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Quasi-1D systems: examples

Quasi-1D = 1D subbands of

transversal quantization
Carbon nanotubes 9

2D gated nanoconstrictions



Principal assumptions

e Clean case: [(¢) > R, I(¢) - mean free path, R - transversal size.
However, l(e) < L, L - system length
o Weak scattering: |A] < 1, )\ - dimensionless scattering

amplitude
e Semiclassical case: A\ < R and L < Ly,



Problem statement

Strip and a tube in longitudinal magnetic field
Ideally clean case - square root Van Hove
singularities

How Van Hove singularities are smeared due to
scattering (beyond Born approximation as well)?
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Trivial scenario: smoothing of singularity
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Experiment: more complex scenarios
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Phenomenologically these results P(E ) oc ( N,_ 1 ) 3
were attributed to Fano (E ) N) + (F / 2)
resonances

However, we show that similar curve could be simply a consequence of non-Born
scattering.



Outline

Smearing of Van Hove singularities within Born
approximation

Applicability criterion for Born approximation. Requirement
for relatively high impurity concentration n > |A|/7

Origin of non-Born effects. Criterion of non-Born regime:
n < |A|/7

Single impurity scattering approximation within resonant

subband

Quasistationary states

Multi-impurity effects

Conclusions



Ideal system

* Spectrum: set of 1D subands: E_, = E, (m+(I)/2(I)0) +

 Units oflength 27 R, D,
* Units of energy Fj,

E — Ey = ¢E,

* Density of states

V(£)= mivm (6‘) =,§; i
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Born approximation: tube

« Hamiltonian (point-like impurities) ~ H =H,,+V Y 8(r-r,)

v

e Matrix elements: Vk(lgmm/(@’zi) T 2R
[Wat

exp{i(k — K')z +i(m — m')¢;}

» All impurities are equivalent: [V,}) . (¢:,2)|> depends neither on Zj, nor

on @

*
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Born approximation: strip

« Hamiltonian (point-like impurities)
H=H,+V) §(r-r)
* Matrix elements:
2V

Vi (6 ) = - exp{ilk — k)2:}

x sin(m(m 4 1)&;) sin(7(m’ 4 1)§&;),

‘Strength’ of impurities
depends on their position:

laié : ‘Typical’ sin’(7(m + 1)) ~ 1

strong impurities sin®(7w(m + 1)§;) ~
/\ /\ /\ y

\/ \/ \/ weak impurities sin”(m(m 4+ 1)§;) =
X*
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Born approximation (away from
singularity)

Density of states: V.=

Scattering rate: 7, =2n(A/ 7[)2

A=mV/2<1 - Born scattering amplitude

N —

ny(2rR)?, for cylinder,
= 5 . n <1
noD*, for strip,



Born approximation (near the
singularity)

» Scattering rates:

tube strip
e
0 gy 06 n ) e M
7(€) T\/€ Tm () 1+§i(\2, m=N



Resistivity

e Kubo formula in the Drude approximation

6’2

2
= —Ti[0.GR0.G4) = — Z V25(e — E.
F = 27TTr[lZG 0, G ] 2#/ Z B Ekm + 1/47. / Z(lkm) O(\. Ekm)Tm(&‘)

(€) To

» For resistivity we get:
Po Thonres (E)

* Born approximation: pe) _ e
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Smearing of Van Hove singularities: Born
approximation

e Perturbation theory holds for 7' (&) < &
e For £>0 we get the smearing scale ¢_.  from the condition:

1 1 v(e) 1 23 an.23 P 23, 173
= = ~&, = min — 2 ~A , o A
r(¢) 7, vy Ve ‘ o =(2770) i Po "

® For |¢| <e.in We will map some strictly 1D result to our quasi-1D
problem
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Strictly 1D system: exact results

—1/2
e Density of states: l/ﬁég(é) = Vo (éﬁzn) Y (5/ Cﬁgn

e Average potential: U = <V Z o(r — I‘q;)> = 5?

7/

Iy )

1
=T 310, > 1
Y(q) = Ve ! 4 3/2q
gl exp (—%]q*?), ¢<0, |q|>1.

Random potential is effectively gaussian

Valid only for

n > |\l

) 51(12211 — (27”_0)_2/3

v(€)/vy

e

H. L. Frish, S. P. Lloyd, Phys. Rev., 1960, 120, p 1179
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Density of states: from 1D to quasi-1D

~

[ I/(é) ~ VIlOl’lI‘eb(~) + Vreb(cf)

e Bifurcation point & "(t) : 1s defined by ()

nonres

(~(§)) = ,/(t)( (t)) As aresult:

Ebl res

51()1) ~ (3/8)2/3 frtlzn 2/3 (1/gm1n>

e Hybridization between resonant and nonresonant states gives only a small
correction to the density of states:

d / d / min b
ov(e) o¢ —vgnA®— V) f: X (E ) X Vo_l < 1
de E—¢ €] In (e

min)

W@ _pVE +(29.) 7y (6/89,)

min min
Vo Po
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Role of the resonant subband

Resonant subband states do not contribute to current directly!
The resonant subband affects the resistivity only through the density of
final states for scattering of current carrying nonresonant states

Although we calculate the resistivity of the system, from the resonant
subband we need only the density of states.



Origin of non-Born effects

e Perturbative matrix elements (all
processes within resonant subband are
taken into account nonperturbatively)

Xm\li) =

Ve o =v® v G (g, )V = .
mi,mo mi,mso m1y,N g N,mao exp{m¢i}, (tube),
Ai V2sin(mmé;), (strip).

