

Post-Ehrenfest many-body quantum interferences in ultracold atoms far-out-of-equilibrium

Denis Ullmo (LPTMS, Orsay & Institut Pascal)

[Phys. Rev. A 97, 061606(R) (2018), and in preparation]

Post-Ehrenfest many-body quantum interferences in ultracold atoms far-out-of-equilibrium

Denis Ullmo (LPTMS, Orsay & Institut Pascal)

Peter Schlagheck (Liège)

Steven Tomsovic (Washington State)

Klaus Richter (Regensburg)

Juan-Diego Urbina (Regensburg)

[Phys. Rev. A **97**, 061606(R) (2018), and in preparation]

Out of equilibrium dynamics in cold atom systems

Hofferberth, et al. Nature 449, (2007)

A single 1D quasi-condensate is phase coherently split into two parts using r.f. potentials on an atom chip.

M. Greiner, O. Mandel, T.W. Hänsch & I. Bloch, Nature 419, (2002) Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate

- one site problem $H = \frac{1}{2}U\hat{n}(\hat{n} - 1)$ • coherent state propagation $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$
- Revival = signature of coherence (interference effect)

overlap $|<\beta|\alpha$ (t)> $|^2$ of an arbitrary coherent state $|\beta>$ with complex amplitude β with the dynamically evolved quantum state $|\alpha(t)>$

S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert & I. Bloch, Nature Physics 8, (2012)

Probing the relaxation toward equilibrium in an isolated strongly correlated 1D Bose gas

0.6

0.4

0.2

0.4

0.2

ppou

(a) Concept of the experiment(b) Even-odd resolved detection

4Jt / h Relaxation of the local density for different interaction strengths.

5 0

J = 2.44(2

= 5.16(7

(J = 5.10)

J/J = 3.60(4)

 $K/J = 7.10^{\circ}$

= 9.9(1

• initial state \equiv density wave $|\Psi\rangle = |\cdots, 1, 0, 1, 0, 1, \cdots\rangle$

Executive summary

- The unprecedented control that has been achieved experimentally with ultra-cold atomic systems has given rise to the exploration of many-body dynamics in isolated systems far from equilibrium.
- Very precisely defined excited states and systems can be designed, and their dynamics followed accurately. These states can be Fock states, but also <u>coherent states</u>.
- This has opened a new and exciting field of investigation, and poses significant challenges for theoreticians.

Simulation tools

- Exact diagonalization in Fock space
 - \rightarrow rather small systems
- Density Matrix Renormalization Group (DMRG).

 \rightarrow low density (\approx 1 particle per site)

What about the high density, possibly strong interaction regime ?

Simulation tools

- Exact diagonalization in Fock space
 - \rightarrow rather small systems
- Density Matrix Renormalization Group (DMRG).

 \rightarrow low density (\approx 1 particle per site)

Mean Field approximation I : equilibrium (ground state / thermodynamics)

e.g.: Bose Hubbard model (1d)

$$\hat{H} = \sum_{j=1}^{N} \left[-J \left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + h.c. \right) + V_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j} + \frac{U}{2} \hat{n}_{j} \left(\hat{n}_{j} - 1 \right) \right]$$

- operators $\hat{a}_i \to c$ -number $\psi \Rightarrow$ (discrete) Gross-Pitaevskii Eq \Rightarrow classical dynamics
- "bare" mean field : coherent state "on" GP trajectory
- Bogoliubov De Gennes : take into account actual linear motion around the GP trajectory

Mean Field approximation II : non-equilibrium

Pb : except in the neighborhood of stable periodic orbits, solutions of the GP equation tend to diverge one from each other.

 \rightarrow even if the initial state is a coherent state, one cannot expect that its time evolution will be well approximated by a coherent state (even including quasiparticle coherent state).

1-d quartic oscillator

 \rightarrow there is no way that propagating a single GP solution provides enough information about the time evolution of the state.

