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Abstract

In this article, I tried to compress the events of my long life and scientific
career into a readablemanuscript.The choice of scientific problems in devel-
opment of which I was involved and people with whom I contacted naturally
is not complete. I hope, however, that my selection more or less correctly re-
flects my teaching activity and my participation in the enormous progress of
quantum mechanics, statistical physics, and condensed matter physics in the
second part of the previous and in the beginning of the current century.
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KHARKOV, UKRAINE: HIGH SCHOOL AND UNIVERSITY, 1935–1953

Most of my life—62 years—was spent in the former Soviet Union. My childhood fell on the
years of Stalin’s purges and the Second World War. I remember the nearby bombing, long train
journeys throughout the Soviet Union, and rusks issued on food ration cards. My dear parents,
Leonid Pokrovsky and Raisa Razumovsky, were strong supporters of my natural curiosity and
thirst for knowledge. I am thankful to my high school teachers, Antonina SemyonovnaNikiforova,
Nadezhda Afanasievna Granovskaya, andMaria Lukinichna Bezuglaya, who carefully directed my
education and morality.

In 1948, havingmade a difficult choice between physics andmusic, I entered theDepartment of
Physics andMathematics of KharkovUniversity.At that time theDepartment possessed extremely
qualified faculty. Among them were such famous scientists as physicists Ilya Lifshitz, Alexander
Akhiezer, Moisei Kaganov, Grigory Lyubarsky (he was scientific advisor of my Master’s Thesis)
and mathematicians Naum Akhiezer, Alexei Pogorelov, Vladimir Marchenko, Alexander Povzner,
Boris Levin, and Naum Landkoff.

My fellow students wereMark Azbel; my good and dear friends VladimirMaleev (biophysicist),
Vitali Pustovalov,Vladimir Bengus (solid state physicists),EvgeniMazel (high-power semiconduc-
tor devices), Feliks Ulinich, Elena Milankina, Kima Cherkasova, Mark Minz, Stanislav Dukhin
(theorists); and my future wife Svetlana Krylova (optics of liquid crystals).

Departmental life was not calm. 1948 marked the start of a major antisemitic campaign in the
Soviet Union. The Department Chairman, Prof. Abram Milner, was found to be too liberal. He
was replaced in 1951 by a dimwitted and malicious man who was a communist party member.
The new Chairman instituted disciplinary measures against his most vocal critics. On returning
from a summer trip to the mountains, I discovered that I had been expelled from the university.
This action automatically annulled my waiver of required military service. Fortunately, the call
to military service took place only every six months. This gave me time to go to Moscow for an
appeal to the Ministry of Higher Education. In this difficult process I discovered that, during this
time of Stalin’s purges, many people retained their humanity and conscience. Because of their
help, I was able on December 31, 1951, at 5 pm to visit with Minister Alexander Prokofiev, who
restored my studentship at Kharkov University. Looking back on this now, it seems like a New
Year’s miracle. I will never forget how my fellow students defended me at the course meeting
despite the incredible pressure from local party officials to approve my expulsion. Their resistance
encouraged the headman of our course, Vladimir Maleev, to sign a letter in my defense, which was
an important argument in my appeal.

NOVOSIBIRSK: FIRST STEPS IN SCIENCE, 1953–1966: RUMER,
LANDAU, AND KHALATNIKOV

We graduated in May 1953 after Stalin’s death. Svetlana and I were appointed to Novosibirsk
for an obligatory three-year assignment in designated organizations. There I met Yuri Borisovich
Rumer, a close friend of Lev Landau and former assistant of Max Born.He had been arrested with
Landau in 1938. The brave and clever intercession by Pyotr Kapitsa led to the release of Landau
after one year, but Rumer served out his ten-year jail term, where he worked for the Soviet Air
Force industry. Then Rumer was sent for another ten years of exile in the small East Siberian
town of Eniseisk. Due to the efforts of his numerous influential friends, he was appointed to a
small Division of Technical Physics of the Soviet Academy of Science in Novosibirsk. I became
his doctoral student (“aspirant”) in 1955. My Ph.D. thesis was devoted to an extension of the
Dolph theory of optimal linear arrays with equidistant emitters (1) to include distances between
emitters less than half of the wavelength and arbitrary direction of the radiation maximum. To
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this end, I invented a new kind of polynomials that extended the well-known Chebyshev and
Akhiezer polynomials (2). Professor Naum Akhiezer kindly taught me the Chebyshev methods.
My dissertation was defended at Tomsk State University in 1957.

Meanwhile, I started to study topics that weremuchmore interesting forme: themodern physi-
cal problems of Feynman–Schwinger–Tomonaga–Dyson quantum electrodynamics andOnsager’s
exact solution of the two-dimensional (2D) Ising model.

In 1955, Rumer’s rights of citizenship were returned. He immediately started to collect a
small theoretical group. Besides myself, it included young alumni of Tomsk University: physi-
cists Sergei Savvinykh, Boris Zhelnov, and Ilya Gilinskii; mathematician Victor Toponogov; my
fellow-students Mark Minz, Felix Ulinich, Alexander (Sasha) Dykhne, Sasha Kazantsev, Eduard
Batyev,Alexander (Alik) Chaplik,Grisha Surdutovich, and Zhenya (Eugen) Baklanov; and students
of Novosibirsk University Rita Vitlina, Matvei Entin, and Lev Magarill.

In 1957, Rumer was appointed Director of the Institute of Radiophysics in a newly organized
Siberian Branch of the Academy of Sciences. To our great happiness, a lot of brilliant active scien-
tists arrived at Novosibirsk, among them physicists Gersh Budker,Roald Sagdeev, Spartak Belyaev,
Victor Galitski, Boris Chirikov, and Dmitri Shirkov.

At the beginning of 1957, Savvinykh,Ulinich, and I worked on the theory of waveguides,whose
cross section varies slowly along the waveguide axis. We found that if the shape of the cross sec-
tion does not change and its area changes slowly, then reflection does not appear to any order
of perturbation theory. In trying to determine the reflection coefficient, I considered the simpler
problem of reflection of a quantum particle by a potential barrier when its energy exceeds the
barrier height. This is a purely quantum phenomenon.