= FX'ml (r'i)X.;an (I‘-,;),

e Multiple scattering (with necessary Emk

excursions to the resonant subband)

Y
‘/;7(71) (717({;1) = 1/77(11) meo Z ml 7ng £777 )Vrgz M 2
m#N
+ Z 7?1) mg(m> 0)‘/77(1 )m’gcgm )(O)Vrf7 ‘ ,m2 T )
m,m’'#N
. -1 2 . . o . .
4™ (0) = / L {E L R black line - direct transition, red line -
: 27 - (2m)? VEm

composite transition with an excursior
to resonant subband



Scattering amplitude

e Summing up perturbation series, one could obtain scattering amplitude:

; A (ren)
A (ren) AZ 7(%2)(ren A-i =
Ai =A {1 T Qi + A: } ’ ‘/;7(11),(177,2) — o Xmy (r'i)X-m-z (rl)
1

T2

@i = [G(I‘CS)(Z“ZZ')} = )"i/’/TQa Ai = /\|XN(ri)|2 A; = Alxn(r:)]?

A - exact2D scattering amplitude

e Since Zg;) — Y )(ren) "we obtain scattering rate:

m,m

= P {AEY =2 [ e @) Pm {0 e )
Tk = _p Z IX'm.(rz | m i = ? 0 Xm m X



: : res
Finding G (2, 2;)
e (Green function satisfies the following equation:

{ GmrdE T 25z — ) — } G (2) = —5(2)

e Fornot very low £ single impurity approximation is sufficient:

{— g +)\ié(z)—e}GgeS)(z):—Mz) Ge)(0,0) =

(2m)%dz?2 7?2

i\/_— )\1/7'('

e Finally, scattering amplitude 1s

A(mn) ’\/al/\“l — l/\) e \ 2
iy/€;signA — (1 — i) € = , EpB = ( >



Non-Born regime criterion

y B_Z . €; = €|X]\'r(r'i)|_4a
o A(rcn) = ’\/le/\|(1 — l/\) ) 5 5
. iy/€;signA — (1 — i) PR W
EnB l m

o Alren) s o for ¢, — 0, thus non-Born effects are most spectacular for
£ K ExB

e Comparing ¢ p and €min, We arrive at the following criterion of
non-Born regime:

gmin < €nB, or n<mNe= |/\|/7T



Non-Born case.
p(¢) : repulsing impurities (1> o)

e Thus, for £(£) we get:

/2"
e Here ¢ = 5/51113

For £ >0
l/2
——, for cylinder
ple) ) A
o), %l
——, for strip
2\
For € <0
© le|, for cylinder
PO om0 e o, ld=1
Po for strip

Strip: since scattering amplitude
depends on the position of impurity,
maximum 1s somewhat broadened

121
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Non-Born case.
p (&) : attractive impurities (1 <0)

« For £€>0 P(€) does not depend on the sign of 4
* For £<0 - scattering amplitude hasapole at ¢ = (—1 + 2i|>\’)()\i/7T)4

(o ¢|, for cylinder
° p—% |€|1/4

, el <1
Po

., for strip
4 A
1P/ po

/\—2

Left peak is due to

pEan 0.2 111732
quasistationary states.
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Non-Born case (quasistationary
states)

 (Quasistationary states (poles of scattering amplitude):
tube strip

s = (—1+ 2i|A|) €qs = 4sin*(mNE) (—1 + 2i|)|)

* Finite width due to transitions to nonresonant subbands
 Tube case: the same €qs for all impurities. However, not the case for strip.



QQuasistationary states (strip case)

€qs = 4sin*(mNE) (=1 + 2i|A|)
Impurity band: —4 < €45 < 0 . Distribution function for energies (strip):

0 —€gs 0 €gs 4 2 - .
Pleg)= ( 1).)( i) + VI different p(e — —0)

2T 3 />
\/| las™(4 = leasl)  than for tube
‘“Van-Hove like’ singularity near the edge of the impurity band:

8v/2 (|e| — )22 for 44+ e — —0, smeared at

- )l\\\f (4 — |e])~Y?2, for 44 € — +0. e+4] S |A

For —4 < € <0 scattering predominantly happens at resonant impurities

€ = €qs(&:)

Scattering for ¢ — —4 - predominantly at strong impurities, for € — ()
at weak impurities

p(€)
0




Multi-impurity effects

e Multi-impurity effects are negligible for 7_!(¢) < ¢ and essential for

S

nB
min

g =< E

where s?nl?n is determined by

T

res min E:1'1’111’17 E:1’1’111'1 n

—1(6nB ) nB nB 2

e Since 7 (e = 0) = 0, one should expect some minimum of P(€) at

nB

min

el Se



2 distinct regimes with respect to concentration: -

Conclusions

tube & strip

Born regime (7> n,}- singularity structure is K

‘plateau-maximum-plateau’ .y

&bi | Emin

Non-Born regime (n< n,)
o Repulsing impurities:
‘plateau-minimum-maximum-plateau’

o Attractive impurities: K
‘plateau-maximum-minimum-maximum-plateau’,
quasistationary states are important. i

Strip case: quasistationary states form impurity band
—4 < € < 0, in which resonant scattering determines p(¢)

Minimum of P(€) near the Van Hove singularity (at the
energies of the order of ~ n?) is expected |

Plpo

tube & strip

— Aplpy.
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