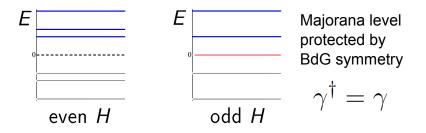
Majorana state on the surface of a disordered 3D topological insulator

P. A. loselevich, P. M. Ostrovsky, M. V. Feigel'man

13 September 2012 The Science of Nanostructures: New Frontiers in the Physics of Quantum Dots Chernogolovka

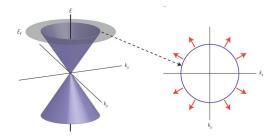
ション ふゆ アメリア メリア しょうくしゃ

Odd and even classes of H and the Majorana fermion



- ▶ Bogolyubov-de Gennes hamiltonian has built-in C-symmetry CHC = −H, breaking levels into conjugate ±E pairs and, possibly, a self-conjugate Majorana fermion
- ► symmetries like time-reversal T or spin rotation symmetry guarantee H to be even.
- *H* with only *C*-symmetry belongs to the D-class of symmetry (provided $C^2 = 1$).

Surface states of a 3D TI with \mathcal{T} -symmetry



▶ Single Dirac cone (Bi₂Se₃, Bi₂Te₃ etc)

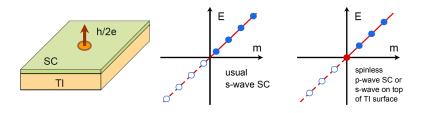
$$H_0=v_f(\mathbf{s}\cdot\mathbf{p}),$$

Spin-polarized electron states

$$\Psi = \begin{pmatrix} 1 \\ \pm \frac{p_x + ip_y}{|p|} \end{pmatrix} e^{i\mathbf{p}\cdot\mathbf{r}} \qquad E = \pm v_f |p|$$

T-symmetry connects states with opposite **p** and **s**.

Majorana fermion in a vortex core



s-wave superconductivity is induced by proximity effect

vortex breaks *T*-symmetry and produces an odd hamiltonian:

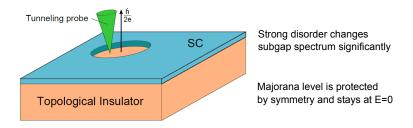
$$H = (v_f \mathbf{s} \cdot \mathbf{p} - \mu)\tau_z + \Delta(r)(\tau_x \cos \theta + \tau_y \sin \theta)$$

non-degenerate de Gennes spectrum

$$E_m = \omega_0 m, \qquad \omega_0 \sim \Delta^2 / E_f,$$

▶ m = 0 is a Majorana state (Fu, Kane, 2008)

Setup and Goal



we find

- average local density of states (DoS) $\rho(r, E)$,
- ► I(V, T) characteristics of a tunneling probe applied to the TI surface for any particular disorder realization and the average.
- special behaviour at zero-bias: 2e²/h peak for B-class (ensemble with Majorana fermion) and dip to zero for D-class (no Majorana fermion)

Hamiltonian

► The disordered superconducting TI surface is described by

$$H = (v_f \mathbf{s} \cdot \mathbf{p} - \mu + V(\mathbf{r}))\tau_z + \Delta(r)(\tau_x \cos \theta + \tau_y \sin \theta)$$

with white-noise disorder potential V(r):

$$\langle V(\mathbf{r})V(\mathbf{r}')\rangle = rac{\delta(\mathbf{r}-\mathbf{r}')}{\pi
u\tau}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamiltonian

The disordered superconducting TI surface is described by

$$H = (v_f \mathbf{s} \cdot \mathbf{p} - \mu + V(\mathbf{r}))\tau_z + \Delta(r)(\tau_x \cos \theta + \tau_y \sin \theta)$$

with white-noise disorder potential V(r):

$$\langle V(\mathbf{r})V(\mathbf{r}')\rangle = rac{\delta(\mathbf{r}-\mathbf{r}')}{\pi
u\tau}$$

▶ We consider the regime $E_{Th} = D/R^2 \ll \Delta \ll E_f$, implying

$$\Delta(r) = \begin{cases} 0, & r < R, \\ \Delta, & r \ge R. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Supersymmetric sigma-model action

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon\Lambda - \hat{\Delta})Q \right]$$