Fix : propagate many solutions of the GP equation
→ truncated Wigner approximation

Truncated Wigner approximation classical field [Steel et al., Phys. Rev. A 58 (1998), Sinatra et al. J. Phys. B 35 (2002), Dujardin et al. Ann. Phys. 527 (2015)] $W[\Psi] \equiv \int \prod_{i} \frac{d\gamma_{i}^{R} d\gamma_{i}^{I}}{\pi^{2}} \chi[\gamma] \exp\left[\sum_{i} \gamma_{i}^{*} \psi_{i} - \gamma_{i} \psi_{i}^{*}\right]$ $\chi[\gamma] \equiv \operatorname{Tr}\left[\hat{\sigma} \exp\left[\sum_{i} \gamma_{i} \hat{a}_{i}^{\dagger} - \gamma_{i}^{*} \hat{a}_{i}\right]\right]$ manybody density operator

The Wigner transform represent the manybody density operator σ in term

- of a ``probability distribution" over the classical field $oldsymbol{\psi}$
- → possibility to propagate these classical field with the time dependent Gross-Pitaevskii equation, and to average with the corresponding weight.
- \rightarrow this corresponds however to an *incoherent sum* of the contributions.

[M. Greiner, et al. Nature (2002)]

Our goal here is to implement the effects of interferences between mean field solutions

[cf also Simon & Strunz, Phys Rev A 89 (2014)]

<u>Outline</u>

- A. Warming : the one mode case
 - Path integral approach
 - Semiclassics "à la Maslov"
- B. The multimode case
 - How to explore a large phase space
 - Specificity of coherent states : going complex or not going complex
- C. A case study
- D. Symmetries

A. Warmup : The one-mode case

1. Path Integral approach [Baranger et al, J. Phys A 34 (2001)]

$$\hat{H} = \hat{H}(\hat{a}^{\dagger}, \hat{a}, t) \rightarrow \text{e.g.:} \quad \hat{H} = V(t)\hat{a}^{\dagger}\hat{a} + \frac{U(t)}{2}\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$$

coherent state: $|z\rangle = e^{-\frac{1}{2}|z|^2} e^{z\hat{a}^{\dagger}}|0\rangle$

propagator:
$$K(z^{"},t;z',0) = \langle z^{"} | \hat{T} \exp[-\frac{i}{\hbar} \int_{0}^{t} \hat{H}(t') dt'] | z' \rangle$$

path integral representation:

Classical Hamiltonian

$$K(z^{"},t;z',0) = \int \mathcal{D}[z_t^*z_t] \exp\left[\int_0^t ds \frac{1}{2} \left(\partial_t z_s^* z_s - z_s^* \partial_t z_s^*\right) + \frac{i}{\hbar} \mathcal{H}(z_s^*,z_s)\right]$$

A. Warmup : The one-mode case

1. Path Integral approach [Baranger et al, J. Phys A 34 (2001)]

$$\hat{H} = \hat{H}(\hat{a}^{\dagger}, \hat{a}, t) \rightarrow \text{e.g.:} \quad \hat{H} = V(t)\hat{a}^{\dagger}\hat{a} + \frac{U(t)}{2}\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$$

coherent state: $|z\rangle = e^{-\frac{1}{2}|z|^2} e^{z\hat{a}^{\dagger}}|0\rangle$

propagator:
$$K(z^{"},t;z',0) = \langle z^{"}|\hat{T}\exp[-\frac{i}{\hbar}\int_{0}^{t}\hat{H}(t')dt']|z'\rangle$$

path integral representation:

Classical Hamiltonian

$$K(z^{"},t;z',0) = \int \mathcal{D}[z_t^*z_t] \exp\left[\oint_0^N ds \frac{1}{2} \left(\partial_t z_s^* z_s - z_s^* \partial_t z_s^* \right) + \frac{i}{\hbar} \mathcal{H}(z_s^*,z_s) \right]$$

Stationnary phase approximation (Baranger et al.):

- $\delta S = 0 \rightarrow$ classical evolution under $\mathcal{H}(z^*, z)$
- "trajectories" $z_{t'} = u_{t'} + iv_{t'}$ such that $\begin{cases} u_0 iv_0 \equiv u' iv' = {z'}^* \\ u_t + iv_t \equiv u'' + iv'' = {z''} \end{cases}$

Stationnary phase approximation (Baranger et al.):

