На правах рукописи

ИОСЕЛЕВИЧ Павел Алексеевич

Майорановские фермионы в сверхпроводящих гибридных структурах

Специальность 01.04.02 — Теоретическая физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Черноголовка – 2013

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт теоретической физики им. Л. Д. Ландау Российской академии наук.

Научный руководитель:	Фейгельман Михаил Викторович,
	доктор физмат. наук., профессор
Официальные оппоненты:	Воловик Григорий Ефимович, д. фм. н., ФГБУН ИТФ им. Л. Д. Ландау РАН, г. Черноголовка, главный научный сотрудник
	Мирлин Александр Давидович , д. фм. н., профессор Технологического Института г. Карлсруэ, Германия, глава теор. отдела
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт физики микроструктур Российской академии наук

Защита состоится 27 декабря 2013 года в 11 часов 30 минут на заседании диссертационного совета Д 002.207.01 при Федеральном государственном бюджетном учреждении науки Институт теоретической физики им. Л. Д. Ландау Российской академии наук по адресу: 142432, Московская обл., г. Черноголовка, просп. Академика Семенова, д. 1-А, Институт теоретической физики им. Л. Д. Ландау РАН.

С диссертацией можно ознакомиться в библиотеке Института теоретической физики им. Л. Д. Ландау РАН.

Автореферат разослан 23 ноября 2013 г.

Ученый секретарь

диссертационного совета,

доктор физ.-мат. наук

Гриневич Петр Георгиевич

Общая характеристика работы

Актуальность темы. В середине 2000х годов было предсказано существование топологических изоляторов, 1-4 вскоре подтвержденное экспериментально.⁵⁻⁸ Эти материалы являются объемными изоляторами с металлической поверхностью. Поверхностные моды при этом топологически защищены и остаются проводящими при включении возмущений, например, примесного беспорядка. Топологические изоляторы существуют в разных измерениях. Так, состояние квантового эффекта Холла является примером двумерного топологического изолятора. Двумерный объем такой системы не проводит, в то время как край обнаруживает квантованную проводимость, соответствующую одномерным модам на краю образца. Топологические фазы реализуются и в сверхпроводящих системах. Именуемые топологическими сверхпроводниками, эти фазы также характеризуются щелью в спектре объемных возбуждений и бесщелевыми поверхностными модами. В одномерном топологическом сверхпроводнике такая поверхностная мода является локализованным состоянием с нулевой энергией. Это состояние оказывается майорановский фермионом – квазичастицей не несущей энергии и заряда, и совпадающей со своей античастицей.

Майорановский фермион, прежде изучавшийся в контексте физики высоких энергий, возникает в сверхпроводящих системах в виде коллективного электронного возбуждения. Энергия локализованного майорановского состояния равна нулю и не меняется под воздействием внешних локальных возмущений. Благодаря этому качеству кубит, построенный на паре пространственно разведенных майорановских состояний, устойчив к дефазировке локальными возмущениями.⁹

Создание систем, содержащих майорановские состояния, и обнаружение этих состояний – актуальная задача, которой заняты многие теоретики и экспериментаторы. Теоретически майорановские состояния предсказаны в нанопроволоках с сильным спин-орбитальным взаимодействием в присутствии магнитного поля и сверхпроводимости,^{10,11} в коре вихря на поверхности трехмерного топологического изолятора с наведенной сверхпроводимостью¹² и

3

некоторых других системах. В прошлом году нескольким экспериментальным группам удалось реализовать систему на базе нанопроволоки.^{13–15} Указанием на присутствие защищенной нулевой моды в этих экспериментах служит пик в проводимости при нулевом напряжении, устойчивый к изменению магнитного поля, напряжения затворов и других параметров. Измеренный пик соответствует резонансному андреевскому отражению электронов, вызванному присутствием в системе майорановского нулевого состояния.¹⁶

Степень разработанности темы. Физика топологических изоляторов и сверхпроводников – тема сравнительно молодая, и испытывающая в последние годы бурное развитие. Имеется большой ряд работ по наиболее простым вопросам, однако еще большее число задач пока не решено теоретически. Экспериментальная наука достигла заметных успехов в работе с топологическими изоляторами, в то время как эксперименты с майорановскими состояниями в гибридных сверхпроводящих системах по большей части находятся в разработке, а число уже проведенных убедительных измерений невелико.

Целью работы являлось изучение майорановских фермионов в сверхпроводящих гибридных структурах и связанных с ними транспортных эффектов. Одной из задач являлось рассмотрение джозефсоновского тока в системе, содержащей майорановские фермионы. Цель состояла в предложении SNS-системы на основе топологического изолятора, и изучении возникающего в этой системе джозефсоновсого тока.

Мы также ставили перед собой задачу изучить туннельную проводимость сверхпроводящей гибридной системы, содержащей дискретные андреевские уровни, в частности, майорановские состояния.

Еще одной целью было исследование влияния беспорядка на систему с уединенным майорановским состоянием путем рассмотрения статистики дискретных уровней в такой системе в пределе сильного беспорядка.

<u>Основные положения</u>, выносимые на защиту, заключаются в следующем:

1. Рассмотрена SNS-система, представляющая собой сэндвич из покрытого с двух сторон сверхпроводящей пленкой куска трехмерного то-

4

пологического изолятора, в котором просверлен цилиндрический канал, соединяющий две поверхности. Через этот канал пропущен абрикосовский вихрь, приводящий к появлению майорановской моды в коре вихря на обеих поверхностях. Показано, что между поверхностями через канал протекает джозефсоновский ток, содержащий наряду с 2π периодической по φ частью еще и аномальную 4π -периодическую компоненту. Этот ток вычислен при разных параметрах системы и температуре. Установлена связь аномальной компоненты с сохранением фермионной четности в контакте, и получена характеристическая температура, при которой аномальный ток подавляется.

- 2. Рассмотрено андреевское отражение электрона, туннелирующего в сверхпроводящую систему с дискретным спектром андреевских состояний. Получены общие формулы для резонансного отражения при энергиях, близких к энергиям дискретного спектра системы. Исследована интерференция различных андреевских процессов и получена точная формула для одноканального контакта в терминах дискретных уровней системы. С помощью этой формулы рассмотрена система с парой почти неспаренных майорановских мод. В этой ситуации в проводимости имеется лорентцевский пик при нулевом напряжении высотой 2e²/h, на фоне которого имеется параметрически узкий, топологически защищенный провал до нуля на самых низких энергиях.
- 3. Рассмотрен кор вихря на сверхпроводящей поверхности топологического изолятора в пределе сильного беспорядка. С помощью метода нелинейной суперсимметричной σ-модели найдена средняя локальная плотность состояний. Показано, что эта система относится к нульмерному классу симметрии В (также известному как D-odd) и имеет δ-пик в плотности состояний при нулевой энергии, описывающий майорановское состояние, и отталкивающий ближайшие уровни с конечной энергией. Вычислено уширение пика в ситуации, когда к поверхности топологического изолятора в области кора вихря подключен туннельный контакт, и получена проводимость в туннельном эксперименте для такой системы.

