
M. Shifman  1

M. Shifman
W.I. Fine Theoretical Physics Institute, University of 

Minnesota

Non-Abelian vortices: are they relevant 
in condensed matter physics?



M. Shifman  2

Outline

  ☞      Vortices, strings (starting from Abrikosov)

  ☞    Moduli: (classically) gapless modes on vortices/strings

  ☞      Abelian and non-Abelian orientational moduli

  ☞      Example from dense quantum chromodynamics

  ☞      Example from condensed matter (???) 3He 

  ☞      A few words in conclusion
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  Abrikosov vortices in type-2 superconductors

◊ Gauged U(1) symmetry spontaneously broken in the bulk

◊◊  ΔΗGL = Dkϕ✝Dkϕ + λ(ϕ✝ϕ-η2)2 ➟ time derivatives can be rel. or non-relat.     
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Low-energy excitations (gapless modes)

◊◊  ΔΗGL = (T/2)(∂zxperp ∂zxperp)  + h.d.      ➟ time derivatives can be rel. or 
non-relat.     Nambu-Goto → String Theory

Kelvin modes or Kevlons
2 NG gapless modes in relat.
1 NG gapless mode in non-rel.

Eexcit<< mγ∼eη

L
x1

x1

Estr = TL + C/L

Counts # of gapless modes !



E.g. SU(2)/U(1) = CP(1)∼O(3) sigma model

Orientational moduli: classically extra gapless modes (gap may or 
may not develop quantum-mechanically
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xperp

◊ Orientational modes develop IF there is a compact 
global symmetry in the bulk (i.e. not translational) that
is spontaneously broken on the vortex/string.

Bulk        Vortex
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Abelian example: Belavin-Polyakov lump (Skyrmion in cond. matter)

1 A pedagogical example

Let us consider a simple example of extra moduli on the vortex which is,
perhaps, not quite realistic from the standpoint of condensed matter physics,
but is instructive to explain our symmetry-based argument.

The model we keep in mind is known as the O(3) two-dimensional sigma
model. The spatial part of the Hamiltonian has the form

H =
1

2g2
∂µ"n ∂µ"n (1)

where µ labels two coordinates in the plane perpendicular to the vortex axis,
µ = 1, 2, and n is the unit (“classical spin”) vector,

"n2 = 1 .

The spin vector has all three components, x, y, and z (Fig. 1).
In the ground state the spin vector "n develops an expectation value.

We can always choose the z axis in such a way that in the ground state
"nvac = (0, 0, 1). The vortex axis need not be aligned with the z axis. Below
we will discuss two limiting cases: (a) the vortex axis is parallel to "nvac (the
plot on the right in Fig. 1) and (b) the vortex axis is perpendicular to "nvac

(the plot on theleft in Fig. 1).
Equation (1) has no mass parameters. This means that in the ground

state, upon the spontaneous symmetry breaking

O(3) → O(2) ,

where O(2) corresponds to the rotation in the x, y-plane
The system (1) has a soliton solution, a lump, which, being presented in

three spatial dimentions is a vortex.
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◊  O(3) sigma model in the bulk,   poss. mass term:  + m2(1-n32)   

◊◊ In the bulk  O(3) → O(2), i.e. ngr.st. = (0,0,1)
Along z axis
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Belavin-Poyakov lump (centered at the origin in the perpendicular plane)

has the form

n1 =
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⊥
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⊥
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⊥

+ "a2
, (2)
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Arbitrary vector in the perp. plane
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Amending Abrikosov to non-Abelian

◊  ΔΗGL = Dkϕ✝Dkϕ + λ(ϕ✝ϕ-η2)2 ➟ time derivatives can be rel. or non-relat.     