One needs to solve the stationary one-dimensional (1D) Schrödinger equation (SE). It can be
written as ψ ′′(x) + k2(x)ψ(x) = 0, where k2(x) = 2m[E − V(x)]/�2, E is the energy, and V(x) is the
potential. We assumed that the potential V(x) is an analytic function of x that has no singularities
on a real axis and goes to zero as x → ±∞. Therefore, k2(x) also has no singularities but also
no nodes on a real axis. In this approach, the potential energy can be comparable with the total
energy, but it must vary slowly in space. This means that it changes slightly over the scale of a
local wavelength λ = 2π/k(x); i.e., λ|V′(x)/V(x)|� 1 for all x. I suggested a change of variables
that transformed the initial problem of potential scattering to the problem of a free particle with
a small perturbation. Instead of the coordinate x, I used the eikonal s = �xk(x′)dx′. Instead of the
initial wave function, I introduced a new one, φ(s) = √

k(x)ψ (x). In terms of the new variables,
the SE acquires the form φ̈ + φ + σφ = 0, where the dots mean differentiation with respect to s
and σ = 3k′2−2k′′

k4 is the so-called Schwarz derivative. It is small magnitude—of the order of (λ/a)2,
where a is the characteristic linear size over which the potential changes. I conjectured that all
terms of the perturbation series in this small parameter have the same order of magnitude. My
coworkers verified my conjecture in one night. Up to universal numerical factors each term in
the series is proportional to the exponentially small factor exp[i�s0], where s0 =

∫ x0
�x0 k(x)dx is the

eikonal corresponding to the nearest turning point x0 in the complex plane for which k2(x0)= 0 (3).
In September of 1957, Rumer introduced me to his friend Landau at the Kapitsa Institute

of Physical Problems in Moscow. After some discussion, Landau approved our results. This was
a big success for us: We calculated a simple and fundamentally important quantum-mechanical
effect that had remained in obscurity some 33 years after the discovery of quantum mechanics.
Such well-known and experienced physicists as Arkady Migdal and Leonard Schiff published
erroneous works on this topic (4–6). I was invited to give a talk at the Landau seminar. After
the seminar, many of its participants, among them legendary physicists Yakov Zel’dovich, Evgeni
Lifshitz, Vitaly Ginzburg, and Igor Tamm, whom I knew by name and work but had never before
met, congratulated me on my interesting first work.
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Most importantly, Isaak Khalatnikov, then Landau’s assistant, invited me to collaborate on
semiclassical physics. We decided first to work on the same problem and try to find a more sys-
tematic approach that would give results without requiring the summation of an infinite series.
From this common work began a friendship that continued until Isaak’s recent death at the age
of 101. Because of our collaboration, I visited the Kapitsa Institute for 1–2 months each year and
had the privilege and great pleasure of communicating with Landau and his closest students and
assistants between 1957 and 1962, the year of the ill-fated accident that ended the creative work
of this great scientist and sincere and brilliant man. I am grateful for this precious experience.

On one occasion, Landau introduced me to the great mathematician Israel Gelfand, who in-
vited me to his seminar at Moscow University. After a brief introduction,Gelfand stopped me and
asked the participants to conjecture what should be the result or how to solve the problem of my
talk. Nobody could say anything substantial except for Marat Evgrafov, who said that the proper
approachmust start with the solution of the SE near the complex turning point.This idea sounded
very attractive to me. However, it took us more than two years to understand how to realize this
program. At that time, Khalatnikov found some references to the method of the Dutch theorist
A. Zwaan, who in 1929 found the spectrum of an adiabatically varying Hamiltonian by analytic
continuation of the wave function in the complex time-plane. Inspired by the Zwaan method and
Evgrafov’s idea, we proposed to continue the solution of the initial SE for wave functionψ(x) from
x=∞+ iγ , where it is teikx, to the complex turning point x0 in the upper half-plane along the so-
called anti-Stokes line defined by the equation � ∫ x

x0
k(x′ )dx′ = 0. Along this line, the two solutions

φ± = e±is are easily distinguishable. It means that the chosen solution arrives in the vicinity of the
turning point x0 as the exponent φ+, acquiring only a phase factor. Continuing the same solution
along the arc of a circle around the turning point x0 to below it, we reach the second anti-Stokes
line going to −∞. The radius of the circle must be large enough to ensure the applicability of
Wentzel–Kramers–Brillouin approximation. The circle crosses one of the three Stokes lines that
form angles at 60 deg with the anti-Stokes lines. After crossing the Stokes line, the asymptotic
form of the solution changes from eis to eis − ie−is. The second term is the reflected wave. It arrives
at −∞ + iγ ′ with an additional phase factor. The magnitude of the reflection amplitude can be
found as |r| = � exp[i ∫ x0

�x0 k(x)dx] = exp[ i2
x0
x∗0
k(x)dx]. In this way, we indeed obtained the results

earlier obtained by summation of a series and found new results for the case of two close turn-
ing points or close pole and turning points that unavoidably appear if Vmax � E (7). One of my
most talented students, Alexander (Sasha) Dykhne, later Academician of the Soviet Academy of
Sciences, extended this method to a particle in a periodic potential (8).

This work is now considered the starting point of a new branch of mathematical physics called
asymptotics beyond all orders (9, 10). Phenomena described by this science include dendritic
growth of crystals; viscous fingering in a layer of viscous liquid; equatorial Kelvin wave instability,
important in meteorology and oceanography; propagation of high-energy elementary particles
in external fields, particle channeling in crystals, etc. The main creators of this discipline are M.
Berry, M. Kruskal, J. Boyd, H. Segur, J. Langer, B. Shraiman, M. Mineev, and P.Wiegmann.

After this work, the center of my interests shifted to the general theory of second-order phase
transitions and critical phenomena. The motivation was a major discrepancy between Landau
mean-field theory of the second-order phase transitions and the Onsager’s exact solution of the
2D Ising model. Landau theory predicted that independently on dimensionality the order pa-
rameter in the ordered phase grows as

√|T − Tc|, that the correlation length on approaching
the transition temperature Tc grows as |T − Tc|−1/2, and the specific heat has a finite discontinu-
ity at the transition point, whereas in the Onsager’s solution the same quantities behave as |T −
Tc|1/8, |T− Tc|−1, and−ln |T− Tc|, respectively. Levanyuk (11) and Ginzburg (12) noted that the
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mean-field approximation is valid if fluctuations of the order parameter
√
〈(δη)2〉 are small com-

pared to the average order parameter 〈η〉. However, near Tc fluctuations grow even in the frame-
work of Landau theory. Therefore, this theory is valid only sufficiently far from the transition
point, i.e., at |τ | ≡ ∣∣ T−Tc

Tc

∣∣� Gi. The dimensionless parameter Gi characterizes a given physical
system. Because Landau theory uses an expansion in powers of the parameter τ , this parameter
must be small or |τ |� 1. This implies that Gi � τ � 1. Not every system has this property.
Specifically, the Ising model is characterized by only a single parameter: the interaction energy of
the nearest spins. It is impossible to construct dimensionless parameter from only one dimensional
parameter. Therefore for the Ising model, the Landau theory is invalid.

Even if the system has a region of validity for Landau theory where 1 � |τ |� Gi, there is
a range of temperatures |τ |� Gi for which fluctuations are significant and Landau theory fails.
What are the properties of an ordering system that fluctuates significantly? This problem became
central for statistical physics and condensed matter physics in the 1960s and 1970s.

