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QHE without Flux

Volovik, Phys. Lett. A, 128, 277 (1988): Showed
that because 3He in its A phase breaks time-reversal
symmetry and is a p + ip superconductor (like
ν = 5

2), there should be an analogue of the QHE in a
thin slab geometry.
Haldane, PRL 61, 2015 (1988): Constructed a lattice
model with time-reversal breaking due to a periodic
�ux, but no net �ux. When a band is full it exhibits
the QHE with a chiral edge mode. The QHE arises
because of a nontrivial Berry curvature in the
Brillouin Zone, making the band a �Chern Band�.





The Chern Number

First de�ne the wave functions Ψ~k(~x) labelled by
crystal momentum ~k . Now the Bloch functions are
u~k(~x) = e−i~k·~xΨ~k(~x). The the Berry connection, or
Berry gauge �eld is de�ned by ~A(~k) = i〈u~k |∇~k |u~k〉
and the Berry �ux or Chern �ux density is
b(~k) = ∇~k × ~A(~k). The Chern number is
C = 1

2π
∫
d2k b(~k). The dimensionless Hall

conductance of the �lled band is C . Thouless,
Kohmoto, Nightingale, and den Nijs, PRL 49, 405
(1982).
Like a �lled LL, so what about a fractionally �lled
Chern band?



Previous work
Band engineering to make the Chern band �at: E. Tang, J.-W.
Mei, and X.-G. Wen, PRL 106, 236802 (2011); K. Sun, Z. Gu
H. Katsura, and S. Das Sarma, PRL 106, 236803 (2011):
Take a multi-band model and play with parameters until the
band of interest becomes nearly �at.
T. Neupert, L. Santos, C. Chamon, and C. Mudry, PRL 106,
236804 (2011): Add long-range hoppings to make it �at.
These authors also carried out the �rst numerics to show that
an incompressible FQH-like state exists here for suitable
repulsive interactions.
X.-L. Qi, PRL 107, 126803 (2011): Mapped single-particle
states from the Chern band to Landau gauge basis for LL. See
also Y.-L. Wu, N. Regnault, and B. A. Bernevig,
arXiv:1206.5773. J. Maciejko, X.-L. Qi, A. Karch, and S.-C.
Zhang, PRL 105, 246809 (2010): B. Swingle, M. Barkeshli, J.
McGreevy and T. Senthil, PRB 83, 195139 (2011); Y.-M. Lu
and Y. Ran, PRB 85, 165134 (2012): Parton constructions.



Evidence for FQH-like states
Several groups have found numerical evidence for the
analogues of ν = 1

3 ,
1
5 states in Chern Bands. D. N. Sheng,

Z.-C. Gu, K. Sun, and L. Sheng, arXiv:1102.2658



N. Regnault and B. A. Bernevig, arXiv:1105.4867



Comparison to the LLL

One is used to understanding the FQHE by �ux
attachment to make Composite Bosons or Composite
Fermions. The density projected to the LLL satis�es
the Magnetic Translation Algebra (S. M. Girvin, A.
H. MacDonald, and P. M. Platzman, PRB 33, 2481
(1986))

[ρGMP(~q), ρGMP(~q′)] = 2i sin
(

~q × ~q′l2
2

)
ρGMP(~q+~q′)



So what is the problem?

Problem 1: In a Chern band there is no external �ux.
So the usual picture of the attached �ux cancelling
the external �ux in an average sense does not make
sense.
Problem 2: It is di�cult to attach �ux on a lattice.
Flux naturally lives on the plaquettes while charges
live on the sites. Attaching fractions of a �ux makes
sense (Fradkin, PRB 42, 570 (1990), Lopez, Rojo,
and Fradkin, PRB 49, 15139 (1994)), but an integer
number of �ux quanta are equivalent to zero!