Методология и методы исследования. Исследования, составляющие диссертацию, проводились современными методами теоретической физики. Сверхпроводящие системы изучались при помощи формализма Боголюбоваде Жена, электронный транспорт – на основе теории *S*-матриц и формул Лесовика-Левитова. Свойства неупорядоченных систем исследовались с помощью суперсимметричной нелинейной сигма-модели.

Научная новизна и достоверность. Результаты диссертационной работы получены впервые, достоверность ее выводов обеспечена надежностью применявшихся методов и подтверждается результатами апробации работы.

Научная и практическая значимость. Полученные новые результаты позволяют лучше понять физику топологических сверхпроводников и майорановских фермионов и могут быть применены как для дальнейших теоретических исследований, так и для планирования и анализа экспериментов.

<u>Апробация работы.</u> Результаты, изложенные в диссертации, докладывались и обсуждались на международных конференциях: *MESO-12* (г. Черноголовка, 2012), *Landau Days* (г. Черноголовка, 2012, 2013), *Topological* materials for nanostructures, (Stuttgart, Germany, 2012), *The Science of Microstructures: New Frontiers in the Physics of Quantum Dots* (г. Черноголовка, 2012), *Cospeмenныe проблемы фундаментальных и прикладных наук* (г. Долгопрудный, 2008, 2009), а также на научных семинарах в MIT (Cambridge, Massachusets), UC Berkeley (Berkeley, California), Weizmann Institute (Rehovot, Israel), NITech (Nagoya, Japan), Microsoft Station Q (Santa Barbara, California), Института Теоретической Физики им. Л. Д. Ландау РАН, МГУ и Института физики микроструктур РАН.

Публикации. По теме диссертации опубликовано 3 научные работы, список которых приведен в конце реферата.

Объем и структура диссертации. Диссертация состоит из введения, четырех глав, заключения, приложения и списка литературы.

Основное содержание работы

Диссертационная работа начинается с **введения**, в котором дан краткий обзор физики топологических изоляторов и сверхпроводников и описан контекст решаемых в диссертации задач. Также во **введении** сформулированы цели диссертации и представлены ее основные результаты. Заканчивается **введение** кратким описанием содержания остальных глав.

Первая глава посвящена математике и общим свойствам майорановских фермионов. В диссертации сверхпроводимость рассматривается в приближении среднего поля, и электроны описываются уравнениями Боголюбова-де Жена. В стандартном базисе $(\hat{\psi}_{\uparrow} \ \hat{\psi}_{\downarrow} \ \hat{\psi}_{\downarrow}^{\dagger} \ -\hat{\psi}_{\uparrow}^{\dagger})$ гамильтониан сверхпроводимость дящей системы

$$H_{BdG} = \begin{pmatrix} \hat{H}_0 & \hat{\Delta}(\mathbf{r}) \\ \hat{\Delta}^{\dagger}(\mathbf{r}) & -\mathcal{T}\hat{H}_0\mathcal{T}^{-1} \end{pmatrix}, \qquad (1)$$

где \hat{H}_0 – одноэлектронный гамильтониан, а $\mathcal{T} = i\sigma_y \hat{C}$ – оператор обращения времени (\hat{C} обозначает комплексное сопряжение). По построению H_{BdG} антикоммутирует с оператором электрон-дырочной симметрии $\hat{\Xi} \equiv \sigma_y \tau_y \hat{C}$, где матрица Паули σ действует на спин, а τ – в пространстве Намбу-Горькова. Вместе с равенством $\hat{\Xi}^2 = 1$ это коммутационное соотношение приводит к симметрии спектра H_{BdG} – каждому уровню с энергией + E соответствует уровень с -E, причем соответствующие волновые функции связаны соотношением $\psi_{+E} = \hat{\Xi}\psi_{-E}$. Спектр также может содержать состояние с E = 0и самосопряженной волновой функцией $\gamma = \hat{\Xi} \gamma$ – такое состояние является майорановской модой. На исходном языке операторов рождения и уничтожения электронов действие $\hat{\Xi}$ есть не что иное, как эрмитово сопряжение, так что $\hat{\gamma} = \hat{\gamma}^{\dagger}$ – майорановский фермион является своей собственной античастицей. Электрон-дырочная симметрия обеспечивает топологическую защищенность уединенной майорановской моды от возмущений. Четность числа нулевых собственных значений H_{BdG} – топологический инвариант, способный изменить свое значение только при закрытии щели в спектре системы.

Поскольку одна фермионная степень свободы, описываемая операторами

 $\hat{c}^{\dagger}, \hat{c},$ соответствует паре майорановских операторов

$$\hat{\gamma}_1 = \frac{\hat{c} + \hat{c}^{\dagger}}{\sqrt{2}} \qquad \qquad \hat{\gamma}_2 = \frac{\hat{c} - \hat{c}^{\dagger}}{i\sqrt{2}}, \qquad (2)$$

в реальной конечной системе число нулевых майорановских мод всегда четно. Говоря об изолированной майорановской моде $\hat{\gamma}_1$ с нулевой энергией, мы будем подразумевать, что где-то в системе есть вторая майорановская мода $\hat{\gamma}_2$, пространственно удаленная от первой, так что расщепление по энергии между ними экспоненциально мало. Комбинация двух майорановских мод образует один полноценный фермионный уровень с малой, но не нулевой энергией. Волновая функция этого уровня существенно нелокальна и является равновзвешенной суперпозицией мод $\hat{\gamma}_1$ и $\hat{\gamma}_2$.

Рассмотрим туннельный контакт между двумя топологическими сверхпроводниками, содержащими моды $\hat{\gamma}_1$ и $\hat{\gamma}_2$. Низкоэнергетическая часть гамильтониана имеет вид $\hat{H} = iE(\varphi)\hat{\gamma}_1\hat{\gamma}_2$ с энергией $E(\varphi)$, зависящей от разности фаз φ . В простейшем случае $E(\varphi) = t\cos(\varphi/2)$, в общем же случае $E(\varphi)$ является функцией, меняющей знак при адиабатическом изменении φ на 2π . Действительно, при повороте фазы в первом сверхпроводнике на $\delta\varphi$, волновая функция γ_1 домножается слева на $e^{i\tau_z\delta\varphi/2}$, и при обороте фазы на 2π меняет знак, за счет чего меняет знак и туннельный матричный элемент между γ_1 и γ_2 . Из 4π -периодичности $E(\varphi)$ следует, что и адиабатическая эволюция системы 4π -периодическая. В частности, 4π -периодическая зависимость энергии транслируется в 4π -периодический стационарный джозефсоновский ток. Измерение такого аномального тока может служить экспериментальным свидетельством наличия майорановских фермионов в системе.