Alexander (Sasha) Patashinskii and I started to work on this problem in 1963. As a starting
point, we used a construction proposed by Landau in the end of the 1950s: the partition function
of strongly fluctuating order parameter should be obtained as a Feynman path integral in which
the Landaumean-field free energy plays the role of the action.We transformed this statement into
a field theory in three-dimensional (3D) Euclidean space (13). In the regime of large fluctuations,
the order parameter field describing the fluctuations obeys a universal equation for correlation
functions of second and fourth orders. We verified that at Tc this equation has the property of
scaling invariance. This means that averages of the type 〈η(x1)η(x2)���η(x2n)〉 under coordinate
scaling xi→ λxi are multiplied by the factor λ−2n�η , where �η has the physical meaning of a scal-
ing dimensionality (critical exponent) of the order parameter. The field h(x), conjugate to η(x) (the
magnetic field if the order parameter is the magnetization) in D-dimensional space, contributes
to free energy the term Fh = −�h(x)η(x)dDx, which is invariant under the scaling transformation.
Therefore, the scaling dimensionalities of the fields h and η obey the equation�h +�η =D. The
analogous relation is correct for any pair of mutually conjugated fields, specifically for dimen-
sionless temperature deviation τ and entropy fluctuation s. All these relations were also obtained
from our equation for correlation function of the fourth order. However, the Dyson equation
for the correlator of the second order contained the initial 4-vertex, i.e., a constant. The scaling
invariance for such an equation is maintained only if �h = D/4 and �η = 3D/4. Such scaling
dimensions contradict the Onsager exact solution for D = 2. For 3D field theory they lead to
the Green’s function in momentum representation G(p) = 〈η∗(p)η(p)〉 ∝ p−3/2. This result was
erroneous. Four years later, Polyakov explained why the Dyson equation is invalid in the range
of large fluctuations (14). He proved that the unitarity condition for the order field requires two
complete 4-vertices in an equation for the Green’s function. Therefore, the calculation of powers
at each vertex in the Dyson equation gives no new relation for critical exponents.

In the meantime, we developed a physical picture of ordering in the regime of strong fluctua-
tions (15). For simplicity, only the violation of Z2 symmetry (Ising order parameter) was consid-
ered. We divided the total volume into a set of cubic cells (droplets) with the length of each cube
side equal to the correlation length rc(τ ). Because the fluctuations strongly correlated within such
a cell, we ascribed to the cell a single degree of freedom for the fluctuation. We introduced the
cell “magnetic moment”M. Above the transition temperature, the moments of different cells are
independent. The average square of fluctuations amplitude is associated with the square of that
moment and with the correlation radius by the relation 〈η2〉 = M2

r2Dc
. The average value of the or-

der parameter below the transition temperature is 〈η〉 = ± |M|
rDc

. Finally, the free energy per degree
of freedom must be approximately equal to Tc. Thus, the free energy of unit volume associated
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with fluctuations is Ff
V = Tc

rDc
. The specific heat of fluctuations per unit volume is

CVf
V ∼ 1

rDc τ2
. Other

measurable values can be expressed in terms of the two basic values M and rc. This fact permits
us to obtain a set of relations between the critical exponents α, β, γ , δ, ε, ζ , and ν defined by the
power dependencies of different measurable values on τ and h. Namely, CV ∝ τ−α , 〈η〉 ∝ (−τ )β
(τ < 0), magnetic susceptibility in a weak field (|h|M� Tc) χ ∝ τ−γ , the order parameter in a
strong magnetic field 〈η〉 ∝ h1/δ , the specific heat in strong magnetic field CV ∝ |h|−ε, the cor-
relation radius without magnetic field rc ∝ τ−ν , and in a strong magnetic field rc ∝ |h|−ζ . The
crossover from a weak to a strong field is determined by universal dimensionless scaling functions
of the argument hM

Tc
∝ h

τDν−β , for example 〈η〉 = τβ f ( h
τDν−β

)
.

We derived the droplet model more rigorously employing the expansion of free energy
in the powers of h(x). The coefficients of these expansions are multiargument correlators
〈δη(x1)δη(x2)���δη(xn)〉. They are homogeneous functions of their arguments of the power n�η.
For finite deviation of the temperature from critical point, they are equal to the same correlators
at T = Tc multiplied by a universal scaling function of the ratios xik/rc, where xik is the distances
between the points xi and xk. Thus, our work established the scaling for higher-order correlators.
When our work was published, the measurements of higher-order correlators were beyond ex-
perimental capabilities. But now optical methods permit the measurements of correlators of the
third order and even higher. We also expressed the macroscopic observable values in terms of
multipoint correlator series.

At that time, several works on universal scaling laws appeared almost simultaneously. Our
work was first presented as a talk at a conference on critical phenomena in the summer of 1965 at
the Joint Institute for Nuclear Research. The article was published in the Soviet journal Zhurnal
Eksperimental’noi i Teoreticheskoi Fiziki in February 1966, and the English version was published
in August of the same year. The first publication containing the scaling equation for an order
parameter belongs to BenWidom (December of 1965) (16). Leo Kadanoff’s article was published
in the journal Physics in June 1966 (17). In addition to scaling considerations similar to ours at
T = Tc, Kadanoff’s work contained the very important idea on renormalization by integrating
out the short-range degrees of freedom. However, this idea was explicitly realized only in the
later works of Ken Wilson. In the Nobel Committee Press Release for the 1982 Nobel Prize
in Physics awarded to K.G. Wilson, our names were mentioned among seven scientists who
made “important theoretical contributions” to the theory of phase transitions. Both our principal
works (13 and 15) were cited in the Nobel Presentation by Kenneth Wilson. Leo Kadanoff in his
textbook Statistical Physics: Statics, Dynamics and Renormalization cites our article (13) as the first
formulation of the Scaling Law.

A very important role in the theory of phase transitions belongs toMichael Fisher.He proposed
to consider the dimensionality of space as a continuous parameter. This idea had led Wilson and
Fisher to consideration of phase transition in the space of dimensionality 4− ε. I first metMichael
in 1967 in Budapest during the conference on critical phenomena at the Physical Institute of the
Hungarian Academy of Sciences. At a reception at the house of the director of the institute Laszlo
Pal, who was also a big Communist Party boss, both Michael and I were so absorbed in scientific
conversation that we broke the glass of a dessert table. This little incident marked the beginning
of our friendship and great mutual respect.