Back to Algebra

However, there seems to be a sense in which the
Chern band is like a Landau level. The density
operator algebra in the Chern band is �close� to that
of the LLL. As ~q, ~q′ → 0 it satis�es

[ρCh(~q), ρCh(~q′)] = i~q×~q′ ρCh(~q+~q′) + other stu�

Unfortunately, the algebra does not close. S. A.
Parameswaran, R. Roy, and S. L. Sondhi,
arXiv:1106.4025. See also, M. O. Goerbig, arXiv:
1107.1986



The Hamiltonian approach
Here is the way we introduce Composite Fermions
(Murthy and Shankar, RMP 75, 1101 (2003)). Start
with electronic guiding center coordinates, Rex , Rey ,
which satisfy

[Rex ,Rey ] = −il2

where l = 1√
eB is the magnetic length. The Hilbert

space is �too small�. At �lling ν introduce auxiliary
pseudovortex guiding center coordinates Rvx , Rvy
de�ned by the CCR

[Rvx ,Rvy ] = il2/c2 = il2/(2ν)



The CF Substitution in ρGMP
The expanded Hilbert space has the right size for a
2D fermion, the Composite Fermion, which sees a
�eld B∗ = B(1− 2ν) = B(1− c2), and has
cyclotron (ηx , ηy) and guiding center (Rx , Ry)
coordinates satisfying

[ηx , ηy ] =
il2

1− c2 = i(l∗)2 [Rx ,Ry ] = −i(l∗)2

~Re = ~R + c~η ~Rv = ~R + ~η/c

Express ρe in terms of CF operators.



CF Hartree-Fock and beyond

Since the CFs see a reduced �eld B∗ at the right
fractions they �ll up an integer number of CF-LLs.
This is found as a natural HF solution in our
Hamiltonian theory, and allows us to compute gaps,
temperature-dependent polarizations, and the e�ects
of disorder (Murthy PRL 103, 206802 (2009)).
The problem is that we have too many states in the
Hilbert space, and we need to project to the physical
space by constraining the auxiliary coordinates ~Rv .
This can be done in a conserving approximation
(time-dependent HF = RPA + Ladders).



What about ρCh?
This is great for the FQHE, but in the Chern band
the density is not proportional to ρGMP . Here is
where our central idea comes in. In any single band
de�ned in a square BZ, let

ρ̄(~q) =
∑

~p∈BZ
c†(~p′)c(~p)e iΦ(~q,~p) Φ(~q,~p) =

qxqy
4π −p′xNy (qy , py)+

qxpy
2π

~p + ~q = ~p′ + 2π (Nx(qx , px)êx + Ny(qy , py )êy )

These operators (i) Obey the GMP algebra, and (ii)
For ~q = ~Q + ~G with ~Q ∈ BZ , they form a complete
set of operators.



Expansion of ρCh and H in terms of ρGMP
This leads to the crucial identity

ρCh(~Q) =
∑

~G

C (~Q, ~G )ρGMP(~Q + ~G )

The coe�cients C (~Q, ~G ) are easily found by Fourier
transformation.
How about the one-body energy?

H1b =
∑

~p∈BZ
ε(~p)c†(~p)c(~p) =

∑

~G

V (~G )ρGMP(~G )

Now we can carry out the CF-substitution for any
Chern band.



Example 1: ν = 1
3

The key di�erence between fractionally �lled Chern
bands and a LL is twofold: (i) The Chern density is
varying, sometimes by an order of magnitude, and (ii)
The kinetic energy competes with the interactions in
determining the ground state. We will solve a simple
model with both those properties, originating from
two LLs with a periodic potential inducing both the
above features. Here is a comparison of the Chern
density of such a model and the Lattice Dirac model

HLDM = sin(px)σx + sin(py)σy + (1− cos(px)− cos(py ))σz





HF Bands



Ground state energy: FCI vs Fermi Liquid



σxy ,e∗, and ground state degeneracy
Kol and Read, PRB 48, 8890 (1993): Analyzed FQHE in a
periodic potential by various methods, including �ux
attachment and Chern-Simons theory. To understand their
conclusions, let us �rst de�ne a mean-�eld Composite Fermion
Hall conductivity σCF

xy , which is an integer in units of e2
h . This

is the Chern number of all the �lled bands of the CF's. In
terms of this, the ground state degeneracy d , the electronic
Hall conductance σxy , and the quasihole charge e∗are (for 2
�ux attached)

d = 1 + 2σCF
xy σxy =

σCF
xy

1 + 2σCF
xy

e∗ = e/(1 + 2σCF
xy )

So, for ν = 1
3 all the quantum numbers are the same as in the

Laughlin liquid. These are the states seen in numerics (Sheng
et al, arXiv:1102.2568, Regnault and Bernevig,
arXiv:1105.4867.