◊◊  ΔΗNA = ∂kni ∂kni + (-μ2+ϕ✝ϕ)nini +β(nini)2 + time derivatives

                                with η2>μ2  

✸ In ground state ϕ✝ϕgr.st= η2, hence the mass term of ni = η2-μ2 >0
and O(3) is unbroken           

✸✸ Inside Abrikosov ϕ✝ϕgr.st.= 0 hence the mass term of ni = -μ2 <0 

and O(3) is broken down to O(2), while nini = μ2/2β

✸✸✸ Classically O(3) sigma model on vortex, 2 gapless  
       interacting modes
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Quantum-mechanically, because of IR interactions, 
both modes are lifted. However, if ΛIR<<(T)1/2 they are 
quasi-NG!

☺
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History and HEP applications
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QCD vacuum

QCD string

condensed magnetic monopoles

Qualitative explanation of quark 
confinement: Dual Meissner effect:

Non-Abelian strings built in SUSY
with CP(N-1) models on the w.-s.
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Color Superconductivity (CSC) 

!  QCD at high density → Fermi surface, weak-coupling 
 
!  Attractive channel → Cooper instability 

      [3]C![3]C = [6]S + [3]A 

E 

p 

μ 

q q

3

“diquark condensate”

Fermi sea

Dirac sea

E=|p| 

1) Confined monopoles in dense QCD

Neutron stars?
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3 colors and 3 flavors
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Broken→SU(2)×U(1) ➟ CP(2) model on the string w.-s. !         



3He-B example?

∼∼∼∼

In the ground state 
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Spin 1/2

P-wave paring

3He atoms

 L=1, S=1  ➟  Cooper pair order parameter eμi        3×3 matrix

Spin-orbit small, symmetry of H is 

1 Introduction

In this paper we report a new phenomenon which occurs in superfluids with a tensorial order

parameter.

Superfluid
3
Helium is definitely one of the most interesting states of matter which can be

realized and studied experimentally [1]. It is also one of the most well-studied systems from a

theoretical point of view [2–5]. Unlike conventional superfluids,
3
He atoms are fermions, and

can thus condense only after forming Cooper-like bosonic pairs [2]. The attractive interaction

between
3
He atoms, which can be modeled by Van der Walls potentials, has a very strong

short-range repulsive core. This fact entails the dominance of the P -wave pairing. Moreover,

each
3
He atom is a spin 1/2 particle. The (anti)-symmetry of the wave function for a pair

of identical fermions then implies that the
3
He atoms form bound states with unit angular

momentum and unit spin. The consequence of this fact is that the order parameter describing

the condensate has a tensorial structure, and has to be described by a 3 by 3 matrix eµi,

where µ denotes spin and i orbital indices [3, 6, 7].

Low-energy physics of superfluids can be described by gapless exciatations of the Nambu-

Goldstone modes associated with spontaneously broken global symmetries. Two most im-

portant physical consequences of this are: (i) phonons associated with spontaneously broken

phase U(1)p symmetry and (ii) magnons associated with spontaneously broken SO(3) spin

symmetry [8], as well as topologically stable (global) vortices winding around the broken

symmetry. In the conventional superfluid, the breaking of an Abelian phase symmetry

Up(1)→ 1

leads to the existence of phonon excitations in the bulk. Moreover, the same breaking

implies the existence of topologically stable superfluid vortices [9]. A lattice of vortices can

be generated in a superfluid by rotating the sample [10–12].

In this paper we point out that, in addition to the Nambu-Goldstone modes in the bulk,

there exist novel Nambu-Goldstone modes – to be referred to as non-Abelian – localized on

the vortices.

As predicted long ago by Lord Kelvin, vortices support vibrating modes, called Kelvons,

which correspond to helical fluctuations of the vortex line [13, 11, 14]. These modes can be

interpreted as the Nambu-Goldstone modes arising because of the breaking of translational

and rotational symmetries by the vortex. Both, the bulk and the Kelvin excitations have

been recently observed [15].