Вторая глава диссертации посвящена изучению аномального джозефсоновского тока в предложенной нами оригинальной системе, изображенной на Рисунке 1 и основанной на трехмерном топологическом изоляторе, покрытом сверхпроводником.

Рассмотрим сэндвич, изображенный на Рисунке 1, состоящий из относительно толстой пластины трехмерного топологического изолятора, например, Bi₂Se₃, покрытой с двух сторон тонким слоем *s*-волнового сверхпроводника. За счет эффекта близости электроны на поверхности топологического изо-

8

Рис. 1: Изучаемая во второй главе система (вид в сечении вдоль линии вихря). Пластина топологического изолятора покрыта с двух сторон сверхпроводящей пленкой. В пластине вместе с пленками просверлено отверстие, через которое пропущен вихрь. Плоские поверхности топологического изолятора сверхпроводящие за счет эффекта близости, в то время как поверхность внутри цилиндрического отверстия – металлическая. Разность фаз φ между сверхпроводящими поверхностями регулируется потоком Φ .

лятора описываются гамильтонианом (1) с наведенным параметром порядка $\Delta(\mathbf{r})$ и одноэлектронным гамильтонианом

$$\hat{H}_0 = v(\sigma_x p_x + \sigma_y p_y) - E_f.$$
(3)

Здесь v - скорость Дираковских электронов, E_f – энергия Ферми. Рассмотрим вихрь Абрикосова, пронизывающий поверхность топологического изолятора с наведенной сверхпроводимостью. В коре вихря имеются связанные электронные состояния типа Кароли-Матрикона-де Жена,¹⁷ характеризующиеся целым моментом ν . При $\nu \ll p_f \xi$, где $\xi = v/\Delta$ – длина когерентности (Δ – сверхпроводящая щель вдали от кора), спектр эквидистантен, $E_{\nu} = \nu \omega_0$ с $\omega_0 \sim \frac{\Delta^2}{E_f}$. Состояние с $\nu = 0$ является майорановской нулевой модой.¹² Поскольку пластина топологического изолятора имеет две поверхности, мы имеем два кора с одинаковыми спектрами. Состояния с двух поверхностей гибридизуются за счет туннелирования сквозь толщу изолятора, и мы получаем ситуацию с 4 π -периодической низкоэнергетической динамикой, описанную выше. Ток в такой системе мал в меру вероятности туннелирования сквозь пластину. Чтобы получить аномальный джозефсоновский ток с заметной амплитудой, проделаем в пластине цилиндрическое отверстие радиуса R вдоль линии вихря. Электроны с угловым моментом $\nu \lesssim p_f R$ свобод-

но проникают сквозь отверстие-трубку по металлическим стенкам, сильно гибридизуя состояния с двух поверхностей. Как мы покажем, аномальный член в токе $I(\varphi)$ за счет трубки вырастет до величины порядка $e\Delta/h$, при этом появится также и нормальная, 2*π*-периодическая компонента порядка $(p_f R)e\Delta/h$. Первым делом, однако, покажем, что ток в любом случае останется 4π -периодичным, как при открытии отверстия, так и при любых других деформациях системы. Для гамильтониана с электрон-дырочной симметрией определен Пфаффиан.⁹ При обороте фазы на 2π Пфаффиан умножается на $P = \pm 1$ и этот множитель является топологическим инвариантом системы. Для системы $iE(\varphi)\hat{\gamma}_1\hat{\gamma}_2$ Пфаффиан равен $E(\varphi)$ и меняет знак при $\varphi \to \varphi + 2\pi$. Поскольку открытие отверстия не закрывает щели в системе, а только меняет дискретную часть спектра, Р остается равным -1 после открытия отверстия. Знак Пфаффиана связан с фермионной четностью системы – всякий раз, когда $Pf(H(\varphi))$ меняет знак, меняется четность основного состояния системы.⁹ Поэтому в системе с P = -1 и сохраняющейся фермионной четностью эволюция является 4*π*-периодичной. Это доказывает, что 4*π*периодический ток – топологически защищенное явление. Отметим важность низкой симметрии нашей системы: если вместо поверхности топологического изолятора взять графен, электронные состояния в котором вырождены по спину и долине,¹⁸ получится четыре копии системы и тривиальный инвариант $P = P_1 P_2 P_3 P_4 = (P_1)^4 = +1$. Точно так же, из-за вырождения по спину, аномальный ток не возникает, например, в обычном баллистическом SNS-контакте.¹⁹

Большая часть **второй главы** посвящена вычислению спектра и сверхтока в описанной выше SNS-системе. Вычисление производится в квазиклассическом пределе $\Delta \ll E_f$. Также мы считаем $\xi_{sc} \ll R \lesssim \xi$, и $L < \xi$. Здесь ξ_{sc} – длина когерентности в сверхпроводящем покрытии, а L – длина трубки, совпадающая с толщиной пластины. Считая все поверхности топологического изолятора чистыми, мы находим волновые функции с заданной энергией E и моментом ν на поверхностях и в металлической трубке, а затем сшиваем

Рис. 2: Аномальный ток $I_a(\varphi)$, вычисленный при $p_f R = 2$ (пунктирная линия) и $p_f R = 3$ (синяя линия). Остальные параметры имеют значения $p_f \xi = 10$, $p_f \xi_{sc} = 5$, $p_f L =$ 6, $T = 0.05\Delta$. Экстремумы функции $I_a(\varphi)$ расположены в тех точках, где пара сопряженных уровней пересекается в $\epsilon = 0$.