- $\delta S = 0 \rightarrow$ classical evolution under $\mathcal{H}(z^*, z)$
- "trajectories" $z_{t'} = u_{t'} + iv_{t'}$ such that

$$\begin{cases} u_0 - iv_0 \equiv u' - iv' = z'^* \\ u_t + iv_t \equiv u'' + iv'' = z'' \end{cases}$$

$$K(z^{"},t;z',0) = \sum_{\substack{u'+iv'=z'\\u^{"}+iv^{"}=z^{"}}} \sqrt{\frac{\partial v'}{\partial v^{"}}} \exp\left\{\underbrace{\underbrace{i}_{2\hbar} \int_{0}^{t} dt' \frac{\partial^{2} \mathcal{H}}{\partial u \partial v}}_{\left[\frac{1}{2} \left(\frac{i}{2} \left(\frac{i}$$

•
$$u_t, v_t \equiv \text{complex numbers} \Rightarrow \begin{cases} u' + iv' \neq z' \\ u'' - iv'' \neq z'' \end{cases}$$

2. <u>Semiclassics "à la Maslov"</u> $(N \simeq \frac{1}{\hbar})$

• use the "quadratures"
$$(\hat{p}, \hat{q})$$

$$\begin{cases} \hat{a} \equiv \frac{1}{\sqrt{2}}(\hat{q} + i\hat{p}) \\ \hat{a}^{\dagger} \equiv \frac{1}{\sqrt{2}}(\hat{q} - i\hat{p}) \end{cases}$$

$$\Rightarrow \quad \text{e.g.:} \quad \hat{H} = V(t)\hat{a}^{\dagger}\hat{a} + \frac{U(t)}{2}\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$$
$$\rightarrow \quad \frac{V(t)}{2}(\hat{p}^{2} + \hat{q}^{2}) + \frac{U(t)}{4}(\hat{p}^{2} + \hat{q}^{2})^{2} \quad + \quad O(\hbar)$$

• to any initial wave function in the semiclassical form

$$\psi_0(q) \equiv \varphi(q) \exp\left[\frac{i}{\hbar}S_0(q)\right]$$

 \rightarrow associate a Lagrangian manifold (just a curve here) $\mathcal{L}_0 \equiv \{(q_0, p_0(q_0) = \partial_q S_0)\}$

The quantum evolution is based on the classical evolution of the Lagrangian manifold

[Maslov & Fedoriuk (1981)]

$$\Psi(q,t) = \sum_{\mathbf{r}=(q,p)\in\mathcal{L}_t} \sqrt{\frac{\partial q_0}{\partial q}} \varphi(q_0) \exp\left[\frac{i}{\hbar} \left(\int_{\mathbf{r}_0}^{\mathbf{r}} p dq - \mathcal{H} dt\right)\right]$$

• for a correlation function $\langle \alpha " | \hat{T} \exp[-\frac{i}{\hbar} \int_0^t \hat{H}(t') dt'] | \beta' \rangle$

 \rightarrow intersection of $\mathcal{L}_t(\beta')$ and $\mathcal{L}_0(\alpha'')$ (saddle trajectory)

$$\exp\left\{\frac{i}{2}\int_0^t dt' \frac{\partial^2 \mathcal{H}}{\partial p \partial q}\right\}$$

 \Rightarrow associated with the ordering of the operators

Various ways to "quantize" a classical H(p,q)

•
$$\hat{H}\begin{pmatrix} 1 & 2 \\ \hat{p} & \hat{q} \end{pmatrix} \longrightarrow [\dots] \exp\left[\frac{i}{\hbar} \left(\int_{\mathbf{r}_{0}}^{\mathbf{r}} pdq - \mathcal{H}dt\right)\right] \cdot \exp\left[+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}H}{\partial q\partial p}dt\right]$$

• $\hat{H}\begin{pmatrix} 2 & 1 \\ \hat{p} & \hat{q} \end{pmatrix} \longrightarrow [\dots] \exp\left[\frac{i}{\hbar} \left(\int_{\mathbf{r}_{0}}^{\mathbf{r}} pdq - \mathcal{H}dt\right)\right] \cdot \exp\left[-\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}H}{\partial q\partial p}dt\right]$
• $\frac{1}{2} \left(\hat{H}\begin{pmatrix} 1 & 2 \\ \hat{p} & \hat{q} \end{pmatrix} + \hat{H}\begin{pmatrix} 2 & 1 \\ \hat{p} & \hat{q} \end{pmatrix}\right) \longrightarrow [\dots] \exp\left[\frac{i}{\hbar} \left(\int_{\mathbf{r}_{0}}^{\mathbf{r}} pdq - \mathcal{H}dt\right)\right]$