 Q is a 8 × 8 supermatrix in Nambu-Gor'kov (τ) and Particle-Hole (σ) space, obeying Q² = 1 and

$$Q = CQ^{T}C^{T} \quad \text{with} \quad C = \tau_{x} \begin{pmatrix} \sigma_{x} & 0 \\ 0 & i\sigma_{y} \end{pmatrix}_{FB},$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Supersymmetric sigma-model action

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon\Lambda - \hat{\Delta})Q \right] + \frac{S_{\theta}[Q]}{8}$$

 Q is a 8 × 8 supermatrix in Nambu-Gor'kov (τ) and Particle-Hole (σ) space, obeying Q² = 1 and

$$Q = CQ^{T}C^{T} \quad \text{with} \quad C = \tau_{x} \begin{pmatrix} \sigma_{x} & 0 \\ 0 & i\sigma_{y} \end{pmatrix}_{FB},$$

ション ふゆ アメリア メリア しょうくしゃ

▶ the Dirac spectrum produces a topological term $S_{\theta}[Q]$,

Supersymmetric sigma-model action

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon\Lambda - \hat{\Delta})Q \right] + \frac{S_{\theta}[Q]}{8}$$

 Q is a 8 × 8 supermatrix in Nambu-Gor'kov (τ) and Particle-Hole (σ) space, obeying Q² = 1 and

$$Q = CQ^T C^T$$
 with $C = \tau_x \begin{pmatrix} \sigma_x & 0 \\ 0 & i\sigma_y \end{pmatrix}_{FB}$,

- ▶ the Dirac spectrum produces a topological term $S_{\theta}[Q]$,
- $\epsilon = E + iG_t \delta(\mathbf{r} \mathbf{r}_0)/4\pi\nu$ with *E* being the energy and the second term describing tunneling to the probe; $\Lambda = \sigma_z \tau_z$.

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon \Lambda - \hat{\Delta})Q \right] + S_{\theta}[Q]$$

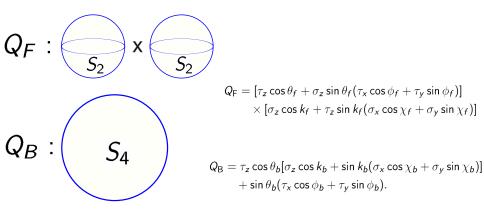
Conditions $Q^2=1$ and $Q=\overline{Q}$ lead to the structure:

$$Q = V^{-1} \begin{pmatrix} Q_{\mathsf{F}} & 0 \\ 0 & Q_{\mathsf{B}} \end{pmatrix} V$$

ション ふゆ アメリア メリア しょうくしゃ

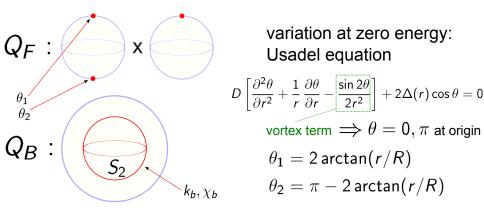
where V contains 8 grassman variables, and $Q_{F,B}$ are parameterized by 4 angles each. $Q_{F,B} = \overline{Q}_{F,B}$.

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon \Lambda - \hat{\Delta})Q \right] + S_{\theta}[Q]$$



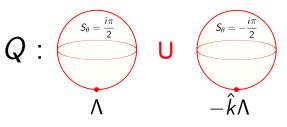
▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon\Lambda - \hat{\Delta})Q \right] + S_{\theta}[Q]$$



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

$$S[Q] = \frac{\pi\nu}{8} \int d^2 r \operatorname{str} \left[D(\nabla Q)^2 + 4(i\epsilon \Lambda - \hat{\Delta})Q \right] + S_{\theta}[Q]$$



manifold consists of two disjoint parts

structure of the symmetry class D,

Change in $S_{\theta}[Q]$ means D-*odd*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Density of states at low energies

$$\rho(r, E) = \frac{\nu}{8} \operatorname{Re} \int DQ \operatorname{Str}[\hat{k} \wedge Q(r)] \ e^{-S[Q]}.$$