In the year 1964, the Institute of Radiophysics was transformed into a division of the Institute of
Semiconductor Physics. Yuri Borisovich Rumer was invited to the Institute of Nuclear physics by
its director, Prof. G.I. Budker. Sasha Patashinskii also entered this institute. In 1966, I was invited
to a newly organized Institute of Theoretical Physics in Chernogolovka. Alik Chaplik became
the leader of our theoretical group at the Institute of Semiconductor Physics. He is now a full
Academician of the Russian Academy of Sciences and still is the head of this laboratory.
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This was the end of my long, 13-year Novosibirsk life. I remember it as my happiest time. I
worked in a friendly and lively environment of friends and students who were almost the same age.
Yuri Borisovich Rumer did his best to free us from the worries of everyday life. Despite the long
tragedy in themiddle of hismost active years of life, he remained an extremely lively and passionate
person. Communications with him were one of the most attractive features of our lives. He at-
tentively followed the news of modern physics and molecular biology and discussed them with us.
He eagerly introduced us to his old friends and acquaintances.We freely collaborated with people
from other institutes and participated in conferences. People fromMoscow and Leningrad visited
our group; I remember Sasha Vedenov and Sima Eliashberg as our guests. It was also a time when
our dear children Sergei and Olga were born and growing up, giving Svetlana and me much joy.

CHERNOGOLOVKA: LANDAU INSTITUTE, 1966–1992

The Landau Institute for Theoretical Physics was the creation of Khalatnikov, the only person
who could overcome the barriers of Soviet bureaucracy. There he collected brilliant theorists
and mathematicians and enabled them to fruitfully interact. I enjoyed communications with
Anatoly Larkin, Gerasim Eliashberg, Lev Gor’kov, Alexei Abrikosov, Igor Dzyaloshinskii, Mark
Azbel, Sergei Iordansky, Sasha Kazantsev, Emmanuil Rashba, Yeshua (Yuzik) Levinson, Vadim
Berezinskii, Yuri Bychkov, Vladimir Gribov, Sasha Polyakov, Sasha Zamolodchikov, Sasha
Migdal, Sasha Belavin, Volodya Fateev, Zhenya Bogomolny, Sergei Novikov, Yasha Sinai, Alexei
Starobinsky, Vladimir Zakharov and later Arkady Migdal (senior). Among the first students were
Yuri Ovchinnikov, Boris Lukyanchuk, Efim Kats, Slava Kamenski, David (Dima) Khmelnitskii,
Gennadi Uimin, Vladimir Mineev, Grisha Volovik, Kostya Efetov, Sergei Brazovski and his wife
Nina Kirova, Sasha Finkelstein, and Pavel Wiegmann. In Chernogolovka, my wife and I acquired
our dear friends, mathematicians Vladimir Gurarii and Vladimir Matsaev. One of my teachers,
the outstanding mathematician Aleksander Povzner also worked in Chernogolovka and became
a close friend. I published many works with Sasha Kazantsev and my Ph.D. students Gennady
Uimin, Volodya Mineev, Sasha Kashuba, Igor Lyuksyutov, Misha Feigel’man, Andrei Talapov,
and Leonid Pryadko. I am proud that among the people who chose me as their scientific advisor
was Alexei Kitaev, now professor of theoretical physics and computer science at Caltech, creator
of the idea of topologically protected quantum information and winner of the 2008 MacArthur
Fellows Program, the 2012 Breakthrough Prize founded by Yuri and Julia Milner for studies
in fundamental physics, and the 2017 Buckley Prize. Khalatnikov organized Soviet–American,
Soviet–French, and Soviet–German symposia that allowed us to make personal acquaintances
with physicists from these countries. Khalat, as everyone called him, was not only an outstanding
scientist but also a genius of organization. But the main feature that made him an ideal director of
the institute was his unselfish admiration of young, talented people and his desire to help them.

Perhaps, the most precious gift I received from Khalat was my friendship with Walter Kohn
that began during his visit (with his wife Mara) to Moscow in the year 1987 and continued till
his death. Our families were friends, including our children. Several times we visited Walter and
Mara in Santa Barbara and enjoyed his cooking and his wisdom. He visited us in College Station,
the last time being at my seventy-fifth birthday jubilee.

For the Soviet–German Symposium, I was the responsible organizer from theLandau Institute;
from the German side, the organizer was Walter Selke. We became friends and still maintain
contact.

My next substantial contribution to the theory of phase transitions was made during the pe-
riod from 1978 to 1982. It was the theory of the so-called Commensurate–Incommensurate (CI)
phase transition at finite temperature, also known in the literature as Pokrovsky–Talapov phase
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transition (18). Its initial motivation came from experimental results obtained by Anton Nau-
movets and his group in Kiev, Ukraine. Naumovets & Fedorus (19) studied the structure of ad-
sorbed submonolayers of Sr on the face (110) of W by slow electron diffraction. According to
the Debye–Waller theory, the maximum of diffraction-spot intensity (Debye–Waller factor) has
a plateau at low temperature, and exponentially decreases at temperatures exceeding the Debye
temperature TD. For atomic crystals, TD is a few hundred kelvin. The Naumovets–Fedorus ex-
periment confirmed the predicted behavior if the concentration of Sr is less than 50–60% of one
filled monolayer. For higher concentrations, the maximum intensity has no plateau and no sharp
decrease at T ≈ TD. The experimenters treated their result as evidence that at low concentration
the absorbed Sr atoms are located in dips between atoms of the substrate (W) and, due to the van
der Waals interaction, they form a regular lattice commensurate with the substrate lattice. How-
ever, at large density the Sr atoms overlap and destroy their commensurate crystal structure. They
form a kind of flowing substance.

What is the mechanism for fluidity of the absorbed atoms? This problem was very topical at
that time for physics of surfaces and interfaces (20). The class of submonolayers of atoms adsorbed
on crystal surfaces included H2,D2 (21) and He, Ar, and Kr on graphite substrate (22). In the book
(23), the reader can find many other examples of submonolayers adsorbed on different substrates.

Theoretical description of these systems was based on a 1D model proposed by Frank & van
der Merwe (24–27). In this model, adsorbed atoms are described as a chain of particles connected
by identical harmonic strings of unstressed length a with stiffness κ . The substrate is interpreted
as a periodic potential V(x) for the particles with period b �= a. The competition of these two pe-
riodicities leads to the CI transition. The simplifying assumptions of a small difference of periods
|a − b|/a = |δ|� 1 and weak potential Vmax − Vmin � κa2 permit us to replace a chain of atoms
by a continuous string in a periodic potential. The string either lies in one valley of the poten-
tial or transitions from one valley to another by a kink. If δ = 0, the energy of a single kink is
εkink (0) ∼

√
κb2(Vmax −Vmin). This energy is positive. The kinks are energy unfavorable, and they

do not exist in the ground state. This is the commensurate phase. For nonzero δ, the energy of
the soliton is equal to εkink(δ) = εkink(0) − δκb2. At a critical value δ = δc = εkink(0)/(κb2), the kink
energy becomes zero and then negative. The kinks then proliferate until their repulsion stops the
proliferation.