Manybody physics most often prefers normal ordering $\hat{H}(\hat{a}^{\dagger}, \hat{a}^{\dagger})$

$$\implies [\ldots] \exp\left[\frac{i}{\hbar} \left(\int_{\mathbf{r}_0}^{\mathbf{r}} p dq - \mathcal{H} dt\right)\right] \cdot \exp\left[\frac{i}{2} \int_0^t \frac{\partial^2 H}{\partial q \partial p} dt'\right]$$

complexification of phase space

 \Rightarrow associated with the choice of coherent states

coherent state $|z\rangle$: $(z = q_z + ip_z)$

$$\langle q|z\rangle = \frac{1}{(\pi\hbar)^{1/4}} \exp\left[-\frac{(q-q_z)^2}{2\hbar}\right] \exp\left[\frac{i}{\hbar}p_z(q-\frac{1}{2}q_z)\right]$$

semiclassical form $\propto \exp\left[\frac{i}{\hbar}S_0(q)\right]$

$$\rightarrow \quad S_0(q) = p_z(q - \frac{1}{2}q_z) + \frac{i}{2}(q - q_z)^2$$
$$p_0(q) = \partial_q S_0 = p_z + i(q - q_z)$$

 \Rightarrow complexe manifold

B. The many-mode case

- Once the question of ordering of the operator is taken into account, no difference between the path integral approach and the traditional time dependent WKB.
- More generally there is no conceptual difference between usual semiclassics and many-bosons semiclassics, even if the small parameter is not the same (ħ vs N⁻¹)
- WKB "à la Maslov" is however much simpler, and thus more "versatile" than the path integral approach

→ no particular difficulty to generalize the formalism to the manymode case and to a large class of initial states (including for example Fock states)

- There are of course practical difficulties ...
 - \rightarrow complexification of phase space
 - \rightarrow large phase space

Case study : propagation of coherent state density wave

• Hamiltonian = 1-d Bose Hubbard

$$\hat{H} = \sum_{j=1}^{N} \left[-J \left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + h.c. \right) + \frac{U}{2} \hat{n}_{j} \left(\hat{n}_{j} - 1 \right) \right]$$

• Initial state = coherent state density wave

$$|\vec{n}\rangle = \prod_{j=1}^{N} \exp\left(-\frac{|z_j|^2}{2} + z_j a_j^{\dagger}\right) |\vec{0}\rangle \qquad (\text{here } z_i = \sqrt{n_i} \\ \rightarrow \text{ no initial dephasing}\rangle$$

e.g.: $|\vec{n}\rangle = |n, 0, n, 0, ..., n, 0\rangle.$

• Observable = autocorrelation function

$$\mathcal{C}(t) = |\mathcal{A}(t)|^2 \qquad \mathcal{A}(t) = \langle \vec{n} \left| \hat{U}(t) \right| \vec{n} \rangle$$
$$(\hat{U}(t) \equiv \exp[-\frac{i}{\hbar} \hat{H}t])$$

• Intial and final manifold

$$\begin{cases} p_0^j(\mathbf{q_0}) = +i(q_0^j - \sqrt{2n_j}) & \text{initial} \\ p_f^j(\mathbf{q_0}) = -i(q_0^j - \sqrt{2n_j}) & \text{final} \end{cases} \quad (j = 1, \cdots, N)$$

• Autocorrelation function

$$C(t) = \left| \sum_{\gamma} D_{\gamma}^{1/2}(t) \exp\left[\frac{i}{\hbar} \phi_{\gamma}(t)\right] \right|^{2}$$

