К. М. Салихов

Новая парадигма спинового обмена в разбавленных растворах парамагнитных частиц

В 2019 году я представил новую парадигму спинового обмена, основанную на своих теоретических исследованиях и подтверждённую экспериментальными данными. Эта новая парадигма включает следующие ключевые положения:

- 1. **Модифицированное кинетическое уравнение**: Разработано для описания динамики намагниченности электронных спинов с учётом спинового обмена при случайных бимолекулярных столкновениях и диполь-дипольного взаимодействия в разбавленных растворах парамагнитных частиц.
- 2. **Коллективные спиновые моды**: Обнаружено, что отдача спиновой когерентности приводит к формированию коллективных мод движения спинов в таких системах. Квазичастицы элементарных возбуждений этих коллективных мод являются бозонами.
- 3. **Смешанная форма резонансных линий**: Каждая резонансная линия коллективной моды представляет собой комбинацию линий поглощения и дисперсии.
- 4. **Эффект обменного сужения спектра ЭПР** при достаточно высокой скорости переноса спиновой когерентности объясняется тем, что в этих условиях микроволновое поле эффективно возбуждает только одну из коллективных мод.
- 5. Спиновые поляритоны: Предсказано существование новой квазичастицы, названной спиновым поляритоном.

Работа над новой парадигмой открыла мне новые степени свободы, раздвинула горизонты и дала большой импульс моим научным исследованиям. Я осознал, что парадигма –это практически важный инструмент научного познания, его эффективного развития. Парадигма служит базой для планирования исследований, инструмент для оценки значения полученного в ходе исследования результата. Парадигма ускоряет прогресс научного исследования. У меня изменилась моя личная парадигма организации моей работы. Я уже поделился с некоторыми моими коллегами и

начал присматриваться к некоторым другим направлениям науки, в которых я планирую использовать полученный опыт формулирования парадигмы. Более того. Я убежден, что такую работу следовало бы провести и в других областях науки, если мы хотим более эффективно вести свою научную работу. Если когото из вас такая перспектива заинтересовала, буду очень рад взаимодействовать с вами.

- 1. M. Salikhov. <u>Fundamentals of spin exchange</u>. <u>Story of a paradigm shift</u>. Springer (2019).
- 2. К.М. Салихов. Состояние теории спинового обмена в разбавленных растворах парамагнитных частиц. Новая парадигма спинового обмена и его проявлений в ЭПР-спектроскопии. УФН, 189, 1017-1043 (2019).
- 3. K.M. Salikhov. <u>Interpretation of the Nature of the Mixed Form of Resonance Lines of the EPR Spectrum in a New Paradigm of Spin Exchange.</u> <u>Abnormal "Resonance" of Non-Resonant Spins</u>. J. Phys. Chem. *B* , 124, 30, 6628-6641 (2020).

Кев Минуллинович Салихов - доктор физико-математических наук, профессор, академик РАН, научный руководитель Казанского физико-технического института им. Е. К. Завойского Казанского научного центра РАН, один из лидеров теоретической химической физики, внёс основополагающий вклад в становление и развитие спиновой химии, в создание теоретических основ магнитных эффектов в химических реакциях и эффектов гиперполяризации электронных и ядерных спинов в ходе спинзависимых процессов, заложил теоретические основы современных импульсных методов спектроскопии ЭПР.

Парадигма спиновой химии

Спиновая химия, изучающая влияние спиновых состояний на химические реакции и процессы, обладает сформированной парадигмой, основанной на принципах квантовой механики и магнитного резонанса. Эта парадигма включает следующие ключевые положения:

- 1. **Спиновые состояния и химическая реактивность**: Спиновые состояния реагирующих частиц существенно влияют на вероятности и пути протекания химических реакций.
- 2. **Магнитные взаимодействия**: Взаимодействия между спинами, такие как спиновый обмен и диполь-дипольные взаимодействия, определяют динамику и кинетику химических процессов.
- 3. **Методы магнитного резонанса**: Техники, включая электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР), являются основными инструментами для исследования спиновых эффектов в химии.

Академик К.М. Салихов внёс значительный вклад в развитие спиновой химии, особенно в области теории импульсной спектроскопии ЭПР. Его теоретические работы существенно повлияли на формирование современной парадигмы спиновой химии, расширяя понимание спиновых взаимодействий и их роли в химических реакциях.

Таким образом, парадигма спиновой химии сформулирована и продолжает развиваться, интегрируя новые теоретические и экспериментальные достижения в области спиновой динамики и магнитных взаимодействий.