их на границах отверстия. Ответ для спектра имеет вид

$$\epsilon_{\nu k}(\varphi) = \pm \varepsilon_0(\varphi - \pi - 2\pi k) - \varepsilon_1 \left[\arcsin \frac{\nu}{p_f R} + \frac{\nu L}{2p_f R^2} \left(1 - \frac{\nu^2}{(p_f R)^2} \right)^{-\frac{1}{2}} \right]$$
(4)

где $\varepsilon_1 \approx \Delta$, а $\varepsilon_0 \approx \Delta/2$, угловой момент $|\nu| < p_f R$, а $k \in \mathbb{Z}$. Формула (4) работает при $\epsilon_{\nu k} \ll \Delta$ и $p_f R - |\nu| \gg (p_f R)^{1/3}$. В коротком SNS-контакте равновесный сверхток выражается через спектр подщелевых состояний.¹⁹ Нам, однако, нужно получить ток в условиях сохраняющейся фермионной четности. Для этого мы вводим термодинамические потенциалы для четного и нечетного ансамблей $\Omega_{o/e}^{20}$ и вычисляем 4π -периодическую часть тока

$$I_a = (-1)^{F_0} \frac{e}{\hbar} \frac{\partial}{\partial \varphi} \left(\Omega_{odd} - \Omega_{even} \right), \qquad (5)$$

где F_0 – четность основного состояния системы. В терминах дискретного спектра системы формула (5) переписывается как

$$I_a(\varphi) = (-1)^{F_0} \frac{2ef}{\hbar(1-f^2)} \sum_j \frac{1}{\sinh\frac{\epsilon_j}{T}} \frac{\partial\epsilon_j}{\partial\varphi},\tag{6}$$

$$f = \prod_{j} \tanh \frac{\epsilon_j}{2T},\tag{7}$$

где сумма и произведение берутся по положительным ϵ_j . Величина I_a есть разность между током в четном и нечетном состоянии системы при температуре T. Отметим, что полный ток содержит также не зависящую от четности, 2π -периодическую компонента $I_n \sim p_f Re\Delta/h$, пропорциональную числу каналов в трубке. Применяя общую формулу (6) к нашей системе со спектром

Рис. 3: Температурная зависимость компоненты $I_a(\varphi = \pi)$ при тех же значениях параметров, что и на Рисунке 2. Синяя и пунктирная кривые соответствуют $p_f R = 3$ и $p_f R = 2$.

(4), мы получаем несколько различных режимов, в зависимости от параметров системы и температуры. Типичные кривые $I_a(\varphi)$ приведены на Рисунке 2. Отметим, что экстремумы тока расположены при тех φ , в которых пара уровней системы пересекается в нуле энергий. При самых низких температурах $I_a(\varphi)$ оказывается порядка $e\Delta/h$. При более высоких температурах, когда среднее число квазичастиц в системе становится много больше единицы, аномальный ток экспоненциально подавляется с ростом температуры. Характеристическая температура, при которой ток подавляется, есть

$$T^* = \min\left(\frac{\Delta}{p_f R}, \frac{2\Delta R \ln(\xi_0/\xi_{sc})}{\xi_0 \ln(p_f \xi_0)}, \frac{\Delta}{\ln(\nu V \Delta)}\right)$$
(8)

Первый аргумент минимума – температура, при которой число квазичастиц, описываемых формулой (4), становится порядка единицы, Вторая величина соответствует негибридизованным уровням с $|\nu| > p_f R$, не проникающим в трубку. Наконец, третья величина – классическая температура для эффекта четности,²⁰ при этой температуре появляются квазичастицы непрерывного спектра. Зависимость $I_a(T)$ приведена на Рисунке 3. Ввиду быстрого затухания $I_a(T)$, экспериментальное обнаружение 4π -периодического тока возможно только при температурах ниже T^* .

В третьей главе обсуждается в общем виде туннельный контакт между нормальным металлом и сверхпроводящей гибридной системой, содержащей подщелевые связанные состояния. При напряжениях меньше сверхпроводящей щели проводимость в такой системе определяется андреевским отражением.²¹ При этом андреевское отражение носит резонансный характер – пики в проводимости возникают при напряжениях, близких к одному из уровней дискретного спектра сверхпроводящей системы. Для изучения проводимости мы используем формулу Бюттикера-Тинкхама-Клапвайка²²

$$I = \frac{2e}{h} \int_{-\infty}^{\infty} T_A(E) \left[f_0(E - eV) - f_0(E) \right] dE$$
(9)

$$G \equiv \frac{dI}{dV} = \frac{2e^2}{h} \int_{-\infty}^{\infty} \frac{T_A(E)}{4T \cosh^2\left(\frac{E-eV}{2T}\right)} dE,$$
(10)

где $T_A(E)$ есть вероятность андреевского отражения электрона с энергией E, просуммированная по всем каналам. Эту величину можно переписать в виде формулы Кубо

$$T_A = \operatorname{tr} \left(\begin{pmatrix} \hat{v} & 0 \\ 0 & 0 \end{pmatrix} \check{G}_E^A \begin{pmatrix} 0 & 0 \\ 0 & \hat{v}^* \end{pmatrix} \check{G}_E^R \right).$$
(11)

Матрицы действуют в пространстве Намбу, \hat{v} – оператор скорости электронов в металлическом проводе, \hat{v}^* – сопряженный по времени оператор, действующий на дырки. $\check{G}^{R(A)}$ – точная запаздывающая (опережающая) функция Грина электронов в проводе (галка в \check{G} означает структуру в пространстве Намбу). Представим полную систему в виде провода с невозмущенной функцией Грина \check{G}_0 , сверхпроводящей структуры \check{G}_S и туннельного гамильтониана \check{H}_T , переносящего электроны из провода в сверхпроводник и обратно. Точную функцию Грина полной системы в области провода запишем в терминах \check{T} -матрицы

$$\check{G} = \check{G}_0 + \check{T}\check{G}_0 \tag{12}$$

$$\check{T} = \frac{\check{G}_0 \check{H}_T \check{G}_S \check{H}_T}{1 - \check{G}_0 \check{H}_T \check{G}_S \check{H}_T}$$
(12)
(13)

Выражение (13) содержит формальное суммирование по всем степеням туннельного гамильтониана \check{H}_T . Техническое содержание третьей главы сводится к вычислению \check{T} -матрицы в двух общих случаях и последующему нахождению проводимости G(V,T).

Первым общим случаем, когда удается получить компактный ответ для проводимости, является одноуровневый резонанс. Если энергия туннелирующего электрона близка только к одному дискретному уровню j_0 сверхпроводника, мы можем удержать в G_S только соответствующий полюс

$$\check{G}_S(E) \simeq \frac{|j_0\rangle\langle j_0|}{E - E_{j_0}},\tag{14}$$

где $|j_0\rangle$ обозначает резонансное состояние. В таком случае \check{T} -матрица равна

$$\check{T} = \frac{\check{G}_0 |\tau\rangle \langle \tau|}{E - E_{j_0} + i0 - \langle \tau | \check{G}_0 | \tau \rangle},\tag{15}$$

где $|\tau\rangle = \check{H}_T |j_0\rangle$. Подстановка в уравнения (12,11,10) дает при нулевой температуре

$$G(eV) = \frac{2e^2}{h} \frac{1}{1 + \frac{(eV - E_{j_0})^2}{W^2}} T_A^*,$$
(16)

$$T_A^* = \frac{4n_e n_h}{(n_e + n_h)^2},\tag{17}$$

где ширина резонансного пика W и параметры $n_{e,h}$ определяются как

$$W = \pi (n_e + n_h), \quad \text{где} \quad \begin{cases} n_e = \langle \tau_e | \frac{g_E^R - g_E^A}{2\pi i} | \tau_e \rangle \\ n_h = \langle \tau_h^* | \frac{g_{-E}^R - g_{-E}^A}{2\pi i} | \tau_h^* \rangle \end{cases}$$
(18)