Two manifold parts contribute to this integral with opposite signs, which distinguishes the D-odd (B) class from D-even. We find for $E \ll E_{Th}$

$$\rho(r, E) = \nu n(r) f(E/\omega_0),$$

$$n(r) = \cos \theta_1(r) = \frac{R^2 - r^2}{R^2 + r^2},$$

$$f(x) = \frac{\gamma}{\pi(x^2 + \gamma^2)} + 1 - \frac{\sin(2\pi x)}{2\pi x}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Density of states at low energies

$$\rho(r, E) = \frac{\nu}{8} \operatorname{Re} \int DQ \operatorname{Str}[\hat{k} \wedge Q(r)] \ e^{-S[Q]}.$$

Two manifold parts contribute to this integral with opposite signs, which distinguishes the D-odd (B) class from D-even. We find for $E \ll E_{Th}$

$$\rho(r, E) = \nu n(r) f(E/\omega_0),$$

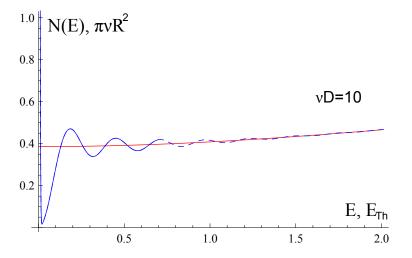
$$n(r) = \cos \theta_1(r) = \frac{R^2 - r^2}{R^2 + r^2},$$

$$f(x) = \frac{\gamma}{\pi(x^2 + \gamma^2)} + 1 - \frac{\sin(2\pi x)}{2\pi x}.$$

where $\gamma = G_t n(r_0)/2\pi \ll 1$ with r_0 being the position of the probe, and the level-spacing

ション ふゆ アメリア メリア しょうくしゃ

$$\omega_0^{-1} = 2\nu \int d^2 r \, \cos \theta_1(r) = 2\pi (\log 4 - 1)\nu R^2$$



Integrating $\rho(r, E)$ over d^2r we obtain

$$N(E) = \frac{\gamma}{2\pi(E^2/\omega_0 + \gamma^2\omega_0)} + \frac{1}{2\omega_0} \left[1 - \frac{\sin(2\pi E/\omega_0)}{2\pi E/\omega_0} \right]$$

When $G_t = 0$ (no probe) the first term becomes $\delta(E)/2$, characteristic for the B-class (D. A. Ivanov, 2002). \mathbb{B}

Tunneling current

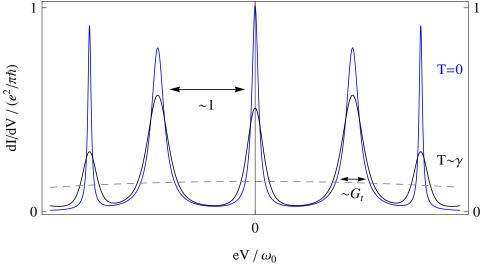
The current in a tunneling experiment is

$$I = \frac{eG_t}{h\nu} \int \rho(E, r_0) [f(E - eV) - f(E)] dE$$

with the Fermi distribution function f(E). At $eV \ll \omega_0$ we get

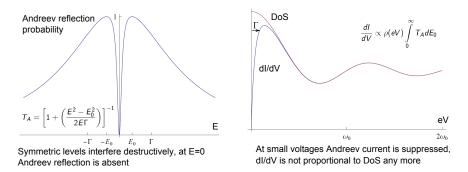
$$\frac{dI}{dV} = \begin{cases} \frac{2e^2\gamma^2}{h[\gamma^2 + (eV/\omega_0)^2]}, & T \ll \gamma\omega_0, \\ \frac{\pi e^2\gamma\omega_0}{2hT\cosh^2(eV/2T)}, & \gamma\omega_0 \ll T \ll \omega_0. \end{cases}$$

At small T there is a Lorentz peak at E = 0 with a width $\sim G_t \omega_0$ and a universal height $e^2/\pi\hbar$ meaning perfect Andreev reflection (Law, Lee, Ng, 2009).



