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"Which Path” experiment I
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"Which Path” experiment I

SN Y

T) = [T,) @ |xu) + |[Pa) @ |xa) \\a/
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"Which Path” experiment I

T) = [T,) @ |xu) + |[Pa) @ |xa) S~

2

Paet = [{(det|Tu)|® - (xulxu) + [(det|Ta)|® - (xalxa) + 2Re[(¥q|det)(det|Pu) - (xulxd)]
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"Which Path” experiment I

T) = |.) ® [xu) + |¥a) ® [xa) S~

2

Paet = [(det|Tu)|® - (xulxw) + [{det|Ta)]® - (xalxa) + 2Re[(¥q|det)(det|Tu) - (XulXd)]

entanglement between system and detector reduces interference visibility
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“"Which Path” Experiment II

* electronic interferometry for studying QM phenomena like AB effect, fractional

statistics, non-abelian anyons

e visibility of interference signal suppressed when trajectory of interfering particle is

measured = dephasing of system Stern, Aharonov & Imry, PRA 1990

* “"which path” measurement observed experimentally and studied theoretically Buks,

Schuster, Heiblum, Mahalu & Umansky, Nature 1998; Gurvitz PRB 1997; Levinson, EPL 1997; Aleiner, Wingreen
& Meir, PRL 1997

 standard detection schemes involve out of equilibrium detector, e.g. biased QPC with

electrostatic coupling to interferometer
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Dephasing

e directly related to entanglement between system and detector

Neder, Heiblum, Mahalu & Umansky, PRL 2007

e observed and discussed in the context of electronic interferometers

van der Wiel et al., PRB 2003; McClure et al., PRL 2009; Yamauchi et al., PRB 2009; Ji, Chung, Sprinzak,
Heiblum, Mahalu & Shtrikman, Nature 2003; Chalker, Gefen & Veillette, PRB 2007; Levkivskyi & Sukhorukov,
PRB 2008; Neder & Marquardt, New J. Phys. 2007; Neder & Ginossar, PRL 2008; Youn, Lee & Sim, PRL 2008;
Heyl, Kehrein, Marquardt & Neuenhahn, PRB 2010; Schneider, Bagrets & Mirlin, PRB 2011; Ngo Dinh &
Bagrets, PRB 2012; Marquardt & Bruder, PRB 2002; Seelig & Buttiker, PRB 2001; Treiber, Yevtushenko,
Marquardt, von Delft & Lerner, PRB 2009; Horovitz & Le Doussal, PRB 2010

e special features when system-detector coupling is strong

Averin & Sukhorukov, PRL 2005; Grishin, Yurkevich & Lerner, PRB 2005; Abel & Marquardt, PRB 2008
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Equilibrium Detector?

* what happens when detector set to equilibrium?

* coupling to dissipative environment may give rise to dephasing through thermal

flluctuations Marquardt & Bruder, PRB 2002; Seelig & Buttiker, PRB 2001; Treiber, Yevtushenko,
Marquardt, von Delft & Lerner, PRB 2009; Horovitz & Le Doussal, PRB 2010; Altshuler, Aronov &

Khmelnitskii, J. Phys. C 1982; von Delft, in Fundamental Problems of Mesoscopic Physics, Lerner et al.

(eds.) 2004; change of the ground state through Anderson orthogonality catastrophy

mechanism Chakravarty & Leggett, PRL 1984; Aleiner, Wingreen &Meir, PRL 1997; Anderson, PRL 1967;
Neuenhahn & Marquardt, PRL 2009

* dephasing due to thermal fluctuations in a quantum dot detector coupled to AB

ring Meier, Fuhrer, Ihn, Ensslin, Wegscheider & Bichler, PRB 2004
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Model

e consider electronic Mach-Zehnder interferometer with one arm coupled

electrostatically to detector

* interferometer defined by outer edge channel of a v=2 quantum Hall setup

e detector consists of localized state tunnel-coupled to inner edge

V, v,
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Model - Hamiltonian
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Model - Hamiltonian

Ho = v Z CLR,kCaR,k(k — kp) — CLL’kCaL,k(k —+ kp) + €0 de
a=1,2;k

Hemng = Z (72)5,!4:6;}_;,;6 =1 72,R,1~'.:C;R,k) d + h.c.