За g обозначены металлические функции Грина без структуры в пространстве Намбу. В частном случае точечного контакта n_e , n_h приобретают смысл электронной и дырочной компонент плотности вероятности $|j_0\rangle$ в точке контакта, помноженных на обратное время туннелирования. W можно понимать как упругое уширение уровня $|j_0\rangle$ за счет контакта с металлическим проводом. Структура T_A^* такова, что андреевское отражение сильнее от уровней, электронная и дырочная компоненты которых близки по абсолютной величине. В частности, для майорановского состояния $n_e = n_h$ и T_A^* вследствие $\hat{\gamma} = \hat{\gamma}^{\dagger}$. Явление идеального резонансного отражения от уединенной майорановской моды в специального вида системе было рассмотрено в работе.¹⁶ Полученная нами формула (16) применима, когда $|eV - E_{j_0}| \ll |eV - E_{j\neq j_0}|$ и $|eV - E_{j_0}| \ll |eV - E_{j\neq j_0}|$, то есть когда обратное время туннелирования Wмного меньше, чем расстояния между уровнями. Типичный профиль проводимости в такой ситуации представлен на Рисунке 4.

Рис. 4: Схематическое изображение туннельной проводимости, как функции напряжения, для произвольной системы. Каждому уровню соответствует пик высоты $\leq 2e^2/h$ (в точности $2e^2/h$ для майорановского уровня). С ростом температуры пики уширяются. За ω_0 обозначено характерное межуровневое расстояние.

Формула (16) не работает, если энергия электрона близка сразу к двум или более резонансным уровням. Такая ситуация особенно актуальна в контексте физики майорановских фермионов – паре слабо спаренных майорановских мод соответствует уровень с малой энергией E_0 и уровень-изображение с $-E_0$. Если $E_0 \leq W$, пользоваться формулой (16) нельзя. Ниже мы выводим точную формулу, позволяющую учесть сразу все уровни системы (в том числе пару майорановских состояний) для одноканального туннельного контакта \check{H}_T . Одноканальный туннельный гамильтониан в общем виде можно записать как

$$\check{H}_T = |\theta\rangle t \langle \sigma| - |\theta^*\rangle t^* \langle \sigma^*| + h.c.$$
(19)

с некоторыми волновыми функциями $|\theta\rangle$ и $|\sigma\rangle$ в щупе и сверхпроводнике, соответственно. Вычисляя \check{T} -матрицу и подставляя результат в формулу Кубо, мы получаем общий ответ:

$$G(eV) = \frac{2e^2}{h} \frac{4|\Sigma_A^2|}{(1 - \Sigma_e \Sigma_h + |\Sigma_A^2|)^2 + (\Sigma_e + \Sigma_h)^2}.$$
 (20)

где безразмерные величины $\Sigma_{e,h,A}$ определены как

$$\Sigma_e = t^2 N_0 \sum_{j>0} \frac{|\langle \sigma | j \rangle|^2}{E - E_j} + \frac{|\langle \sigma | j^* \rangle|^2}{E + E_j},\tag{21}$$

$$\Sigma_h = t^2 N_0 \sum_{j>0} \frac{|\langle \sigma | j^* \rangle|^2}{E - E_j} + \frac{|\langle \sigma | j \rangle|^2}{E + E_j},\tag{22}$$

$$\Sigma_A = -t^2 N_0 \sum_{j>0} \frac{\langle \sigma | j \rangle \langle j | \sigma^* \rangle}{E - E_j} + \frac{\langle \sigma | j^* \rangle \langle j^* | \sigma^* \rangle}{E + E_j}.$$
(23)

Здесь $N_0 = \operatorname{Im}\langle \theta | g_E^R | \theta \rangle$ – нормировочная константа (для точечного контакта $N_0 = \pi \nu$). Величина Σ_A имеет простой физический смысл – $2i\Sigma_A$ является амплитудой андреевского отражения в низшем порядке по H_T . Поскольку $\langle \sigma | j \rangle \langle j | \sigma^* \rangle = \langle \sigma | j \rangle \langle j | \sigma^* \rangle^T = \langle \sigma | j^* \rangle \langle j^* | \sigma^* \rangle$, функция $\Sigma_A(E)$ – нечетная, так что в отсутствие уровней с $E_i = 0$ амплитуда $\Sigma_A(0)$ равна нулю. Вклады в андреевское отражение от уровней E_i и $-E_i$ сокращают друг друга при E=0. Поскольку знаменатель в выражении (20) при этом остается конечным, получается G(0) = 0. Если же в системе есть нулевой майорановский уровень, то Σ_A имеет полюс в нуле. Легко показать, что знаменатель также будет иметь полюс при E = 0. Разрешив неопределенность, получим $G(0) = 2e^2/h$. Таким образом, в одноканальном контакте проводимость при нулевом напряжении квантуется – G(0) = 0 или $G(0) = 2e^2/h$. Такое квантование легко получить из соображений симметрии.²⁴ S-матрица сверхпроводящей системы обладает электрон-дырочной симметрией, так что $\det S(E = 0) = \pm 1$. Поскольку для одноканального контакта $G = e^2/h(1 - \det S)$, мы немедленно получаем искомое квантование. Случай полного андреевского отражения (det S = -1) соответствует так называемому топологическому NS-контакту, на границе которого имеется квазистационарное майорановское состояние. В тривиальном NS-контакте (det S = +1), наоборот, отражение электронов полностью нормальное и проводимость равна нулю.