In an unconventional superfluid, such as
3
He, however, the gapless mode situation is

more complicated and interesting. Since the order parameter is a tensor, spatial rotations

are usually broken by the condensate. Moreover, several phases are possible, with different

symmetry breaking patterns.

If we neglect spin-orbit interaction, rotations of spinorial and orbital indices can be

performed independently; the full symmetry of
3
He is

G = U(1)p × SOS(3)× SOL(3) ,

where SOS(3) and SOL(3) are spin and angular momentum of condensates. Two possible

phases in thee dimensions are theoretically predicted and experimentally observed in the ab-

sence of external magnetic fields. In the A-phase in three dimensions the symmetry breaking

2

in the bulk is as follows
1

(in the absence of external magnetic fields):

G = Up(1)× SOS(3)× SOL(3)→ HA = U(1)
� × U(1)S,

while in the more symmetric B phase, the ground state preserves a locked SO(3) symmetry:

G = Up(1)× SOS(3)× SOL(3)→ HB = SO(3)S+L.

In field-theoretical language, we identify the locked SO(3)S+L symmetry as a usual spatial ro-

tation. The expressions above imply that both phases admit a non-trivial set of non-Abelian

Goldstone bosons in the bulk, generated by the breaking of non-Abelian global symmetries.

The number of the Nambu-Goldstone excitations in the bulk is dim G - dim HA,B. This more

complicated than usual spectrum of the gapless bulk excitations is one of the peculiarities

of
3
He, which distinguishes

3
He from conventional superfluids.

Both phases described above, A and B, support a stable lattice of superfluid vortices

appearing once the sample is rotated. The breaking of translational invariance by the vortices

leads to the presence of gapless Kelvin modes on the vortices. Both the non-Abelian bulk

modes and the Kelvin modes were studied and observed in experiments with superfluid
3
He

refs[?].

We will argue that a new type of gapless modes localized on the vortices in the B-phase

of superfluid
3
He exists. While Kelvons can be interpreted as the Nambu-Goldstone modes

arising from the breaking of translations, excitations we propose arise independently, from

the breaking of the spatial rotation symmetry HB = SO(3)S+L by the vortex solution.

It is known that the B phase is divided into two sub-phases according to the core structure

of the mass vortices: either axially symmetric core under rotations around the vortex or

axially asymmetric core [16, 17]. Note that the breaking of the axial symmetry in the core

of the mass vortices has already been observed []. Such a breaking of the axial symmetry

gives rise to a U(1) Nambu-Goldstone mode localized on the given mass vortex. Therefore,

the conventional U(1) Nambu-Goldstone mode on the mass vortex exists or does not exist

depending on whether the core is asymmetric or symmetric, respectively.

Now, our assertion is as follows. There exist two more gapless modes, in addition to

the above mode, due to breaking of the bulk symmetry HB = SO(3)S+L on the vortex. In

other words, in total there exist two or three gapless modes having linear dispersions, in

accordance with the fact that

SO(3)S+L/U(1)z � S2

relevant for the axially symmetric core while SO(3)S+L for the asymmetric core.

As far as we know, this new type of excitations was not discussed in the literature, neither

observed in experiments. This is the first example of spatially localized non-Abelian Nambu-

Goldstone modes in condensed matter physics. The arguments that lead us to this conclusion

are explained in detail in Section 3. They can be applied in general to unconventional

superfluids with tensorial order parameters. We are motivated by analogous developments

in high-energy physics, in certain gauge field theories.

1The unbroken U(1)� symmetry in the A phase appears as a combination of the Up(1) and one of the
SO(3) generators.

3

Hence, contrived NG modes in the bulk!
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While: 

leads (only) to phonons in the bulk.

 3He-B theory supports vortices ← Non-trivial topology:

in the bulk is as follows
1
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G = Up(1)× SOS(3)× SOL(3) → HB = SO(3)S+L.