QHE with p/q �ux per unit cell



A Novel State

Now let us consider ν = 1
5 ⇒ Ne = 1

5Nφ, while still
attaching only two units of �ux and still maintaining
one quantum of �ux per unit cell Nφ = NUC . The
e�ective �ux seen by the CFs is
NCF

φ = Nφ − 2Ne = 3
5Nφ, so the CF �lling is

νCF = Ne
NCF

φ
= 1

3 . Without a potential this state would
be gapless. However, here the CFs see 3

5 quanta of
e�ective �ux per unit cell, so each CFLL splits up
into 3 subbands. Filling the lowest subband will give
us a gapped state.





The σxy surprise
Let us consider what the Hall conductance could be. We need
to add up the Chern numbers of the occupied CF-subands to
obtain σCF

xy . That depends on the way the total Chern index of
1 for the n = 0 CFLL splits up between the three subbands.
Say the total Chern index of the �lled two subbands is j , then

σxy =
j

1 + 2j =
1
3 ,

2
5 ,

3
7 · · ·

But the �lling factor 1
5 is not on the list!! This is a state for

which ν and σxy are di�erent. Since the ground state is unique
at the mean-�eld level, it does not break any lattice
symmetries. So this state is not adiabatically connected to any
liquid state. There is some evidence for such states for Bosons
on a lattice in an external �ux (G. Moller and N. R. Cooper,
PRL 103, 105303 (2009))



Hall Crystals

MacDonald, PRB 28, 6713 (1983): Dana, Avron, Zak, J.
Phys. C 18, L679 (1985): Kunz, PRL 57, 1095 (1986):
Tesanovic, Axel, and Halperin, PRB 39, 8525 (1989)
There is a general gap-labelling theorem, which holds for a
perfect crystal in a magnetic �eld with p

q quanta of �ux per
unit cell. Each subband α separated from other subbands by a
gap can be characterized by two integers (for noninteracting
electrons) satisfying a Diophantine equation

pσxy ,α + qmα = 1

σxy ,α is the Hall conductance of that subband in units of e2/h,
and mα is an integer whose meaning will become clear shortly.



Adding over all subbands α = 1, · · · ,N we get

p
qσxy + M =

N
q = n̄

where we have de�ned the number of electrons per unit cell n̄
and the integer M =

∑
α mα. The physical meaning of M is

the following: Drag the lattice adiabatically by one lattice unit.
The amount of charge transported per unit cell by this process
is M in units of e.
A simple example of a Hall crystal is ν = 1− 1

13 , where the
holes at 1

13 �lling make a Wigner Crystal. Impose an external
potential commensurate with the WC, and move it by one
unit. The charge that moves is 1, and the Hall conductance is
also 1.
One can think of the states which have no continuum liquid
analogue as Hall Crystal states pinned by the lattice potential.



T-invariant Topological Insulators

So far we have looked at a time-reversal-broken Chern band.
A time-reversal invariant topological insulator will have a pair
of such Chern bands with �spin�, which exchange under
time-reversal. There have been several papers classifying the
possible incompressible states of such systems.
M. Levin and A. Stern, PRL 103, 196803 (2009): Assumed
that Sz was conserved
L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry,
arXiv:1108.2440: Generic, based on the K−Matrix approach
of Wen and Zee.
Our approach can be easily extended to include two �spins�
even if there are interactions between them. Thus, all the
phenomena we are used to in the FQHE will apply to
T-invariant TIs.



Conclusions

I A single Chern band with arbitrary Chern density in the
BZ can be mapped into the LLL with a periodic potential.
Flux attachment can then be applied to a fractionally
�lled Chern band.

I We �nd states which have been seen in numerics on
fractionally �lled Chern bands, but we also �nd states that
do not have liquid analogues, for which the �lling ν is not
the Hall conductance. Such states may have been seen in
numerics for Bosons in an external �ux on a lattice.

I Our approach easily generalizes to fractionally �lled
time-reversal invariant Topological Insulators.



Open Questions

I Composite Fermions have applications beyond their utility
in constructing incompressible states in the LLL. The
most important class is the even denominator fractions in
the Fermi liquid regime. Can such a CF-Fermi liquid be
seen in a Chern band?

I So far we have ignored the band dispersions with width
W , assuming that Vee À W . However, our Hamiltonian
theory allows us to keep both and study phase transitions
as W /Vee varies.

I The e�ects of disorder on the states that have no liquid
analogue may be nontrivial, since they depend for their
very existence on a perfect lattice.

I Is it possible to have a QHE or FQHE in a fractionally
�lled band with zero Chern number?