The interaction between two solitons separated by a distance l is exponentially small,Uint (l ) ∼
εkink (0)e−l/lkink . The size of a kink is lkink ∼ b/

√
δ � b. These relations imply that the period of soli-

ton structure that appears for δ > δc is l ∼ lkink ln δc
δ−δc as long as l � lkink. This periodic soliton

structure is in an incommensurate phase. Its period depends continuously on the driving param-
eter δ. The predicted logarithmic dependence is very difficult to observe. To make the logarithm
sufficiently large, it is necessary either to approach very nearly to the critical value or to employ a
small concentration of adsorbed atoms, but then the signal from it is very weak. All measurements
must be performed at low temperature because 1D order is destroyed by finite temperature (28).

The situation is different in a 2D crystal. There exists a simple situation in which the primitive
cell of the absorbed atoms lattice is rectangular, and the effective periodic field acts only in one of
the two directions. This is the case for alkali and alkali earth atoms absorbed onW.The commen-
surate lattices of the noble gases are usually triangular, and their elasticity is isotropic. The (111)
face of Pt and Au induced an anisotropic periodic potential for adsorbed atoms. This geometry at
zero and finite temperatures can be treated analytically (18).

One can imagine the continuous model of 2D commensurate crystals as a set of elastic strings
with the rigidity κ located at the bottom lines of the 1D periodic potential. The soliton in this case
is also a linear object: It is a local distortion of the periodic string arrangement so that one extra
string or one missing string occurs in the soliton. At zero temperature, the soliton’s structure
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appears as in the 1D case due to the difference of periods. There is no substantial difference
between the analysis of the transition to incommensurate phase and its periodicity in one and two
dimensions at T = 0.

An anisotropic lattice of adsorbed atoms and substrate at nonzero temperature was considered
by Luther et al. (29). The basic part of this work was developed by Alan Luther and me during
my two-month visit to NORDITA (Nordic Institute for Theoretical Physics) and Bohr’s Institute
in 1978, another miracle produced by Khalat in the KGB-controlled Academy of Sciences. A
more sophisticated case with isotropic elasticity of adsorbed atoms and anisotropic substrate was
studied by Pokrovsky & Talapov (18). In both cases, we considered the coordinate along the wells
of potential to be the time. In this representation, the soliton line can be considered to be the
world line of a quantum particle. Finite temperature induces the meandering of soliton lines. In
the quantum picture, this meandering can be treated as random trajectories in a Feynman path
integral. Thus, in this representation temperature plays the role of the Planck constant. Although
the two soliton lines can approach each other on a distance of the order of the soliton width,
they never intersect because the strong overlapping requires too much energy. Therefore, the
meandering particles can be identified as fermions. This identification can be proved by Stanley
Mandelstam’s construction of two-component fermion operators from the Bose displacement field
and the corresponding momentum.

In the ground state, fermions in one dimension doubly occupy all states within the momen-
tum interval (−pF, pF). The number of such momentum states per unit length is 2pF

2π� . The den-
sity of fermions is double that, n = 2pF

π�
. The total energy of the Fermi-line per unit length is

Ef
L =

p3F
3πm� = π2

�
2n3

12m . Including the energy arising from the difference between the fractional mis-
match δ and its critical value δc, the total energy per unit length is E

L = Ef
L − (δ − δc )εsolan, where

εsol is the energy per unit length of the soliton line. Minimizing this energy with respect to n, we
find n = 2

π�

√
(δ − δc )mεsola. In terms of the string model and temperature, the ratio �

2

m must be
identified with T 2

κ
, which results in n = 2

πT

√
κaεsol(δ − δc ). The physical reason for repulsion be-

tween soliton lines is the decrease of their bending entropy when they approach each other. Such
a mechanism for entropy repulsion was first discussed by Gruber & Mullins (30) and Voronkov
(31) in connection with the steps on the surface of crystals.

The CI transition is probably the simplest example of topological phase transition. Kinks and
solitons are topological defects similar to vortices in the Berezinskii–Kosterlitz–Thouless phase
transition. In contrast to this famous example, the CI transition changes the topological charge of
the equilibrium state from zero to a value proportional to the linear size of the system.

Diverse applications of the theory, beyond the already discussed adsorption on perfect crystal
faces, includes the roughening transition and the equilibrium shape of crystals between smooth
faces with small Miller indices, as first theoretically predicted by Rottman & Wortis (32) and by
Jayaprakash & Saam (33). The experiment was performed using a lead surface by Rottman et al.
(34). It confirmed good agreement with our theory. A. Erbil et al. (35) performed experiments with
Br2 molecules intercalated into graphite. They found the CI transition at 342 K. The incommen-
surate linear lattice had density proportional to (T − Tc)η with η = 0.5 ± 0.02. P. Martinoli et al.
(36) measured critical current in a superconducting film with periodically corrugated thickness.
The magnetic field perpendicular to the film created a triangular lattice of vortices whose length,
and therefore whose energy, was periodically modulated. They discovered the CI transition and
found the density of soliton lines to be in reasonable agreement with our theory.

Among other applications, it is worthwhile to mention the prediction made by Hanna et al.
(37) that in a double-layer quantum Hall system a sufficiently strong magnetic field drives a CI
transition in a crystal formed by soliton lines in two dimensions. Experimentally, the CI transition
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manifests itself with a singularity of the magnetic susceptibility at the transition point. Garst et al.
(38) predicted a strong enhancement of Coulomb drag in a thin wire at quantum CI transition.
Büchler et al. (39) proposed to search for the CI transition in a 1D chain of cooled atoms confined
by an optic lattice detecting the commensurate phase by the static structure factor and by the
appearance of a gap in the spectrum. They cited an important work by Japaridze & Nersesyan
(40); these authors used the technique of fermion bosonization by Luther, Emery, and Peshel to
study the magnetic state of 1D electrons with attraction.

Our work also gives a simple physical treatment of the Jordan–Wigner fermions that appear in
the 2D Ising model: They are domain walls, which are lines in 2D space. If one of the coordinates
is treated as time, these lines play the role of the fermion world lines. The difference with our
problem is that, in the Ising model, the number of fermions is not conserved. A pair of them can
annihilate in one point or be created at another point. The transition is the percolation of the
domain walls.

I remember with gratitude Jack Villain’s quick response to our article. He published his inter-
pretation of our results in a short review article that attracted the attention of experimenters in
the field. Our cooperation and friendship with Per Bak began with the discussion of this work.