In field-theoretical language, we identify the locked SO(3)S+L symmetry as a usual spatial

rotation. The expressions above imply that both phases admit a non-trivial set of non-

Abelian Goldstone bosons in the bulk, generated by the breaking of non-Abelian global

symmetries. This more complicated than usual spectrum of the gapless bulk excitations is

one of the peculiarities of
3
He, which distinguishes

3
He from conventional superfluids.

Both phases described above, A and B, support vortices due to a non-trivial

topology. In particular, in the B phase, superfluid vortices are stabilized by the

following topology:

π1 (Up(1)× SOS(3)× SOL(3)/SO(3)S+L) = π1 (Up(1)× SO(3)S−L) = Z× Z2 .

The first Z factor corresponds to the breaking of the Abelian Up(1) symmetry and

support the so called mass vortices. These vortices are created and stabilized in

a lattice once the sample is rotated, and are characterized by a non-vanishing

superfluid current and angular momentum, as vortices in conventional superfluid.

The second Z2 factor also stabilize a second more exotic type of vortices called

spin vortex. Spin vortices are not directly created by rotation of the superfluid,

but they have been observed as bound states with mass vortices [16]

The breaking of translational invariance by the vortices leads to the presence

of gapless Kelvin modes on the vortices. Both the non-Abelian bulk modes and

the Kelvin modes were studied and observed in experiments with superfluid
3
He

refs[?]. We will argue that a new type of gapless modes localized on the mass

vortices in the B-phase of superfluid
3
He exists. While Kelvons can be inter-

preted as the Nambu-Goldstone modes arising from the breaking of translational

symmetry, the excitations we propose arise independently, from the breaking of

the spatial rotation symmetry HB = SO(3)S+L by the vortex solution. Because of

their origin we will refer to them as non-Abelian Nambu-Goldstone modes
2
.

It is known that the B phase is divided into two sub-phases according to the core structure

of the mass vortices: either axially symmetric core under rotations around the vortex or

axially asymmetric core [17, 18]. Note that the breaking of the axial symmetry in the core

of the mass vortices has already been observed [19]. Such a breaking of the axial symmetry

gives rise to a U(1) Nambu-Goldstone mode localized on the given mass vortex. Therefore,

the conventional U(1) Nambu-Goldstone mode on the mass vortex exists or does not exist

depending on whether the core is asymmetric or symmetric, respectively.

1The unbroken U(1)� symmetry in the A phase appears as a combination of the Up(1) and one of the
SO(3) generators.

2Although the origin of these additional gapless modes is due to the breaking of global symmetries,
they differ from usual Nambu-Goldstone in the fact that high order non-derivative interactions can appear
describing their physics. For more details about this, see Section 4.3

3

in the bulk is as follows
1
(in the absence of external magnetic fields):

G = Up(1)× SOS(3)× SOL(3) → HA = U(1)
� × U(1)S,

while in the more symmetric B phase, the ground state preserves a locked SO(3) symmetry:

G = Up(1)× SOS(3)× SOL(3) → HB = SO(3)S+L.

In field-theoretical language, we identify the locked SO(3)S+L symmetry as a usual spatial

rotation. The expressions above imply that both phases admit a non-trivial set of non-

Abelian Goldstone bosons in the bulk, generated by the breaking of non-Abelian global

symmetries. This more complicated than usual spectrum of the gapless bulk excitations is

one of the peculiarities of
3
He, which distinguishes

3
He from conventional superfluids.

Both phases described above, A and B, support vortices due to a non-trivial

topology. In particular, in the B phase, superfluid vortices are stabilized by the

following topology:

π1 (Up(1)× SOS(3)× SOL(3)/SO(3)S+L) = π1 (Up(1)× SO(3)S−L) = Z× Z2 .

The first Z factor corresponds to the breaking of the Abelian Up(1) symmetry and

support the so called mass vortices. These vortices are created and stabilized in

a lattice once the sample is rotated, and are characterized by a non-vanishing

superfluid current and angular momentum, as vortices in conventional superfluid.