D/2
Himp—cdge = / dr (pr(F)Va(r) + pro(r)Ve(r)) d'd
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Coulomb phase

localized state is occupied with (dfd )=1 J % U

1 2,R il L

= density change

(pr/L(T)) = —5—= VRr/L(r) Gt | $ [
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Coulomb phase

\ ‘ \ & g i o
localized state is occupied with (did )=1 : % ——m—==2
| PR b I
_ 1 2By -/ R
= density change (pr/L(1)) = g Vr/L(r) i | $ [
: : . 1
bosonize Yr(r) = explipr(r)] with pgr(r) = o r@oRr(T)

= electron Green function can be expressed as

QR(CC, t) — <ei%0R(:IZ,t)—?J<PR(O,0)> - 627ri ffD/z dyl{pr(y)) <ei6<p(x,t)—i5<p(o,o)>

T

where Jdp(x) = p(x) — 27r/ dy{p(y))

_D/2
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Coulomb phase

localized state is occupied with (dfd )=1 ‘
_ 1 2Ry ____ g s :
= density change (pr/L(7)) = g Vir/r(r) T N $ N
: : . 1
bosonize Yr(r) = explipr(r)] with pgr(r) = o r@oRr(T)

= electron Green function can be expressed as

IR (CE, t) - <ei‘PR($,t)—’i‘PR(0,0)> = 627”: IZ_UD/Q dy{pr(y)) <6i6@($’t)_i5(ﬁ(0,0)>

T

where Jdp(x) = p(x) — 27r/ dy{p(y))

—-D/2
1 D/2
§ = — dyVr(y)

define phase shift observed by MZ as vh J_py2
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Coulomb phase

localized state is occupied with (dfd )=1 ‘

- 1 e
= density change  (pr/L(1)) = —5——= Vr/L(7) R w

bosonize Yr(r) = explipr(r)] with pgr(r) = % r@oRr(T)

= electron Green function can be expressed as

2™t JZp /2 dulpr(Y)) <ei6<p(x,t)—i5<p(0,0)>

gr(z,t) = <ei<pR(a=,t)—?l<PR(0,0)>

T

where Jdp(x) = p(x) — 27?/ dy{p(y))

—D/2
1 D/2
, 0 = — dyVr(y)
define phase shift observed by MZ as vh J_py2
D/2
full and symmetric screening of impurity charge vyields / dy(pr(y))
=i

= 0 =7 for symmetric screening

~1/2

9/13/12 B. Rosenow, Dephasing by a Zero-Temperature Detector and the Friedel Sum Rule



Dephasing by statistical averaging

eV, < I <Ky T = occupancy of localized level fluctuates thermally

transmission phase of (1,R) channel depends on dot occupancy = average yields

< r
i6 O ‘ —=&-—==2L
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<ez(5d d) . €
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eleo—n)/T 4 1 e—(co—n)/T 4 1 -—)—-:—-‘
1,R - \ s /
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Dephasing by statistical averaging

eV, < I <Ky T = occupancy of localized level fluctuates thermally

transmission phase of (1,R) channel depends on dot occupancy = average yields

s a2 s ‘ —mmm=2 |
(ewde) = € A d 2R | S R \
= eo—m/T 11 | e(o-m/T 11 e b
1,R ” \ s f
fully symmetric dot with el ? = - 1 yields 10
(e %) = tanh((eo — 1)/T) =0
5 06
= phase lapse of m at the degeneracy point, 2 04
02
and a visibility v o |tanh((e, - ©)/T)|I with i
"2 -1 0 1 2
(w-€)/T

FWHM ~ 2.197 k, T
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Dephasing by entanglement

e consider now the limit k; T < I'< eV < u -B, where B denotes the bottom of
the band

e discuss the change an interfering electron on outer edge makes to its
environment, which consists of the localized state coupled to the inner edge

e describe electron wave function after passage through the interferometer by

u) ® [xu) + €%|d) ® |xa)
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Dephasing by entanglement

e consider now the limit k; T < I'< eV < u -B, where B denotes the bottom of
the band

e discuss the change an interfering electron on outer edge makes to its

environment, which consists of the localized state coupled to the inner edge

e describe electron wave function after passage through the interferometer by

u) ® |xu) + €®|d) ® |xa)

lu), |d) partial waves through upper or lower arm of the MZ
Ix.). Ixy) respective states of the environment
e ¢ Aharonov-Bohm phase ascribed to the lower arm
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Dephasing by entanglement

e consider now the limit k; T < I'< eV < u -B, where B denotes the bottom of
the band

e discuss the change an interfering electron on outer edge makes to its

environment, which consists of the localized state coupled to the inner edge

e describe electron wave function after passage through the interferometer by

u) ® |xu) + €®|d) ® |xa)

lu), |d) partial waves through upper or lower arm of the MZ
Ix.). Ixy) respective states of the environment
e ¢ Aharonov-Bohm phase ascribed to the lower arm

e as interference term is superposition of partial waves travelling along upper and

lower arm, it is reduced by the factor [ | xa)]
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Impurity coupled to chiral edge