In 1980, I was invited to theWorkshop on Surface Phenomena at theUniversity ofWashington
at Seattle. To my surprise, my attendance was allowed. The reason was the planning system of the
Soviet Union. Due to the Afghan war, all Soviet official visits to the United States were canceled.
Meanwhile, the Foreign Department of the Soviet Academy of Sciences had to fulfill the travel
plan. Thus, I spent one month in Seattle and participated in the workshop, which was extremely
interesting. I presented my work with Talapov, which was then recently published. I had rather
fruitful discussions with theorists David Thouless, Michael Kosterlitz, Michael Schick, Eberhard
Riedel, and Marcel den Nijs and with experimenters Greg Dash, Sam Fain, and Michael Chinn. I
again worked with Per Bak. Seattle is an amazingly picturesque city. We traveled to meetings by
boat across the lake. I still remember an unforgettable excursion to Mount Rainier. In its lower
part it is forested and inhabited by a variety of birds and animals. I acquired new friends here.
Michael Schick and Eberhard Riedel later were our guests in Chernogolovka and Moscow. David
Thouless visited us in the United States.

The years of perestroika in the Soviet Union were critical for the Landau Institute. The most
famous of its employees received tempting invitations from Western universities and laborato-
ries. This coincided with great funding difficulties. With incredible effort, Khalatnikov managed
to preserve the institute, but almost all the leading employees of the first generation and some
young people left it; some of them maintained constant contact with the institute. In 1990, I and
my wife had spent half a year in a small German city, Jülich, near Cologne. I worked in the Con-
densed Matter Division of the Institute of Nuclear Physics headed by Heiner Müller-Krumbhaar,
a brilliant scientist and an extremely friendly and attentive person. His sharp wit and hospitality
are the most pleasant memories of our life in Germany. Johannes Zittartz invited us to his home
in Cologne together with our daughter and granddaughter. In Jülich, I first met personally Dr.
Jacques Villain and my future coworker and friend Danilo Pescia, then a postdoctoral fellow. I
visited Brookhaven in 1991 and worked with Per Bak. During this visit, I was invited to visit the
University of California, Los Angeles, by Steve Kivelson, who was earlier my guest at the Landau
Institute. We researched the way to detect the fractional charge in the quantum Hall effect.

AMERICAN YEARS, 1992–PRESENT

In 1992, I got an offer to the position of full professor at the Department of Physics (later Physics
and Astronomy) of Texas A&M University (TAMU), where I remain an active faculty member.
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The essential initial contact was made by Marko Jarić, an outstanding scientist and personality,
whom I met through discussions of quasicrystals at the Trieste International Centre for Theoret-
ical Physics. He unfortunately has died prematurely in his prime.

Though I accepted the offer from TAMU, I never lost my connection with the Landau Insti-
tute, remaining its Senior Scientist and a member of its Scientific Council. I visited the institute
regularly at least once a year. All my publications of this period indicate two affiliations.

I have found at TAMU a friendly and scientifically exciting environment. I have worked a
great deal with my colleague Wayne Saslow and my former student at the Landau Institute, Igor
Lyuksyutov, who became later a professor at TAMU, and with experimentalists Don Naugle
and Glenn Agnolet. I worked regularly with my Ph.D. students Artem Abanov (now professor at
TAMU), Valery Kalatsky, Serkan Erdin, Amin Kayali, and HongduoWei. Later, I enjoyed discus-
sions with Sasha Finkelstein, which were always pleasant and beneficial for me. I interacted with
people from the Institute of QuantumOptics (Marlan Scully,Olga and Vitaly Kocharovsky, Alexei
Belyanin and Tanya Erukhimova, and David Lee) and from divisions of elementary particles and
string theory (Dick Arnovitt, Chris Pope, Peter MacIntire, and Bob Webb) and nuclear physics
(Ralph Rapp, Saskia Mioduszewski, and Shalom Shlomo). I had also contacts and in some cases
collaboration with my colleagues from other departments: mathematicians Peter Kuchment,
Raicho Lazarov, Gregory Berkolaiko, and Alexei Poltoratski and chemists Fred Cotton, Kim
Dunbar (with whom I had a common project on molecular magnets), and John Bevan.

The most important work I have conducted while at TAMU are theories of Landau–Zener
(LZ) transition in noisymedium, ferromagnetic-superconducting hybrids, and Bose–Einstein con-
densation of magnons in ferromagnetic films. The nonadiabatic LZ transition at the crossing of
two levels (Wigner-von Neuman) is one of very few general and fundamental results from time-
dependent quantum mechanics. Traditionally it was applied in quantum chemistry (41) and in
collision theory (42). In the 1990s the quantum hysteresis in molecular magnets found in experi-
ments by Wernsdorfer & Sessoli (43) was a real triumph of the LZ theory. It plays a central role
in the relaxation processes of many-body systems. It changes the states in a qubit and in this way
transfers the information in quantum computers. Thus, the LZ theory remains a very active field
now.

In 1932, Landau considered a two-level quantum system with Hamiltonian H = atσ z + bσ x,
where a and b are constants, t is the time counted from the avoided crossing point, and σ x, σ y,
and σ z are Pauli matrices (44). He argued that most probably only two levels cross at the same
time and that for a small interval of time any function of time can be replaced approximately by
a linear dependence. Landau found that the diagonal matrix element of the scattering matrix for
this problem is equal to e−πγ 2 , where γ =

√
b2/�a. Clarence Zener, somewhat later the same year,

found the nondiagonal matrix elements (45). Independent of these two authors and from each
other, the famous theorists Ettore Majorana (46) and Ernst Stückelberg (47) obtained the same
results that same year and considered different aspects of this problem.

In real life it is impossible to avoid the noise. How does noise distort the LZ matrix? The
characteristic time over which the transition proceeds is τLZ = b/a if γ 2 � 1 and τLZ = �

b if γ 2 �
1. The noise is called fast if its correlation time is much shorter than τLZ and slow in the opposite
case. The effect of noise is described by the noise Hamiltonian Hn =

∑
i = x, y, zηi(t)σ i, where ηi(t)

are stochastic variables. We considered the Gaussian noise characterized by its pair correlation
functions 〈ηi(t1)η j (t2)〉 = gi j

( |t1−t2|
τn

)
, where τ n is the noise correlation time. The noise is fast if

τ n � τLZ. The functions gij(θ ) were assumed to be of the same order of magnitude for θ � 1
and to quickly decrease for θ > 1. The first study of the fast diagonal noise, taking only ηz �= 0,
belongs to Y. Kayanuma (48). After that, Kayanuma considered a system with a = 0 and purely
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nondiagonal noise with only the x-component being completely responsible for transitions (49).
Additionally, he assumed the correlation function to be gxx(θ ) = J2e−θ .