The second Z2 factor also stabilize a second more exotic type of vortices called

spin vortex. Spin vortices are not directly created by rotation of the superfluid,

but they have been observed as bound states with mass vortices [16]

The breaking of translational invariance by the vortices leads to the presence

of gapless Kelvin modes on the vortices. Both the non-Abelian bulk modes and

the Kelvin modes were studied and observed in experiments with superfluid
3
He

refs[?]. We will argue that a new type of gapless modes localized on the mass

vortices in the B-phase of superfluid
3
He exists. While Kelvons can be inter-

preted as the Nambu-Goldstone modes arising from the breaking of translational

symmetry, the excitations we propose arise independently, from the breaking of

the spatial rotation symmetry HB = SO(3)S+L by the vortex solution. Because of

their origin we will refer to them as non-Abelian Nambu-Goldstone modes
2
.

It is known that the B phase is divided into two sub-phases according to the core structure

of the mass vortices: either axially symmetric core under rotations around the vortex or

axially asymmetric core [17, 18]. Note that the breaking of the axial symmetry in the core

of the mass vortices has already been observed [19]. Such a breaking of the axial symmetry

gives rise to a U(1) Nambu-Goldstone mode localized on the given mass vortex. Therefore,

the conventional U(1) Nambu-Goldstone mode on the mass vortex exists or does not exist

depending on whether the core is asymmetric or symmetric, respectively.

1The unbroken U(1)� symmetry in the A phase appears as a combination of the Up(1) and one of the
SO(3) generators.

2Although the origin of these additional gapless modes is due to the breaking of global symmetries,
they differ from usual Nambu-Goldstone in the fact that high order non-derivative interactions can appear
describing their physics. For more details about this, see Section 4.3

3



M. Shifman 16

✸The vortex solution breaks a part of symmetry preserved in gr.st.
✸✸ Known: it can break U(1) if the core is axially asymmetric. 
Hence U(1) NG mode.

 

     We say:           (M. Nitta+M.S.+W.Vinci)

On the vortex SO(3)S+L➟ SO(2)=U(1). Hence, there are (classically) 

gapless modes corresponding to the SU(2)/U(1) = O(3) sigma model.

Quantum mechanically a gap is generated, but they remain quasi-

NG if                      ΛIR<<(T)1/2
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Objections: Gregory Volovik ➟ “spatial rotation is not a good 
symmetry since it rotates the vortex”!

Objection to objections: local rotation ≡ z dependent translation. 
OK, to rotate the order parameter without rotating the string.
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A few words about Tolya. Our offices were next door. Unfortunately, I     
did not work with him, but whenever I asked him something, he 
always tried to understand the question immersing himself in deep – 
and sometimes long - thinking, and then would always come up with 
an illuminationg answer. And he was very kind.

I am editing a book of recollections about Landau’s students/
colleagues “Under the Spell of Landau: when theoretical physics 
was shaping destinies.” My dream is to have a Chapter in this book 
devoted to Tolya. Insofar I have short articles from Sasha Larkin, 
Andrei Varlamov and Valentin Vaks. If you want to pay a tribute to 
Tolya, please, consider writing an article too. Even 1-2 pages about 
Tolya as a physicist and human being, as a teacher and collaborator,  
would be great!
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π1(U(1)×SU(2)) nontrivial due to Z2 center of SU(2)
z

α

ANO
�

ξ eiα
�

1 0
0 1

�

T=4πξ

Non-Abelian
�

ξ
�

eiα 0
0 1

�

TU(1)±T3SU(2)

T=2πξ
SU(2)/U(1) ←orientational moduli; O(3) σ model

x0 ← string center in perp. plane



π1(SU(2)×U(1)) = Z2: rotate by π around 3-d axis in SU(2) 
   → -1;  another -1 rotate by π in U(1) 
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