* couple localized state to only one chiral edge ( é \ PR,

e eigenstate of the inner edge plus localized state 2,R g - I \

D/2
|€) :Ne(/ dz o(x)|z) + A(e)|d)) € energy of the state

—D/2
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Impurity coupled to chiral edge

* couple localized state to only one chiral edge ( é \ PR,

e eigenstate of the inner edge plus localized state 2,R g - I \

D/2
|€) :Ne(/ dx o(x)|z) + A(e)|d)) e energy of the state

—D/2

o(z) = 0(—z)e ™Y + 0(x)e**/ "™ save function along the edge that suffers

phase shift §, due to tunnel coupling fo localized state
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Impurity coupled to chiral edge

* couple localized state to only one chiral edge { é \ PR,
I i 1)

e eigenstate of the inner edge plus localized state 3 5 - .-

D/2
|€) :Ne(/ dx o(x)|z) + A(e)|d)) e energy of the state

—D/2

o(z) = 0(—z)e ™Y + 0(x)e**/ "™ save function along the edge that suffers

phase shift §, due to tunnel coupling fo localized state

previously: assign Coulomb phase e to electronic wave function |u)
now: assign Coulomb phase e’ to environmental state |x,)

only component with weight on the localized state will be affected =

D/2 |
l€s) :Ne(/ dzp(x)|z) + e“sA(e)|d))

—D/2
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“Dephasing by quantum fluctuations”

dep(z)|z) + e A(ld) T -

=N [ J ¢ L

D/2 L S — J

zéd d

* more formally: apply operator state |e)

* denote expection value w.r.t. ground state Slater determinant |e ) by ( ...

= overlap between environmental states is
(Xul|xa)

9/13/12 B. Rosenow, Dephasing by a Zero-Temperature Detector and the Friedel Sum Rule



“Dephasing by quantum fluctuations”

|€5>_N(/D/2 Y é s < 1,’L

dep(z)|x)y + e®A(e)d) 00 T -
D/2 L S — ’

o194 d state l€)

e more formally: apply operator
* denote expection value w.r.t. ground state Slater determinant |e ) by ( ... )

= overlap between environmental states is :
isd’d
Xulxa) = (€7°%)

e for u > €, or u < ¢, dot occupancy is 1 or O, and d' d can be replace by eigenvalue
o for lu - €l &= I, fluctuations in did are large and reduce the expectation value

= dephasing by the dot intimately related to strength of quantum fluctuations
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“Dephasing by quantum fluctuations”

|€5>_N(/D/2 Y é s < 1,’L

dep(z)|x)y + e®A(e)d) 00 T -
D/2 L S — ’

o194 d state l€)

e more formally: apply operator
* denote expection value w.r.t. ground state Slater determinant |e ) by ( ... )

= overlap between environmental states is :
isd’d
Xulxa) = (€7°%)

e for u > €, or u < ¢, dot occupancy is 1 or O, and d' d can be replace by eigenvalue
o for lu - €l &= I, fluctuations in did are large and reduce the expectation value

= dephasing by the dot intimately related to strength of quantum fluctuations

however: change in environment only possible when energy ~ I'is transferred
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Reduction of interference visibility I

* to calculate ( x, | x, ), need to know the matrix of wave-function overlaps

?