какие современные проблемы ядерной физики можно решить с использованием спинового обмена

Спиновый обмен, являющийся фундаментальным аспектом обменного взаимодействия, играет важную роль в ядерной физике и может способствовать решению ряда современных проблем в этой области. Ниже представлены ключевые направления, где использование спинового обмена может быть особенно полезным:

1. Исследование структуры и стабильности атомных ядер

Обменные взаимодействия между нуклонами (протонами и нейтронами) существенно влияют на энергию и структуру ядра. Учет спинового обмена позволяет:

- Моделировать силы притяжения и отталкивания между нуклонами, что способствует более точному описанию ядерных связей и предсказанию стабильности различных изотопов.
- Понимать явление насыщения ядерных сил, где обменные силы ограничивают количество нуклонов в ядре, обеспечивая его устойчивость.

2. Описание ядерных реакций и рассеяния

В ядерных реакциях, таких как столкновения нуклонов, спиновый обмен играет ключевую роль в перераспределении спиновых состояний. Это важно для:

- **Анализа механизмов реакций с переносом заряда**, где обмен спинов и координат между нуклонами определяет вероятности и выходы реакций.
- Понимания процессов, связанных с обменом заряженными пионами, что влияет на спиновые состояния и энергетические уровни взаимодействующих частиц.

3. Разработка моделей ядерных сил

Точные модели ядерных сил необходимы для предсказания поведения ядерных систем. Учет спинового обмена в этих моделях позволяет:

- Описывать зависимость ядерных сил от спиновых и изоспиновых состояний нуклонов, что важно для понимания асимметрии в ядрах и изотопической зависимости ядерных взаимодействий.
- **Интегрировать тензорные компоненты взаимодействий**, которые зависят от относительных ориентаций спинов и пространственных координат нуклонов.

4. Применение в квантовых вычислениях и информационных технологиях

Спиновые состояния ядер рассматриваются как потенциальные носители информации в квантовых вычислениях. Использование спинового обмена может:

- Обеспечить реализацию квантовых логических операций, где взаимодействие между спинами используется для управления квантовыми состояниями.
- Содействовать созданию устойчивых кубитов на основе ядерных спинов, что повышает надежность и масштабируемость квантовых вычислительных систем.

Таким образом, спиновый обмен является ключевым элементом в решении многих современных задач ядерной физики, от фундаментальных исследований структуры ядра до прикладных аспектов квантовых технологий.

какие современные проблемы ядерной физики можно решить с использованием спиновой химии

Спиновая химия, изучающая влияние спиновых состояний на химические реакции, может внести значительный вклад в решение ряда современных проблем ядерной физики. Ниже представлены ключевые направления, где методы и подходы спиновой химии могут быть особенно полезными:

1. Управление ядерными реакциями через спиновые состояния

Спиновая химия демонстрирует, что спиновые состояния реагентов существенно влияют на ход химических реакций. Применение этих принципов в ядерной физике может позволить:

- Контролировать вероятности ядерных реакций путём подготовки нуклонов или ядер в определённых спиновых состояниях, что может повысить эффективность реакций синтеза или распада.
- Разрабатывать новые методы управления реакционной способностью через внешние магнитные поля, влияющие на спиновые состояния ядер.

2. Улучшение методов ядерного магнитного резонанса (ЯМР)

Спиновая химия предоставляет глубокое понимание процессов поляризации ядерных спинов, что непосредственно отражается на методах ЯМР. Это может привести к:

- Увеличению чувствительности ЯМР-спектроскопии путём использования химически индуцированной динамической поляризации ядер (CIDNP), что позволяет детектировать слабые сигналы и изучать редкие изотопы.
- Разработке новых контрастных агентов для магнитнорезонансной томографии (MPT) на основе спиновых эффектов, улучшая качество медицинской визуализации.

3. Изучение радиационно-химических процессов

В ядерной физике многие процессы сопровождаются образованием радикалов и ионов. Методы спиновой химии позволяют:

- Исследовать механизмы радиационно-химических реакций путём детектирования и анализа спиновых состояний промежуточных частиц, что важно для понимания процессов в ядерных реакторах и космической радиации.
- Разрабатывать методы защиты от радиации через понимание спиновых механизмов повреждения биомолекул и создания эффективных радиопротекторов.

4. Вклад в квантовые вычисления и информационные технологии

Спиновые состояния ядер рассматриваются как потенциальные кубиты в квантовых компьютерах. Знания спиновой химии могут способствовать:

- **Созданию стабильных квантовых систем** путём управления спиновыми состояниями и их когерентностью, что критично для разработки квантовых компьютеров.
- Разработке методов передачи и хранения квантовой информации на основе спиновых переходов и взаимодействий.

