O. Mandel, T.W. Hänsch & I. Bloch, Nature 419, (2002)
Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate

overlap  |<β|α (t )>|²  of an arbitrary 
coherent state |β> with complex 
amplitude β with the dynamically 
evolved quantum state |α(t)> 



S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert
& I. Bloch, Nature Physics 8, (2012)
Probing the relaxation toward equilibrium in an isolated strongly correlated  
1D Bose gas

(a) Concept of the experiment  
(b) Even-odd resolved detection

Relaxation of the local density for 
different interaction strengths.



Executive summary

▪ The unprecedented control that has been achieved

experimentally with ultra-cold atomic systems has given

rise to the exploration of many-body dynamics in

isolated systems far from equilibrium.

▪ Very precisely defined excited states and systems can be

designed, and their dynamics followed accurately. These

states can be Fock states, but also coherent states.

▪ This has opened a new and exciting field of

investigation, and poses significant challenges for

theoreticians.



Simulation tools

▪ Exact diagonalization in Fock space

→ rather small systems

▪ Density Matrix Renormalization Group (DMRG).

→ low density (≈ 1 particle per site)

▪ What about the high density, possibly strong interaction

regime ?
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Mean Field 



Mean Field approximation I : equilibrium 
(ground state / thermodynamics)

e.g.: Bose Hubbard model (1d)



Mean Field approximation II : non-equilibrium 

Pb : except in the neighborhood of stable periodic orbits,
solutions of the GP equation tend to diverge one from each
other.

Fix : propagate many solutions of the GP equation
→ truncated Wigner approximation

→ even if the initial state is a coherent
state, one cannot expect that its time
evolution will be well approximated by a
coherent state (even including quasi-
particle coherent state).

→ there is no way that propagating a single GP solution
provides enough information about the time evolution of the
state.

1-d quartic oscillator



Truncated Wigner approximation

manybody density operator 

classical field

The Wigner transform represent the manybody density operator σ in term

of a ``probability distribution” over the classical field ψ

→ possibility to propagate these classical field with the time dependent

Gross-Pitaevskii equation, and to average with the corresponding weight.

→ this corresponds however to an incoherent sum of the contributions.

[Steel et al., Phys. Rev. A 58 (1998),
Sinatra et al. J. Phys. B 35 (2002),
Dujardin et al. Ann. Phys.  527 (2015)]



[M. Greiner, et al. Nature (2002)]

Schrödinger 
cat states

What about interferences ?

→    there is no way the 

truncated  Wigner
approximation takes
interference effects

into account properly.

Our goal here is to implement the effects of interferences
between mean field solutions

[cf also Simon & Strunz, Phys Rev A 89 (2014)] 



Outline

A. Warming : the one mode case

▪ Path integral approach

▪ Semiclassics “à la Maslov”

B. The multimode case

▪ How to explore a large phase space

▪ Specificity of coherent states : going complex or not 
going complex

C. A case study

D. Symmetries
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classical action initial and final states



classical action initial and final states

extra phase



2. Semiclassics “à la Maslov”



p₀

q₀

tt=0

q

p

The quantum evolution 
is based on the classical 
evolution of the 
Lagrangian manifold

[Maslov & Fedoriuk (1981)]







▪ Once the question of ordering of the operator is taken into 
account, no difference between the path integral approach and the 
traditional time dependent WKB.

▪ More generally there is no conceptual difference between usual 
semiclassics and many-bosons semiclassics, even if the small 
parameter is not the same (ħ vs 𝑁−1)

▪ WKB “à la Maslov” is however much simpler, and thus more 
“versatile” than the path integral approach

→ no particular difficulty to generalize the formalism to the many-
mode case and to a large class of initial states (including for 
example Fock states)

▪ There are of course practical difficulties …

→ complexification of phase space

→ large phase space

B. The many-mode case



Case study : propagation of coherent state density wave



classical 
action

Maslov
Index 

[cf. H. Pal, M. Vyas, and S. Tomsovic, Phys. Rev. E 93, 012213 (2016).]



Practical issues

1. Exploring a large phase space

Problem :
▪ Quantities like the autocorrelation function C(t) involve a mixed

intial/final value “shooting”-problem (𝑟0 → initial manifold, 𝑟𝑡 → final
manifold)

▪ Phase space is a big place, especially if the dimensionality (number of
modes is large).

→ limit the time for which the semiclassical approach can be used.

→favor system close to integrability (eg large U).

To mitigate this : explore predominantly unstable directions



phase space 
representation
of initial state 

classical evolution

δq

δp



2. Complexification of the classical dynamics

Problem :
▪ Going complex doubles the number of variables

→ this is manageable (just more work)
▪ Motion in complexified phase space is non-compact

→ this makes the search of saddle trajectories completely impractical

fix:  Use “ghost” real trajectory 
and converge to true trajectory 
with Newton-Raphson

𝒒𝑹

𝒑𝑹
𝒒𝑰𝒑𝑰



C. Case study

numerics semiclassicsTruncated
Wigner
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C. Case study



Spectrum



Trajectory search

τ₂/3→60 saddles
τ₂ → 600 saddles

Each seed → one “chirp
(here second saddle traj.)

𝒖

t

“seed” trajectories



D. Symmetries

Truncated
Wigner

Exact quantum
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quantum
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D. Symmetries

Truncated
Wigner

Exact quantum

“Saddle TWA”

smoothed 
quantum
(𝜎 = 0.5)



Diagonal approximation



Diagonal approximation



Intermezzo : derivation of the “diagonal” approximation

1. The semiclassical (Van-Vleck) propagator (in q-quadrature basis)



2. Time evolution of the mean value of an operator



3. Diagonal approximation



3. Initial value representation :



Symmetries



Truncated
Wigner

Exact quantum

“Saddle TWA”

smoothed 
quantum
(𝜎 = 0.5)



“Seed trajectories” in the search plan

𝑢1

𝑢2



▪ There is no conceptual difference between the 𝑁→∞ limit of bosonic 
mean field approximation and the ħ →0 limit of few body systems. 

▪ This imply that usual semiclassics and many-bosons semiclassics, are 
formally the same theory, even if the small parameter is not the same 
(ħ vs 𝑁−1)

▪ The tool from quantum chaos which have been developed in the 
former context can be used in the latter, and are particularly well 
adapted to tackle interference effects                                                              
(NB: trying to start from path integral on the other hand is uselessly 
complicated).

▪ The complexification of phase space associated with the use of 
coherent states is a technical difficulty that can be overcome

Conclusion- I



The size of the phase space to explore is however a game changer for any 
practical implementation 

→    need to design techniques making it possible to explore large 
phase space.

→    even in this way, one will be limited to either 

• small systems 

• system sufficiently close to integrability that the size of the 
phase space to explore is 0(1) as the number of modes →∞

• fairly short times

However :

→   this will always beat truncated Wigner (which can be shown to be 
equivalent to just neglecting interference terms in the WKB approach).

→   it is presumably the correct framework to think about the mean 
field approximation for many-boson out of equilibrium systems (eg: 
effects of symmetries, etc..).

Conclusion- II