In 2005–2006, I had a second bit of good fortune in my teaching: TAMU graduate student
Nikolai Sinitsyn asked me to be his scientific adviser. Nikolai had studied physics at Minsk Uni-
versity (Belarus), and had been accepted as a student at TAMU,where he initially worked in string
theory. However, he quickly figured out that this was not his field. I quickly recognized his out-
standing talent, inventiveness, unusual erudition (for his young age), and his ability to rapidly
convert ideas into calculations. It was a great pleasure to me to follow his rapid growth and to
work with him. Nikolai and I extended the work by Kayanuma, lifting all its unnecessary limita-
tions (50).We assumed that the total Hamiltonian contains the LZ part with arbitrary parameters
a and b, that the noise has all three components, and its correlation functions gij(θ ) are arbitrary.
Themajor assumption that we retained was that the noise is fast and weak |gij|� b2.With all these
extensions, we were still able not only to find the formal solution of the problem but to present a
simple physical picture for it. Below I briefly describe our approach.

The reason why the problem was solvable is the large difference in timescale for the regular
LZ process and for transitions due to noise. As previously noted, the time interval for the regular
LZ process is b/a. Because the noise is fast, the energy that it gives or takes from the two-level
system at the moment t must be equal to a|t|. However, its frequency spectrum is limited by the
value 1/τ n. Therefore, noise-induced transitions stop after the time interval tn = �

aτn
� �

b . For
any experimentally measurable value of γ 2, the time interval �

b is not less than τLZ. Because the
regular LZ process timescale is much smaller than the fast noise timescale, one can employ the
complete solution of the regular LZ problem, i.e., the densitymatrix ρ(t) as t→+∞ versus ρ(−∞)
as the initial condition for the noise-induced transition. In a simplified situation when ηy = ηz =
0, the probability for no transition is equal to P1→1 = 1

2 [1+ e−2πgxx (0)/�a(2e−2πγ
2 − 1)]. This result

becomes the LZ formula if gxx = 0. However, if gxx(0) � �a, implying γ 2 � 1, then the noise
results in an equipartition of the two levels and complete loss of memory. At each moment of the
relatively long interval of noise-induced transitions, the Born approximation for these transitions
is valid. Among all of the frequency components of noise, only the component with ω = at/�
is in resonance, and this gives the dominant contribution to the transition probability. Thus, by
collecting the statistics on transitions due to noise, we can probe the noise spectrum.

The equipartition that takes place for relatively strong transverse noise is specific for classical
noise. It disappears if the noise is quantum, i.e., produced by phonons in a thermal equilibrium
state and returns to the equipartition only at high temperature (51).

Later, Nikolai developed the theory of multilevel LZ transitions, finding the complete set of
exactly solvablemultilevel LZmodels.A substantial contribution to this work wasmade by another
very talented student, Chen Sun, who is now a full Professor at Hunan University (China).

In collaboration with Igor Lyuksyutov; my students Serkan Erdin, Amin Kayali, and Hongduo
Wei; and the experimental team of Don Naugle, we studied the new concept of ferromagnet-
superconductor hybrids (52). It was well known that the superconductivity with s-pairing and fer-
romagnetism are incompatible in a homogeneous system. However, in inhomogeneous systems
the strong ferromagnetic-superconducting interaction due to themagnetic field generated by both
components can be employed to create materials with new and easily controlled properties for sci-
ence and technology. There are two different approaches to such hybrids. In the first, on which we
concentrated, the idea is to avoid the proximity effects that suppress one of the components. This
goal can be attained by separating the ferromagnetic (F) and superconducting (S) components by
a thin insulating film.The alternative approach is to use the proximity effect to change the Cooper
pairs in the F-layer and in this way to achieve a large change in the transport coefficients and mag-
netic response. The first approach was developed in several experimental and theoretical groups
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including ours. At Argonne National Laboratory, theory was developed by Valery Vinokur with
whom we actively collaborated, with experiments by the group of George Crabtree. The Belgian
theoretical group (Milorad Milošević, François Peeters, and Sergey Yampolskii) worked closely
with experimenters from the University of Leuven headed by Victor Moshchalkov. Experiments
were also performed by the groups of Ivan Schuller (University of California, San Diego), Art
Hebard (University of Florida), John Ketterson (Northwestern University), and Piero Martinoli
(University of Neuchatel, Switzerland) with theoretical support by Hans Beck. I cooperated with
this group in the 1980s. The alternative direction that employed the proximity effect was devel-
oped theoretically by Konstantin Efetov, Anatoly Volkov, Sebastian Bergeret (Germany), Lev Bu-
laevsky (Los Alamos), Alexander Buzdin (France), and Zoran Radović (Serbia). Experiments were
provided by Valery Ryazanov (Chernogolovka, Russia), Alexander Golubov (Trent, Netherlands),
Jan Aarts (Leiden, Netherlands) and others.

Our approach was based on an idea from Igor Lyuksyutov that the appearance of a vortex in
an S-layer can decrease the energy of an FS-bilayer even if the F-layer does not create external
magnetic field. Indeed, a perfect F-layer with magnetization perpendicular to the boundaries can
be considered to be a magnetic analog of an electric capacitor. Therefore, it produces no external
magnetic field.A vortex in the S-layer creates a dipolar-like field with quantized flux�0 = hc

2e . If the
F-layer is near enough, this field interacts with its magnetization and decreases its energy by the
value −M�0dF, where dF is the thickness of the F-layer. The total energy of excitation is equal to

Eexc = εv −M�0dF, where the energy of a Pearl vortex εv = �2
0ds

16π2λ2
ln L

ξ
, L is the width of domain

in the F-layer or the linear size of the magnetic dot, ξ is the coherence length, λ is the London
penetration depth for themagnetic field and ds is the thickness of the S-layer.These formulae show
that the excitation energy becomes negative if 16π2Mλ2

�0 ln
L
ξ

> ds
dF
.The penetration depth goes to infinity

at the superconducting phase transition. Therefore, the excitation energy is negative near this
transition point. Thus, there is an instability with respect to proliferation of vortices over a finite
temperature interval.Vortex repulsion limits this process.The result is a periodic lattice of vortices
in the S-layer. This lattice can be commensurate or incommensurate with the lattice of dots or
the periodic domain structure of the F-layer. The transition to the commensurate state strongly
enhances the critical fields and currents in the S-layer. My experience in the study of periodic
commensurate–incommensurate structures was very useful in predicting of rather complicated
properties of the FS-hybrid structures.

The Bose–Einstein condensation (BEC) of magnons in yttrium iron garnet (YIG) film under
steady AC pumping was discovered by the experimental team of Münster University led by Sergei
Demokritov in 2006 (53). (I first met Sergei in Jülich in 1990, beginning our mutual scientific
interest and personal friendship.) Although the number of magnons is not conserved, the magnon
lifetime (decay) τ l is much longer than its relaxation time τ r. Therefore, during relaxation, the
number of magnons is conserved and they relax to a state with nonzero chemical potential μ. The
latter depends on the pumping power and grows as the pumping power grows. When it reaches
the minimum magnon energy, it cannot grow any more. If the pumping continues to grow, the
new arriving particles go to the state of lowest energy, i.e., to the condensate.