Таким образом, интеграция подходов спиновой химии в исследования ядерной физики открывает новые перспективы в управлении ядерными реакциями, улучшении аналитических методов и развитии квантовых технологий.

какие современные проблемы медицины можно решить с использованием спинового обмена

Спиновый обмен, представляющий собой процесс взаимодействия спиновых состояний между парамагнитными частицами, имеет значительный потенциал в решении ряда современных медицинских проблем. Ниже представлены ключевые направления, где использование спинового обмена может быть особенно полезным:

1. Улучшение методов магнитно-резонансной томографии (MPT)

Спиновый обмен влияет на динамику спиновых состояний, что может быть использовано для повышения контрастности и информативности МРТ-изображений. Учет эффектов спинового обмена позволяет:

- Повысить чувствительность детекции патологических изменений путем оптимизации параметров сканирования, учитывающих взаимодействие спинов.
- Разработать новые контрастные агенты, способные изменять свои магнитные свойства в зависимости от окружающей среды, что улучшает визуализацию различных тканей и патологий.

2. Таргетная доставка лекарственных средств

Использование наночастиц с парамагнитными свойствами, взаимодействующих через спиновый обмен, открывает возможности для:

- **Контролируемой доставки медикаментов** к определенным клеткам или тканям, где спиновые взаимодействия обеспечивают высвобождение активного вещества в нужном месте и в нужное время.
- Мониторинга распределения лекарств в организме с помощью методов, основанных на спиновой динамике, что позволяет оценивать эффективность терапии в реальном времени.

3. Разработка новых методов терапии

Терапевтические подходы, основанные на управлении спиновыми состояниями, могут включать:

- Спин-зависимую фотодинамическую терапию, где активация фотосенсибилизаторов зависит от спиновых состояний, что повышает избирательность уничтожения патологических клеток.
- Гипертермию, индуцированную спиновыми взаимодействиями, где локальное повышение температуры достигается за счет спиновых процессов, направленно воздействуя на опухолевые клетки.

4. Диагностика и лечение нейродегенеративных заболеваний

Изменения в спиновых взаимодействиях могут служить маркерами нейродегенеративных процессов. Использование спинового обмена позволяет:

- Раннюю диагностику заболеваний, таких как болезнь Альцгеймера или Паркинсона, путем выявления аномалий в спиновой динамике нейронов.
- **Разработку терапевтических стратегий**, направленных на восстановление нормальных спиновых взаимодействий, что может замедлить прогрессирование заболевания.

Таким образом, интеграция знаний о спиновом обмене в медицинскую практику способствует развитию более точных диагностических методов и эффективных терапевтических подходов, улучшая качество медицинской помощи.

какие современные проблемы медицины можно решить с использованием спиновой химии

Спиновая химия, изучающая влияние спиновых состояний на химические реакции, обладает значительным потенциалом в решении ряда современных медицинских проблем. Ниже представлены ключевые направления, где методы спиновой химии могут быть особенно полезными:

1. Улучшение методов магнитно-резонансной томографии (MPT)

Спиновая химия предоставляет глубокое понимание процессов поляризации ядерных спинов, что непосредственно отражается на методах МРТ. Это может привести к:

- Увеличению чувствительности МРТ-спектроскопии путём использования химически индуцированной динамической поляризации ядер (CIDNP), что позволяет детектировать слабые сигналы и изучать редкие изотопы.
- **Разработке новых контрастных агентов** для МРТ на основе спиновых эффектов, улучшая качество медицинской визуализации.

2. Разработка новых методов терапии

Терапевтические подходы, основанные на управлении спиновыми состояниями, могут включать:

- Спин-зависимую фотодинамическую терапию, где активация фотосенсибилизаторов зависит от спиновых состояний, что повышает избирательность уничтожения патологических клеток.
- Гипертермию, индуцированную спиновыми взаимодействиями, где локальное повышение температуры достигается за счет спиновых процессов, направленно воздействуя на опухолевые клетки.

3. Диагностика и лечение нейродегенеративных заболеваний

Изменения в спиновых взаимодействиях могут служить маркерами нейродегенеративных процессов. Использование спиновой химии позволяет:

- **Раннюю диагностику заболеваний**, таких как болезнь Альцгеймера или Паркинсона, путем выявления аномалий в спиновой динамике нейронов.
- **Разработку терапевтических стратегий**, направленных на восстановление нормальных спиновых взаимодействий, что может замедлить прогрессирование заболевания.

Таким образом, интеграция методов спиновой химии в медицинскую практику способствует развитию более точных диагностических инструментов и эффективных терапевтических подходов, улучшая качество медицинской помощи.