Особый интерес представляют системы, содержащие пару слабо спаренных майорановских мод. С одной стороны, в системе с единственной модой проводимость G(0) должна быть равна $2e^2/h$. С другой стороны, в системе с двумя майорановскими модами мы сразу оказываемся в ситуации G(0) = 0. Как непрерывным образом связать два случая? Чтобы ответить на этот вопрос, рассмотрим проводимость при самых низких энергиях, выкинув из формулы (20) все уровни, кроме пары наинизших, $\pm E_0$. Выражение для проводимости значительно упрощается:

$$G(V) = \frac{2e^2}{h} \frac{1}{\left[\frac{e^2V^2 - \tilde{E}_0^2}{2eVW}\right]^2 + 1} T_A^*,$$
(24)

где

$$\tilde{E}_0^2 = E_0^2 + (|t_1|^2 - |t_2|^2)^2, \qquad (25)$$

$$W = |t_1^2| + |t_2^2|, (26)$$

$$T_A^* = \frac{4|t_1t_2|^2}{\left(|t_1|^2 + |t_2|^2\right)^2},\tag{27}$$

$$t_1 = t\sqrt{N_0}\langle\sigma|j\rangle, \qquad t_2 = t\sqrt{N_0}\langle\sigma|j^*\rangle.$$
 (28)

Эффективная резонансная энергия \tilde{E}_0 чуть больше E_0 , но обычно эта разница мала по сравнению с E_0 и ей можно пренебречь. При $W \ll E_0$ кривая G(V) состоит из двух лорентцовских пиков, ширина W которых много меньше расстояния 2E₀ между ними, см. серую кривую на Рисунке 5. По мере уменьшения Е₀ пики сближаются, причем внешние крылья набирают спектральный вес, а проводимость при $|eV| < E_0$, наоборот, подавляется. Такое поведение соответствует структуре Σ_A – при $|eV| < E_0$ интерференция вкладов от $|j_0\rangle$ и $|j_0^*\rangle$ деструктивная, а при $|eV| > E_0$ – конструктивная. При $E_0 \ll W$ кривая имеет вид одного лорентцевского пика ширины 2Wс узким провалом ширины E_0^2/W при V = 0, обеспечивающим соблюдение условия G(0) = 0. Предел $E_0 \rightarrow 0$ соответствует процессу удаления одной майорановской моды из системы, и переходу в режим топологического NS-контакта. G(0) = 0 при любом положительном E_0 , однако, при конечной температуре провал в G(V) размывается, так что экспериментально обнаружить провал в пике возможно только при самых низких температурах. Отметим, что общий спектральный вес $I = \int_0^V G(eV) dV$ (взятый при $V \gg E_0$, но много меньше следующего энергетического уровня) остается неизменным при изменении E_0 . На Рисунке 5 проводимость при нулевой температуре изображена для разных E_0 . На Рисунке 6 представлена проводимость при различных температурах.

Отметим, что полученные формулы (16,20) приложимы отнюдь не только к системам с майорановскими фермионами. Они годятся для любых туннельных экспериментов, температура в которых достаточно мала для разрешения отдельных андреевских уровней. Например, можно было бы наблюдать уровни Кароли-Матрикона-де Жена в графене с наведенной сверхпроводимостью.²³ В трехмерном сверхпроводнике уровни Кароли-Матрикона-де Жена

Рис. 5: Одноканальная проводимость при T = 0 для фиксированного Wи различных значений E_0 . Пуктирная кривая соответствует $E_0 = 0$. На врезке показаны кривые при самых низких E. На этом и следующем графике T_A^* положено равным единице.

Рис. 6: Одноканальная проводимость при $E_0 = 1$ и W = 10 при различных температурах. Пунктирная кривая соответствует T = 4.

не являются дискретными за счет дисперсии вдоль линии вихря. Однако, это одномерное движение можно локализовать с помощью беспорядка. Так, в сильно анизотропных материалах вроде NbSe₂ масса движения вдоль линии вихря очень велика, так что для локализации квазичастиц достаточно слабого беспорядка.

В четвертой главе рассматривается кор вихря на поверхности трехмерного топологического изолятора в пределе сильного беспорядка. Изучается система, изображенная на Рисунке 7 – в сверхпроводящей пленке, покрывающей топологичесий изолятор, проделано отверстие радиуса R, в которое помещен абрикосовский вихрь. Назначение отверстия трояко: во-первых, отверстие пиннингует вихрь – в эксперименте не придется искать вихрь; вовторых, оно позволяет подвести щуп туннельного микроскопа непосредственно к поверхности топологического изолятора и измерить туннельную плотность состояний; наконец, вырезав кружок, мы удаляем из сверхпроводящей пленки низколежащие состояния Кароли-Матрикона-де Жена,²⁵ на фоне которых было бы трудно обнаружить электронные состояния с поверхности

Рис. 7: Изучаемая система. Трехмерный топологический изолятор покрыт пленкой *s*-волнового сверхпроводника, в которой имеется отверстие радиуса *R*. Спектр низколежащих электронных состояний содержит майорановское состояние. Оно может быть измерено туннельным микроскопом, подведенным к поверхности топологического изолятора через отверстие.

топологического изолятора. Мы предполагаем R больше или порядка v_f/Δ в сверхпроводящей пленке, что означает, что вырезана большая часть спектра Кароли-Матрикона-де Жена, и позволяет считать наведенный параметр порядка на поверхности топологического изолятора ступенчатой функцией,

$$\Delta(r) = \begin{cases} 0, & r < R, \\ \Delta, & r > R. \end{cases}$$
(29)

Полный гамильтониан, описывающий электроны на поверхности топологического изолятора, имеет вид

$$H = \begin{pmatrix} H_0 & \Delta(r)e^{i\varphi} \\ \Delta(r)e^{-i\varphi} & -H_0 \end{pmatrix}, \quad H_0 = v_0 \,\mathbf{s} \cdot \mathbf{p} + V(\mathbf{r}) - \mu. \tag{30}$$

Здесь μ – химический потенциал, $V(\mathbf{r})$ – случайный потенциал, описывающий примесный беспорядок. Цель четвертой главы – вычислить локальную плотность состояний $\rho(E, r)$, усредненную по беспорядку. Для этого мы используем суперсимметричную нелинейную σ -модель.²⁶ Электроны на поверхности топологического изолятора относятся к симплектическому классу симметрии AII, характеризующемуся симметрией по отношению к обращению времени с $\mathcal{T}^2 = -1$. В нашей системе \mathcal{T} -инвариантность нарушена вихрем, и, кроме того, имеется электрон-дырочная симметрия. Поэтому система относится к сверхпроводящему классу D. Эффективное действие сигма-модели для нашей системы

$$S[Q] = \frac{\pi\nu}{8} \int d^2r \operatorname{Str} \left[D(\nabla Q)^2 + 4(i\epsilon\Lambda - \hat{\Delta})Q \right] + S_{\theta}[Q],$$

$$\Lambda = \tau_z \sigma_z, \qquad \hat{\Delta} = \Delta(r)(\tau_x \cos\varphi - \tau_y \sin\varphi). \tag{31}$$

Здесь $\epsilon = E + iG_t \delta(\mathbf{r} - \mathbf{r}_0)/4\pi\nu$ – сумма энергии и локального члена, описывающего слабый туннельный контакт с металлом, имеющий нормальную проводимость $G_t \ll 1$. За D обозначен коэффициент диффузии, ν – металлическая плотность состояний. $S_{\theta}[Q]$ – топологический член типа Весса-Зумино-Виттена, возникающий из-за Дираковской природы электронов на поверхности топологического изолятора. Суперматрица Q имеет размер 8 × 8 и ограничена условиями $Q^2 = 1$ и

$$Q = \bar{Q} \equiv CQ^T C^T, \qquad C = \tau_x \begin{pmatrix} \sigma_x & 0\\ 0 & i\sigma_y \end{pmatrix}_{\rm FB}.$$
 (32)