$$\begin{split} \frac{i}{\hbar}\phi_{\gamma}(t) &= \frac{i}{\hbar}S(\vec{q}_{t}^{\gamma},\vec{q}_{0}^{\gamma};t) - i\nu_{\gamma}\frac{\pi}{2} + F_{0}^{\gamma-} + F_{t}^{\gamma,+} \\ \\ \begin{array}{c} \text{classical} \\ \text{action} \end{array} & \begin{array}{c} \text{Maslov} \\ \text{Index} \end{array} & \begin{array}{c} F_{0,t}^{\gamma,\pm} &= \frac{i}{\hbar^{2}}\vec{p}_{0,t}^{R} \cdot \vec{p}_{0,t}^{I} - \frac{1}{2\hbar^{2}}\vec{p}_{0,t}^{I} \cdot \vec{p}_{0,t}^{I} \\ &- \frac{1}{2}\vec{q}_{0,t}^{J} \cdot \vec{q}_{0,t}^{J} \pm \frac{1}{\hbar}\vec{p}_{0,t}^{R} \cdot \vec{q}_{0,t}^{I} \end{array} \end{split} \\ D_{\gamma}(t) &= \text{Det}\left[\frac{1}{2}(\mathbf{M_{11}^{\gamma}} + \mathbf{M_{22}^{\gamma}} + i\hbar\mathbf{M_{21}^{\gamma}} - \frac{i}{\hbar}\mathbf{M_{12}^{\gamma}})\right] \\ \\ \mathbf{M_{11}^{\gamma}} &= \frac{\partial\vec{q}_{t}}{\partial\vec{q}_{0}}, \\ \mathbf{M_{22}^{\gamma}} &= \frac{\partial\vec{p}_{t}}{\partial\vec{p}_{0}}, \\ \mathbf{M_{12}^{\gamma}} &= \frac{\partial\vec{q}_{t}}{\partial\vec{p}_{0}}, \\ \mathbf{M_{21}^{\gamma}} &= \frac{\partial\vec{q}_{t}}{\partial\vec{q}_{0}}. \end{split}$$

[cf. H. Pal, M. Vyas, and S. Tomsovic, Phys. Rev. E 93, 012213 (2016).]

Practical issues

1. Exploring a large phase space

Problem :

- Quantities like the autocorrelation function C(t) involve a mixed intial/final value "shooting"-problem ($r_0 \rightarrow$ initial manifold, $r_t \rightarrow$ final manifold)
- Phase space is a big place, especially if the dimensionality (number of modes is large).
- \rightarrow limit the time for which the semiclassical approach can be used.

 \rightarrow favor system close to integrability (eg large U).

To mitigate this : explore predominantly unstable directions

$$(\delta \mathbf{p}_0, \delta \mathbf{q}_0) \cdot \begin{pmatrix} \delta \mathbf{p}_0 \\ \delta \mathbf{q}_0 \end{pmatrix} = \text{const.} \quad \Rightarrow \quad = (\delta \mathbf{p}_t, \delta \mathbf{q}_t) \cdot \underbrace{\mathbf{M}^{-1}}_{\mathcal{M}} \mathbf{M}^{-1} \cdot \begin{pmatrix} \delta \mathbf{p}_0 \\ \delta \mathbf{q}_0 \end{pmatrix}$$

Large eigenvalues of $\mathcal{M} \to \text{First}$ directions to explore

2. <u>Complexification of the classical dynamics</u>

Problem :

- Going complex doubles the number of variables
 → this is manageable (just more work)
- Motion in complexified phase space is non-compact
 - \rightarrow this makes the search of saddle trajectories completely impractical

p

$$\operatorname{Proba}[\mathbf{r}_t \in \mathcal{L}_t] \propto \frac{1}{\operatorname{Vol}}$$

fix: Use "ghost" real trajectory and converge to true trajectory with Newton-Raphson

$$q_I$$
 p_R q_R

C. Case study

- ring with four sites
- initial coherent state density wave $|\vec{n}\rangle = |20, 0, 20, 0\rangle$

C. Case study

- ring with four sites
- initial coherent state density wave $|20, 0, 20, 0\rangle$

C. Case study

- ring with four sites
- initial coherent state density wave $|20, 0, 20, 0\rangle$

Spectrum

$$\mathcal{SP}(E) = \sum_{\alpha} |\langle \xi_{\alpha} | \vec{n} \rangle|^2 \delta(E - E_{\alpha}) \propto \int dt e^{iEt/\hbar} A(t)$$

(cutoff $\tau_c = 40$)

Trajectory search

• $u \equiv \text{distance along the direction associated with the largest eigenvalue of <math>\mathcal{M} = \mathbf{M}^{-1^T} \mathbf{M}^{-1}$