Mymr = Onmr £ Ny A en)Ne, , Alenr) (ew — 1)

e where A(E) = il with I = ﬂ
€ —eg + I 2hv
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Reduction of interference visibility I

* to calculate ( x, | x,; ), need to know the matrix of wave-function overlaps

My = B + Ny A en)NE, Aley) (eﬁ _ 1)

? ?

v ; v
@ A — h F = —
where (€) e — 0 il wit 5ho

* the desired overlap is  I{ x,Ixy)! = detIM,

e cdlculate determinant by diagonalizing M,/ =0,/ + oo u u*, = one eigenvector
‘ n n
with components u_ and eigenvalue 1 + a 3 u™n u., as well as degenerate

eigenspace orthogonal to vector { u. } with eigenvalue 1
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Reduction of interference visibility I

* to calculate ( x, | x,; ), need to know the matrix of wave-function overlaps

My = B + Ny A en)NE, Aley) (eﬁ _ 1)

? ?

e where A(E) = il with I = m
€ —eg + I 2hv

* the desired overlap is  I{ x,Ixy)! = detIM,

e cdlculate determinant by diagonalizing M,/ =0,/ + oo u u*, = one eigenvector
‘ n n
with components u_ and eigenvalue 1 + a 3 u™n u., as well as degenerate

eigenspace orthogonal to vector { u. } with eigenvalue 1

(p—eg)27 is
S

T

arctan
= |(xulxa)l = )

1+(e’55—1

9/13/12 B. Rosenow, Dephasing by a Zero-Temperature Detector and the Friedel Sum Rule



Reduction of interference visibility II

arctan
[(xulxa)l = )

1+(ei5—1

1.0

S
oo

0.6

visibility

o
N
visibility

(u-¢)/T

full line d=n
dashed line d=37/4
dotted line d=m/2

[§%)
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Reduction of interference visibility II

(p—e0)2m s
saliel] = |14 (6?;5 B 1) arctan ,NF 3 5
e interestingly, ( x, | x, ) does not 10
scale with system size, in -
contradistinction from determinants in E
= b6
the Anderson orthogonality case = i
'S 04 3 oo
e symmetric coupling with 0 = m = g
complete suppresssion of interference o ST el
for u=c¢, "0 £ ( 0 \/T ‘ 2
w-g
e interference visibility fully recovered
in case of empty or fully occupied
localized state full line o=m
dashed line §=3n/4
dotted line §=7/2
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Condition for dephasing to occur

e energy difference between Slater determinants of |e ) and
of le;) from expectation values of Hamiltonian

B® 4-T° 2R - S |
N2 -+ ]_“2

AE = E(1 - 0085)111(
7
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Condition for dephasing to occur

e energy difference between Slater determinants of |e ) and
of le;) from expectation values of Hamiltonian

————————

B 4T 2,R - S |
/JJ2_|_]_"2

AFE = E(1 — cos ) ln(
T

e environmental state |x,) is by amount AE higher in energy than state |y, ) = energy
difference must be provided by interfering electron

e as interfering electron needs to have energy AE above Fermi level, we arrive at
requirement eV > I’

 as an energy transfer is involved in the reduction of MZ interference visibility,
dephasing can be described as backaction of the environment onto the interfering
electron
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Friedel sum rule - electrostatic coupling

* change of charge in a spatially confined region in a Fermi sea by one = sum of
the scattering phases changes by 2 w

AN oontined = QL A'Trln S(/J:)

e
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Friedel sum rule - electrostatic coupling

* change of charge in a spatially confined region in a Fermi sea by one = sum of
the scattering phases changes by 2 w

AN oontined = QL A'Trln S(/J:)

e

X

Y
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Friedel sum rule - electrostatic coupling

* change of charge in a spatially confined region in a Fermi sea by one = sum of
the scattering phases changes by 2 w

AN oontined = QL A'Trln S(/J:)

e

* in order to make contact with the sign convention of the Friedel sum rule, we refer
here fo a chiral edge embedded into a Fabry-Perot interferometer

X

Y
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Friedel sum rule - electrostatic coupling

* change of charge in a spatially confined region in a Fermi sea by one = sum of
the scattering phases changes by 2 w

AN oontined = QL A'Trln S(N)

e

* in order to make contact with the sign convention of the Friedel sum rule, we refer
here fo a chiral edge embedded into a Fabry-Perot interferometer

* coupling between chiral lead and localized state is
electrostatic

X

= localized state acts like external potential = occupation by
an electron gives rise to screening cloud of charge |el

Y

= change of transmission phase through chiral by - 2 7
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Friedel sum rule - tunnel coupling

AT e e e AT TS (i)
1

27

A\
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Friedel sum rule - tunnel coupling

=

NN g = -ATrInS(u)
7

T

A\

e consider tunnel-coupling between chiral lead and localized impurity = now
localized state is part of the sytem

tan — =

O¢ I
e direct calculation of scattering phase yields 5 _ﬁ

9/13M12
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Friedel sum rule - tunnel coupling