Здесь τ действует в пространстве Намбу, а σ – во вспомогательном TRпространстве, введенном для равнозначного учета куперонов и диффузонов. Поиск минимума действия (31) сводится к решению уравнению Узаделя и сужению эффективного многообразия до двух несвязанных частей, на которых S_{θ} принимает разные значения. Вычисляя суперинтеграл

$$\rho(E,r) = \frac{\nu}{8} \operatorname{Re} \int DQ \operatorname{Str}[k\Lambda Q(r)] \ e^{-S[Q]}, \tag{33}$$

мы находим

$$\rho(r, E) = \nu n(r) f(E/\omega_0), \qquad (34)$$

$$n(r) = \cos \theta_1(r) = \frac{R^2 - r^2}{R^2 + r^2},$$
(35)

$$f(x) = \frac{\gamma}{\pi(x^2 + \gamma^2)} + 1 - \frac{\sin(2\pi x)}{2\pi x}.$$
 (36)

Здесь $\gamma = G_t n(r_0)/2\pi \ll 1$, а среднее межуровневое расстояние равно

$$\omega_0^{-1} = 2\nu \int d^2 r \, \cos\theta_1(r) = 2\pi (\log 4 - 1)\nu R^2. \tag{37}$$

Выражение (36) в пределе $\gamma \to 0$, когда первый член превращается в $\delta(x)$, воспроизводит ответ для плотности состояний нульмерного класса D-*odd* (также

Рис. 8: Полная плотность состояний при низких энергиях как функция энергии E. Сплошные линии изображают плотность состояний для различных G_t в единицах e^2/h . Майорановский уровень при E = 0 отталкивает низко-лежащие уровни с конечной энергией, как видно из провала вблизи майорановского пика. Осциллирующая пунктирная (серая) кривая демонстрирует плотность состояний в классе D, то есть в системе, не имеющей майорановского уровня. Пунктирная (красная) кривая – квазиклассический результат, не учитывающий корреляции уровней, и одинаковый для классов B и D.

обозначаемого В).²⁷ Пик в нуле соответствует майорановскому состоянию в системе. В присутствии туннельного контакта δ -пик размывается. Кривые для интегральной плотности состояний $N(E) = \int \rho(\mathbf{r}, E) d\mathbf{r}$ для разных G_t представлены на Рисунке 8. Формула (36) применима при энергиях много меньше энергии Таулесса $E_{Th} = D/R^2$. При больших энергиях флуктуации подавляют осцилляции в $\rho(E)$. При $E \gg E_{Th}$ плотность состояний можно считать квазиклассически: $\rho(r) = \nu \text{Re} \cos \theta(r)$, где $\theta(r)$ – решение уравнения Узаделя. При энергиях $E_{Th} \ll E \ll \Delta$ решить его удается аналитически, при промежуточных энергиях $E \sim E_{Th}$ мы решили его численно. Результаты представлены на Рисунке 9.

Результат (36) свидетельствует о том, что хотя майорановское состояние не сдвигается с нуля энергии за счет беспорядка, оно тем не менее оказывает влияние на статистику уровней – ближайшие уровни с ненулевой энергией отталкиваются от майорановского уровня – вероятность найти уровень с энер-

Рис. 9: Полная плотность состояний как функция энергии E. Осциллирующая (синяя) кривая демонстрирует низкоэнергетический результат при $G_t = 0.1e^2/h$, пунктирная кривая — высокоэнергетическая асимптотика, монотонная (красная) кривая — численное решение, интерполирующее между двумя пределами.

гией много меньше ω_0 подавлена, в отличие от системы без майорановского состояния.

Согласно результатам третьей главы, при $G_t \ll 1$ туннельная проводимость имеет вид набора резонансных пиков. При этом оказывается применимой формула

$$I = \frac{eG_t}{2\pi\hbar\nu} \int \rho(E, r_0) \big[f(E - eV) - f(E) \big] dE$$
(38)

если только в качестве плотности $\rho(E,r_0)$ брать выражение (36), уже содержащее в себе уширение уровней за счет туннельного контакта. В результате мы находим $G(0) = 2e^2/h$, в согласии с формулой (16). Такой пик возможно обнаружить экспериментально, что и было сделано в системах на основе нанопроволок.¹³

Заканчивается четвертая глава вычислением шума в рассматриваемом контакте. В заключении сформулированы результаты диссертации, выносимые на защиту. В приложение вынесены громоздкие вычисления.

Заключение

Результаты диссертационной работы можно разбить на три части. Первая касается аномального, 4π -периодического джозефсоновского тока в SNSсистемах, содержащих майорановские фермионы. Мы получили общую формулу, выражающую такой ток через подщелевой спектр контакта при сохраняющейся фермионной четности в контакте. Предложив оригинальную SNSгеометрию, основанную на трехмерном топологическом изоляторе, покрытом *s*-волновым сверхпроводником, мы посчитали в ней спектр и получили отсюда аномальный джозефсоновский ток. Ответ был изучен, как функция параметров системы и температуры, откуда была получена характеристическая температура, при которой аномальный ток подавляется.

Во второй части диссертации был рассмотрен в общем виде туннельный контакт между нормальным металлом и сверхпроводником, содержащим дискретные подщелевые уровни. При напряжениях, меньших щели, туннельная проводимость определяется резонансным андреевским отражением, происходящим, когда энергия электрона близка к одному из дискретных уровней. Мы получили общие выражения, описывающие соответствующие резонансные пики в проводимости. Кроме того, для случая одноканального контакта были получены общие выражения, позволяющие проанализировать роль интерференции в процессе андреевского отражения. Интерференция существенна, когда энергия электрона близка сразу к нескольким дискретным уровням, и определяет то, как именно ведут себя пики в проводимости, близко расположенные по энергии. В частности, при нулевом напряжении вклады от уровней с противоположными энергиями сокращают друг друга, что приводит к занулению проводимости. Для системы с двумя слабо спаренными майорановскими фермионами проводимость имеет вид лорентцевского пика высоты $2e^2/h$ в нуле, на фоне которого имеется параметрически узкий провал вплоть до нуля. Рассмотрен плавный переход от системы с парой спаренных майорановских мод к системе с одной майорановской модой. Показано. что провал в проводимости быстро замывается с ростом температуры, что не позволяет отличить систему с единственной майорановской модой от системы с двумя слабо спаренными модами.