- trajectory kept if $(|\mathbf{q}_0 - \bar{\mathbf{q}}|^2 + |\mathbf{p}_0 - \bar{\mathbf{p}}|^2) + (|\mathbf{q}_f - \bar{\mathbf{q}}|^2 + |\mathbf{p}_f - \bar{\mathbf{p}}|^2) \leq \text{const.}$
- for each "seed", converge to the saddle through Newton-Raphson

D. Symmetries

D. Symmetries

D. Symmetries

Diagonal approximation

• Autocorrelation function: $C(t) = \left| \sum_{\gamma} D_{\gamma}^{1/2}(t) \exp \left[\frac{i}{\hbar} \phi_{\gamma}(t) \right] \right|^2$

 $\gamma \equiv \text{trajectories } p_0^j(\mathbf{q_0}) = +i(q_0^j - \sqrt{2n_j}) \rightarrow p_f^j(\mathbf{q_f}) = -i(q_f^j - \sqrt{2n_j})$

$$\frac{i}{\hbar}\phi_{\gamma}(t) = \frac{i}{\hbar}S(\vec{q}_{t}^{\gamma},\vec{q}_{0}^{\gamma};t) - i\nu_{\gamma}\frac{\pi}{2} + F_{0}^{\gamma-} + F_{t}^{\gamma,+}$$
$$D_{\gamma}(t) = \operatorname{Det}\left[\frac{1}{2}(\mathbf{M}_{11}^{\gamma} + \mathbf{M}_{22}^{\gamma} + i\hbar\mathbf{M}_{21}^{\gamma} - \frac{i}{\hbar}\mathbf{M}_{12}^{\gamma})\right]$$

• Diagonal approximation

$$C(t) = \sum_{\gamma,\gamma'} D_{\gamma}^{1/2} D_{\gamma'}^{1/2} \exp\left[\frac{i}{\hbar}(\phi_{\gamma} - \phi_{\gamma'})\right] \longrightarrow C_{\text{diag}}(t) = \sum_{\gamma} D_{\gamma}$$

 $C_{\rm alag}(b) = C_{\rm TWA}(b)$

Diagonal approximation

• Autocorrelation function: $C(t) = \left| \sum_{\gamma} D_{\gamma}^{1/2}(t) \exp \left[\frac{i}{\hbar} \phi_{\gamma}(t) \right] \right|^2$

 $\gamma \equiv \text{trajectories } p_0^j(\mathbf{q_0}) = +i(q_0^j - \sqrt{2n_j}) \rightarrow p_f^j(\mathbf{q_f}) = -i(q_f^j - \sqrt{2n_j})$

$$\frac{i}{\hbar}\phi_{\gamma}(t) = \frac{i}{\hbar}S(\vec{q}_{t}^{\gamma},\vec{q}_{0}^{\gamma};t) - i\nu_{\gamma}\frac{\pi}{2} + F_{0}^{\gamma-} + F_{t}^{\gamma,+}$$
$$D_{\gamma}(t) = \operatorname{Det}\left[\frac{1}{2}(\mathbf{M}_{11}^{\gamma} + \mathbf{M}_{22}^{\gamma} + i\hbar\mathbf{M}_{21}^{\gamma} - \frac{i}{\hbar}\mathbf{M}_{12}^{\gamma})\right]$$

• Diagonal approximation

$$C(t) = \sum_{\gamma,\gamma'} D_{\gamma}^{1/2} D_{\gamma'}^{1/2} \exp\left[\frac{i}{\hbar}(\phi_{\gamma} - \phi_{\gamma'})\right] \longrightarrow C_{\text{diag}}(t) = \sum_{\gamma} D_{\gamma}$$

 $C_{\text{diag}}(t) \equiv C_{\text{TWA}}(t)$

Intermezzo : derivation of the "diagonal" approximation

1. The semiclassical (Van-Vleck) propagator (in q-quadrature basis)

$$K(\mathbf{q}_f, \mathbf{q}_i, t) = \langle \mathbf{q}_f | \underbrace{e^{-it\hat{H}/\hbar}}_{\hat{U}(t)} | \mathbf{q}_i \rangle = \sum_{\gamma} A_{\gamma}(\mathbf{q}_f, \mathbf{q}_i) e^{\frac{i}{\hbar}R_{\gamma}(\mathbf{q}_f, \mathbf{q}_i)}$$