IN N snifisiad, = %ATI‘ InS(w)

7T

A\

e consider tunnel-coupling between chiral lead and localized impurity = now
localized state is part of the sytem

tan — =

O¢ I
e direct calculation of scattering phase yields 5 _ﬁ

e filling up the state (i.e. varying € from - oo to + o0)

results in phase change of 2 7, in agreement with
Friedel sum rule

9/13M12
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Friedel sum rule - tunnel and Coulomb coupling

AT e e e AT TS (i)
1

27

A\
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Friedel sum rule - tunnel and Coulomb coupling

A-Z\Iconﬁned — L A'Tr In S(IJJ)
2

A\

* now consider a case with both funnel and Coulomb coupling = the two

contributions cancel each other

e in agreement with Friedel sum rule, as filling up the localized state will
induce an opposite sign screening cloud = amounts to redistribution of

charge (with the net total charge unchanged)
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Friedel sum rule - full model
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Friedel sum rule - full model

e now discuss realistic situation with a second chiral

 "blue” chirals have Coulomb coupling, “red” chirals - —J % bf,___f__é__]'_L_z,L
have tunnel coupling = need 4x4 scattering matrix  2R------2 > --\--”I ''''''''''' g‘- --------
for full description 2 et

e if Coulomb coupling between localized state and

the blue chirals is symmetric, Coulomb phase shift is ﬂ

-7
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Friedel sum rule - full model

e now discuss realistic situation with a second chiral

* “"blue” chirals have Coulomb coupling, “red” chirals
have tunnel coupling = need 4x4 scattering matrix

for full description

e if Coulomb coupling between localized state and

the blue chirals is symmetric, Coulomb phase shift is

-7

e if coupling to the two blue chirals is not symmetric, there is no full dephasing
e with 4x4 scattering matrix, sum of all scattering phases is again zero

 for weakly pinched inner edge mode, screening charge is distributed over blue and
red chirals = Friedel phase is spread over more channels and reduces the the
magnitude of Coulomb phase shift §
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Fabry-Perot interference phase vs. Mach-Zehnder interference phase

MZ interferometer has path Cmzi =C1 +Cp
FP interferometer has path Crp1 = C2 +Cp
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Fabry-Perot interference phase vs. Mach-Zehnder interference phase

MZ interferometer has path Cmzi =C1 +Cp
FP interferometer has path Crp1 = C2 +Cp

as edge states are projected onto single Landau level, inerference phase is pure
Aharonov-Bohm, and in the absence of phase shift ¢§

2 2
oMZI = — ds-A < 0, orp1= ﬂ-/ ds-A > 0
Lo Jey+ep ¢

Do 2+CD_
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Fabry-Perot interference phase vs. Mach-Zehnder interference phase

MZ interferometer has path Cmzi =C1 +Cp
FP interferometer has path Crp1 = C2 +Cp

as edge states are projected onto single Landau level, inerference phase is pure
Aharonov-Bohm, and in the absence of phase shift ¢§

2 2
QOMZI:_W ds-A < 0 , (:OFPI:_W/ ds-A > 0
(DO Ci+Cp (DO C2+Cp

phase change 9 is purely local and changes only what happens along C, = appears as
additive correction
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Fabry-Perot interference phase vs. Mach-Zehnder interference phase

MZ interferometer has path Cmzr = C1 +Cp
FP interferometer has path Crp1 = C2 +Cp

as edge states are projected onto single Landau level, inerference phase is pure
Aharonov-Bohm, and in the absence of phase shift ¢

2 2
QOMZI:_W ds-A < 0 , (PFPI:_W/ ds-A > 0
o Jey+ep Lo Jea+ep

phase change 9 is purely local and changes only what happens along C, = appears as
additive correction

since @,,; and @4 differ in sign, the magnitude of the two phases is affected in
opposite ways by the change o
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Conclusions

* dephasing of a MZI interference signal by a detector at equilibrium

e at finite temperature, dephasing is due to a thermal average over different

states of the detector

* in the zero temperature limit, dephasing is due to quantum fluctuations of the

detector in a nonequilibrium interferometer

 strength of dephasing is determined by phase shift due to Coulmb coupling

between detector and interferometer

* Friedel sum rule relates this phase shift to the screening charge that an

occupied detector state induces on the interferometer arm
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