В третьей главе мы изучали кор вихря на сверхпроводящей поверхности топологического изолятора в присутствии сильного беспорядка. Получена плотность состояний $\rho(r, E)$, усредненная по беспорядку. В пределе сильного беспорядка система описывается сигма-моделью класса симметрии D-*odd* (также обозначаемого В). При низких энергиях плотность состояний в системе обнаруживает δ -пик в плотности состояний, и осцилляции при отходе от нуля энергии. Хотя майорановская мода, соответствующая δ -пику, и зацищена топологически (ее энергия остается на нуле при любой реализации беспорядка), она тем не менее существенно влияет на статистику остальных уровней – ближайший уровень с положительной энергией отталкивается от нее.

Полученные результаты способны служить руководством для экспериментальных исследований — мы предложили конкретную SNS-систему для обнаружения аномального джозефсоновского тока. Результаты, полученные нами для туннельной проводимости, и выводы о влияния беспорядка на системы с майорановскими фермионами могут быть использованы для анализа существующих экспериментальных данных и для планирования новых измерений.

Основные результаты диссертации опубликованы в следующих работах:

- Tunneling conductance due to a discrete spectrum of Andreev states / P. A. Ioselevich, M. V. Feigel'man // New Journal of Physics. — 2013. — Vol. 15. — P. 055011.
- Anomalous Josephson Current via Majorana Bound States in Topological Insulators / P. A. Ioselevich and M. V. Feigel'man // Phys. Rev. Lett. – 2011. – Vol. 106. – P. 077003.
- Majorana state on the surface of a disordered three-dimensional topological insulator / P. A. Ioselevich, P. M. Ostrovsky, and M. V. Feigel'man // Phys. Rev. B. - 2012. - Vol. 86. - P. 035441.

Цитируемая литература:

- 1 Topological Insulators in Three Dimensions / L. Fu, C. L. Kane and E. J. Mele // Phys. Rev. Lett. 2007. Vol. 98. P. 106803.
- 2 Topological phases and the quantum spin Hall effect in three dimensions / R. Roy // Phys. Rev. B. 2009. Vol. 79. P. 195322.
- ³ Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells / B. A. Bernevig, T. A. Hughes, and S. C. Zhang // Science. - 2006. -Vol. 314. - P. 1757.
- 4 Topological insulators with inversion symmetry / L. Fu, C. L. Kane // Phys. Rev. B. 2007. Vol. 76. P. 045302.
- ⁵ Quantum Spin Hall Insulator State in HgTe Quantum Wells / M. König, S. Wiedmann, C. Brne, et al // Science. 2007. Vol. 318. P. 766.
- ⁶ A topological Dirac insulator in a quantum spin Hall phase / D. Hsieh, D. Qian, L. Wray, et al // Nature. - 2008. - Vol. 452. - P. 970.
- 7 Observation of a large-gap topological-insulator class with a single Dirac cone on the surface / Y. Xia, D. Qian, D. Hsieh, et al // Nature Physics 2009. Vol. 5. P. 398.
- ⁸ Topological insulators in Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ with a single Dirac cone on the surface / H. Zhang, C. X. Liu, X. L. Qi, et al // Nature Physics — 2009. — Vol.5. — P. 438.
- ⁹ Unpaired Majorana fermions in quantum wires / A. Yu. Kitaev // Physics-Uspekhi. — 2001. — Vol. 44. — Pp. 131-136.
- ¹⁰ Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures / R. M. Lutchyn, J. D. Sau, and S. Das Sarma // Phys. Rev. Lett. - 2010. - Vol. 105. - P. 077001.

- ¹¹ Helical Liquids and Majorana Bound States in Quantum Wires / Y. Oreg, G. Refael, F. von Oppen // Phys. Rev. Lett. 2010. Vol. 105. P. 177002.
- 12 Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator / L. Fu and C. L. Kane // Phys. Rev. Lett. 2008. Vol. 100. P. 096407.
- ¹³ Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices / V. Mourik, K. Zuo, S. M. Frolov, et al // Science. — 2012. — Vol. 336. — P. 1003.
- ¹⁴ Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions / A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman // Nature Physics. — 2012. — Vol. 8. — Pp. 887-895.
- ¹⁵ Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device / M. T. Deng, C. L. Yu, G. Y. Huang et al // Nano Letters. — 2012. — Vol. 12. — Pp. 6414-6419.
- ¹⁶ Majorana Fermion Induced Resonant Andreev Reflection / K. T. Law, P. A. Lee, and T. K. Ng // Phys. Rev. Lett. 2009. Vol. 103. P. 237001.
- ¹⁷ Bound Fermion states on a vortex line in a type II superconductor / C. Caroli,
 P. G. de Gennes, and J. Matricon // Physics Letters. 1964. Vol. 9. P. 307.
- 18 Graphene: carbon in two dimensions / M. I. Katsnelson // Materials Today. 2007. Vol. 10. Issue 1-2. Pp. 20-27.
- 19 Josephson current through a superconducting quantum point contact shorter than the coherence length / C. W. J. Beenakker and H. van Houten // Phys. Rev. Lett. 1991. Vol. 66. P. 3056.
- ²⁰ Experimental evidence for parity-based 2*e* periodicity in a superconducting single-electron tunneling transistor / M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, M. Tinkham // Phys. Rev. Lett. 1992. Vol. 69. P. 1997.

- ²¹ Thermal conductivity of the intermediate state of superconductors / A. F. Andreev // Sov. Phys. JETP. 1964. Vol. 19. P. 1228.
- ²² Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion / G. E. Blonder, M. Tinkham, and T. M. Klapwijk // Phys. Rev. B. - 1982. - Vol. 25. - Pp. 4515-4532.
- ²³ Vortex core states in superconducting graphene / I. M. Khaymovich, N. B. Kopnin, A. S. Mel'nikov, I. A. Shereshevskii // Phys. Rev. B. 2009. Vol. 79. P. 224506.
- ²⁴ Quantized Conductance at the Majorana Phase Transition in a Disordered Superconducting Wire / A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, et al // Phys. Rev. Lett. - 2011. - Vol. 106. - P. 057001.
- ²⁵ Electronic structure of vortices pinned by columnar defects / A. S. Mel'nikov, A. V. Samokhvalov, and M. N. Zubarev // Phys. Rev. B. — 2009. — Vol. 79. — P. 134529.
- ²⁶ K. B. Efetov, Supersymmetry in Disorder and Chaos / K. B. Efetov // New York: Cambridge University Press, 1997.
- 27 The supersymmetric technique for random-matrix ensembles with zero eigenvalues / D. A. Ivanov // J. Math. Phys. 2002. Vol. 43. P. 126.