 γ solution of the GP equation

$$i\hbar \frac{\partial}{\partial t} \psi_l(t) = \sum_{l'=1}^L H_{l,l'} \psi_{l'}(t) + U_l(|\psi_l(t)|^2 - 1)\psi_l(t)$$

with boundary cond : $\operatorname{Re}[\psi^l(0)] = \frac{q_i^l}{\sqrt{2}}, \operatorname{Re}[\psi^l(t)] = \frac{q_f^l}{\sqrt{2}}.$

$$R_{\gamma} = \int_{\gamma:\mathbf{q}_{i}\to\mathbf{q}_{f}} \mathbf{p}d\mathbf{q} - \mathcal{H}dt \quad (\text{action})$$
$$A_{\gamma}(\mathbf{q}_{f},\mathbf{q}_{i}) = \frac{e^{-i\kappa_{\gamma}\pi/2}}{(2i\pi\hbar)^{L/2}} \left| \det\left(-\frac{\partial^{2}R_{\gamma}}{\partial q_{f}^{l}\partial q_{i}^{l'}}(\mathbf{q}_{f},\mathbf{q}_{i})\right) \right|^{1/2}$$

2. Time evolution of the mean value of an operator

initial manybody state $|\Phi_0\rangle \rightarrow \text{density } \hat{\rho}(t) \equiv |\hat{U}(t)\Phi_0\rangle \langle \hat{U}(t)\Phi_0|$ arbitrary operator $\hat{O} \rightarrow \langle O\rangle(t) = \text{Tr}\left[\hat{\rho}(t)\hat{O}\right]$

in q-quadrature basis

$$\begin{split} \langle \hat{O} \rangle(t) &= \int d\mathbf{q}_i' d\mathbf{q}_i'' d\mathbf{q}_f' d\mathbf{q}_f'' \Phi_0^*(\mathbf{q}_i') \Phi_0(\mathbf{q}_i'') \langle \mathbf{q}_f' | \hat{O} | \mathbf{q}_f'' \rangle \\ &\times \sum_{\gamma',\gamma''} A_{\gamma'}^*(\mathbf{q}_f',\mathbf{q}_i') A_{\gamma''}(\mathbf{q}_f'',\mathbf{q}_i'') e^{\frac{i}{\hbar}(R_{\gamma''}(\mathbf{q}_f'',\mathbf{q}_i'')-R_{\gamma'}(\mathbf{q}_f',\mathbf{q}_i'))} \end{split}$$

3. Diagonal approximation

assumptions : (i) only diagonal terms $\gamma' = \gamma''$ survive averaging (ii) only short chords $\mathbf{q}'_i \simeq \mathbf{q}''_i$, $\mathbf{q}'_f \simeq \mathbf{q}''_f$ are relevant

$$\rightarrow \text{ introduce } \mathbf{Q}_{f,i} \equiv \frac{1}{2} (\mathbf{q}_{f,i}'' + \mathbf{q}_{f,i}') \text{ and } \delta \mathbf{q}_{f,i} \equiv (\mathbf{q}_{f,i}'' - \mathbf{q}_{f,i}')$$
and expand in $\delta \mathbf{q}_{f,i}$, using $\mathbf{p}_{f}^{(\gamma)} = \frac{\partial R_{\gamma}}{\partial \mathbf{q}_{f}}; \ \mathbf{p}_{i}^{(\gamma)} = -\frac{\partial R_{\gamma}}{\partial \mathbf{q}_{i}}$

$$\begin{split} \langle \hat{O} \rangle(t)_{\text{diag}} &= \int d\mathbf{Q}_i d\mathbf{Q}_f d\delta \mathbf{q}_f d\delta \mathbf{q}_i \langle \mathbf{q}_i'' | \hat{\rho}_0 | \mathbf{q}_i' \rangle \langle \mathbf{q}_f' | \hat{O} | \mathbf{q}_f'' \rangle \\ &\times \sum_{\gamma} |A_{\gamma}(\mathbf{Q}_f \mathbf{Q}_i)|^2 \exp\left[\frac{i}{\hbar} \left(\mathbf{p}_f^{(\gamma)} \delta \mathbf{q}_f - \mathbf{p}_i^{(\gamma)} \delta \mathbf{q}_i\right)\right] \end{split}$$