An important peculiarity of F films is that their magnon spectrum has two minima at wave vec-
tors ±Q parallel or antiparallel to the spontaneous magnetizationM0 and external magnetic field
H, both in the plane of the film. The field H creates a Zeeman gap in the spectrum of magnons
that is the same for both minima. Therefore, the condensate wave function is a superposition of
contributions from the two minima. In 2012, the same team found an interference pattern in the
condensate density for YIG, with the wave vector of the pattern given by 2Q as it could have been
anticipated. We (the student Fuxiang Li, University of Cologne professor Thomas Nattermann,
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Wayne Saslow, and I) started to work on this problem also in 2012. The main problem was un-
derstanding how the magnons of condensate are distributed between the two minima. If they do
not interact, then their total energy does not depend on their distribution between the minima.
This degeneracy is lifted by their interaction. We calculated the interaction amplitudes for con-
densate and found that the interaction induces strong violation of the reflection symmetry, and
the resulting condensate density in one of minima is much larger than in another (54). Further-
more, the interaction energy that occurs is negative. The homogeneous state is unstable. Because
the interaction is weak, the inhomogeneity of the ground state that results from this instability is
insignificant.

In 2019, we provided theoretical support for experiments by the Demokritov group (55). They
created an additional inhomogeneous magnetic field that served as a potential well for the conden-
sate magnons. The experiment convincingly showed that magnons in this trap repel each other
instead of the attraction we and several others predicted. In 2020, I collaborated on another exper-
iment by the same group (56), where they applied a very short pulse of magnetic field that shifted
the initial condensate from the minima to four points on the dispersion curve having the same
energy. Thus, instead of two fixed condensates they created four moving condensate clouds. Two
of them moved opposite to their wave vectors, and the other two moved parallel to their wave
vectors, with a velocity significantly slower than that for the back-moving clouds. The intensity
measurements for these clouds displayed some asymmetry with respect to reflectionQ←→−Q,
but it was much smaller than predicted by our theory.

What could be the reason for these discrepancies between theory and experiment? A thorough
analysis of the assumptions of our theory reveals one weak point: We assumed that the relaxation
within a minimum and between minima occurs at the same rate. However, the processes giving
interminima relaxation are much weaker. They are provided by the interaction of the condensate
magnons with low energy and momenta and thermal magnons with about 100 times larger en-
ergy and momenta. These processes are even slower than the decay processes responsible for the
finite magnon lifetime. Therefore, in the stationary state, an equilibrium between minima is not
established.This state should be found solving the Boltzmann kinetic equation as for other kinetic
processes. The existence of coherence between condensates in the two minima shows that these
processes are substantial and may provide some asymmetry in the state. However, an unavoidable
little asymmetry of the experimental device makes one of these states energy preferred. Although
work on this problem is still in progress, we believe that we now understand the most important
features of the system and will be able to obtain quantitative agreement with the experiments.

My biographic sketch would be not complete without mentioning two long-lived collabora-
tions with people who became my close friends. First was my collaboration with Thomas Natter-
mann; it was about 30 years ago when we first worked together during visits to each other. The
most cited of our works relate to the theory of hysteresis, but I prefer our works of 2008–2010
(57) on the deep levels of interacting particles in a disordered environment. Without interaction
of particles, this problem was solved independently by Ilya Lifshitz (58), by Johannes Zittartz and
James Langer (59), and by Bertrand Halperin and Melvin Lax (60) in the years 1966–67 and is
called Lifschitz tails. It is rather interesting that the problem with interaction was solved more
than 40 years later, though its solution did not require advanced mathematics but simple physical
arguments and a thorough analysis of several possible regimes. Depending on parameters (num-
ber of particles, strength and correlation length of random potential, and strength of interaction,
and for the harmonic trap its oscillator length) it displayed a very rich set of different regimes in-
cluding nonergodic, one cloud, fragmented (cloud of smaller clouds) and harmonic with the size
of the cloud about oscillator length. I also like our work on topological defects in chiral magnets
(61).
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My second long collaboration is with Danilo Pescia, experimenter and head of the Lab at ETH
Zürich. We worked on versatile magnetic systems (mostly magnetic films with different types of
structure) and their dynamics, and also on instrumental problems. My close collaborators Igor
Lyuksyutov, Alexander Kashuba, and Artem Abanov frequently visited the Pescia laboratory and
worked with his team. In turn, Danilo visited us in College Station.

Considering what has happened in my life, I see that I was a fortunate person. I was very happy
tomarry Svetlana,whomademy scientific career possible,who fostered the growth of our children
and grandchildren, greeted our common friends, and fed my students. I had great teachers and
students. I learned a great deal from them. I had amazing friends and colleagues. I am also lucky to
have lived for 90 years and still be in a functioning state.My efforts were awarded with the Landau
Prize of the Academy of Sciences of the Soviet Union in 1984 (together with Patashinskii) and
the Landau Gold Medal in 2018, as well as the Onsager Prize of the American Physical Society
in 2005. These awards are especially dear to me because of the names of people to whom they are
dedicated and by my acquaintance and friendship with the remarkable personality and scientist,
and the founder of theOnsager Prize,Russell Donnelly. I am grateful to theUniversity of Cologne
for nominating me for the Humboldt Prize, which I received in 2001. It gave me the opportunity
to spend more time working with Thomas Nattermann and his team and to travel in Germany.

Science and specifically condensed matter science made enormous progress during my life.
Every 5–7 years were marked by a discovery of Nobel level: the Ginzburg–Landau theory, the
Mössbauer effect, the Landau theory of Fermi liquid, the Bardeen–Cooper–Schrieffer theory of
superconductivity and its experimental verification, Abrikosov’s theory of two kinds of supercon-
ductors, the Josephson effect, theory and experiment on the critical phenomena and second-order
phase transitions, the quantum Hall effect, superfluidity of 3He, quasicrystals, high-temperature
superconductivity, and topological insulators. I must also mention impressive progress in experi-
mental devices such as semiconducting transistors and heterojunctions, lasers, the scanning elec-
tron microscope, SQUIDs (superconducting quantum interference devices),MRI (magnetic reso-
nance imaging), and ARPES (angle-resolved photoemission spectroscopy). But unfortunately I do
not see less growth of hate among humans that threatens to destroy all these achievements. There
was enough hatred in ancient times, but now it is much better equipped technically. As unpleasant
as it may seem, it must be admitted that it was science that provided hate with technology. Nev-
ertheless, I do not see any way for me to oppose this hate other than showing to young students
the beauty of science and helping them to possess the command of its methods.
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