Wigner
$$[O]_W(\mathbf{Q}, \mathbf{P}) \equiv \int d\delta \mathbf{q} e^{(i/\hbar)\mathbf{P}\cdot\delta\mathbf{q}} \langle \mathbf{Q} + \frac{\delta\mathbf{q}}{2} |\hat{f}|\mathbf{Q} - \frac{\delta\mathbf{q}}{2} \rangle$$

$$\rightarrow \qquad \langle \hat{O} \rangle(t)_{\text{diag}} = \int d\mathbf{Q}_i d\mathbf{Q}_f \sum_{\gamma} |A_{\gamma}(\mathbf{Q}_f \mathbf{Q}_i)|^2 [\rho_0]_W(\mathbf{Q}_i, \mathbf{p}_i^{(\gamma)})[O]_W(\mathbf{Q}_f, \mathbf{p}_f^{(\gamma)})$$

3. Initial value representation : $-\frac{\partial^2 R_{\gamma}}{\partial \mathbf{Q}_f \partial \mathbf{Q}_i} = \frac{\partial \mathbf{P}_i}{\partial \mathbf{Q}_f}_{\gamma}$ $|A|^2 \equiv \text{Jacobian of } \mathbf{Q}_f \to \mathbf{P}_i \quad \Rightarrow \quad \sum_{\gamma} \int d\mathbf{Q}_f |A_{\gamma}|^2 \mapsto \int \frac{d\mathbf{P}_i}{(2\pi\hbar)^L}$

$$\langle \hat{O} \rangle_{\text{diag}}(t) = \int \frac{d\mathbf{Q}_i d\mathbf{P}_i}{(2\pi\hbar)^L} [\rho_0]_W(\mathbf{Q}_i, \mathbf{P}_i) [O]_W(\mathbf{Q}_f, \mathbf{P}_f)$$

(NB: for autocorrelation, $\hat{O} \equiv \hat{\rho}_0$)

Symmetries

- Hamiltonian $\hat{H} = \sum_{j=1}^{4} \left[-J\left(\hat{a}_{j}^{\dagger}\hat{a}_{j+1} + h.c.\right) + \frac{U}{2}\hat{n}_{j}\left(\hat{n}_{j} 1\right) \right]$
- Initial (and final) state $|\vec{n}\rangle = |n, 0, n, 0\rangle$.

Both H and $|n\rangle$ symmetric under

- time reversal symmetry

-
$$(1 \to 3, 2 \to 4, 3 \to 1, 4 \to 2)$$

- \rightarrow short trajectories \equiv own symmetric $(g_{\gamma} = 1)$
- \rightarrow longer trajectories have a symmetric partner $(g_{\gamma} = 2)$

$$C_{\rm smooth}(t) \simeq C_{\rm STWA}(t) \equiv \sum_{\gamma} g_{\gamma}^2 D_{\gamma}$$

 $\mathbf{N}=\mathbf{6}, \ | \stackrel{
ightarrow}{\mathbf{n}}
angle = |\mathbf{10},\mathbf{0},\mathbf{10},\mathbf{0},\mathbf{10},\mathbf{0}
angle.$

Conclusion-I

- There is no conceptual difference between the $N \rightarrow \infty$ limit of bosonic mean field approximation and the $\hbar \rightarrow 0$ limit of few body systems.
- This imply that usual semiclassics and many-bosons semiclassics, are formally the same theory, even if the small parameter is not the same (ħ vs N⁻¹)
- The tool from quantum chaos which have been developed in the former context can be used in the latter, and are particularly well adapted to tackle interference effects (NB: trying to start from path integral on the other hand is uselessly complicated).
- The complexification of phase space associated with the use of coherent states is a technical difficulty that can be overcome

Conclusion-II

The size of the phase space to explore is however a game changer for any practical implementation

- \rightarrow need to design techniques making it possible to explore large phase space.
- \rightarrow even in this way, one will be limited to either
 - small systems
 - system sufficiently close to integrability that the size of the phase space to explore is O(1) as the number of modes $\rightarrow \infty$
 - fairly short times

However:

 \rightarrow this will always beat truncated Wigner (which can be shown to be equivalent to just neglecting interference terms in the WKB approach).

 \rightarrow it is presumably the correct framework to think about the mean field approximation for many-boson out of equilibrium systems (eg: effects of symmetries, etc..).