- All levels produce Lorentz-shaped resonances;
- Heights equal $\frac{2e^2}{h} \frac{\psi^{\dagger} C \psi}{\psi^{\dagger} \psi}$, widths equal $G_t \frac{\psi^{\dagger} \psi}{\nu}$;
- Fermionic levels produce two peaks at ±E, Majorana level creates one peak at E = 0. For D-even I(0) ≡ 0.

zero-bias conductance dip in class D



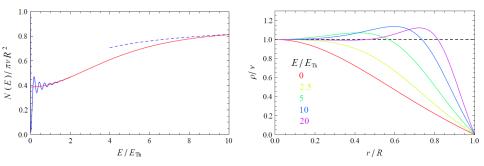
- Exactly at E = 0 conductance is either 0 or 2e²/ħ. This follows from BdG-symmetry and unitarity for a single-channel S-matrix.
- ▶ in D-class (no Majorana fermion) dI/dV = 0. Processes involving symmetric Andreev levels ±E_j cancel each other out
- ► in B-class (one Majorana fermion) dI/dV = 2e²/ħ which is the Majorana fermion contribution

Conclusions

Conclusions [PRB, 86, 035441 (2012)]

- Tunneling current in a vortex core on a TI surface has been studied in the strong disorder limit
- The average DoS has been calculated in the presence of a tunneling probe
- The current in a tunneling experiment has been studied for arbitrary disorder realizations
- ► The approach is universal and applies e.g. to Majorana fermions in nanowires which also fall into the B D class ([Bagrets, Altland 2012])
- DoS does not directly translate into conductance zero-bias conductance is quantized, leading to a dip in dI/dV at V = 0 in class D

Density of states at high energies



At $E \gg E_{Th}$ we use a mean-field formula

$$\rho(r, E) = \nu \operatorname{Re} \cos \theta(r, E)$$

It yields, in particular

$$N = \pi \nu R^2 \left(1 - (2 - \sqrt{2}) \sqrt{\frac{E_{Th}}{E}} \right),$$

plotted in dashed blue on the left figure. The red curve is numerical.

Topological term

For our parameterization, it explicitly reads

$$S_{\theta}[Q] = \frac{i}{4} \int d^2 r \Big[\sin \theta_f \big(\nabla \theta_f \times \nabla \phi_f \big) + \sin k_f \big(\nabla k_f \times \nabla \chi_f \big) \Big]$$

It can be written invariantly as a Wess-Zumino-Wittem term

$$S_{\theta}[Q] = \frac{i\epsilon_{abc}}{24\pi} \int_0^1 dt \int d^2 r \operatorname{str} \left[Q^{-1}(\nabla_a Q) Q^{-1}(\nabla_b Q) Q^{-1}(\nabla_c Q) \right]$$

where Q is extended onto a third dimension t. The variation $\delta S_{\theta}[Q]$ only depends on $Q = Q|_{t=1}$. If $Q^2 = 1$, then $\delta S_{\theta}[Q] \equiv 0$ equals exactly zero, so that $S_{\theta}[Q] = const$ over any connected part of the manifold, thus playing the role of a topological term.

$$T_A = \left[1 + \left(\frac{E^2 - E_0^2}{2E\Gamma}\right)\right]^{-1}$$

For $\Gamma\ll\omega_0$ we get at zero temperature

$$\frac{dI}{dV} \propto \rho(eV) \int_{0}^{\infty} T_{A} dE_{0}$$
 (1)

this is easily generalized to finite temperatures

Majorana fermion

self-conjugate (hermitian) particle

$$\gamma^{\dagger} = \gamma,$$

• energy equal to exactly zero, since $[H, \gamma^{\dagger}] = E\gamma^{\dagger}$ and $[H, \gamma] = -E\gamma$

half a conventional fermion

$$c^{\dagger} = \gamma_1 + i\gamma_2$$

 $c = \gamma_1 - i\gamma_2$

▶ if γ is made out of electronic operators ψ, ψ^{\dagger} then

$$\gamma = \lambda^* \psi^\dagger + \lambda \psi$$

ション ふゆ アメリア メリア しょうくしゃ

Majorana fermion and superconductivity

 electron-hole mixing is necessary for γ, and is provided by superconductivity

$$H = egin{pmatrix} H_0 & \Delta \ \Delta^* & -\Theta^{-1}H_0\Theta \end{pmatrix}$$

with time-reversal $\Theta = s_y K$ (s_y acts on spin, K is c.c.), \blacktriangleright H has a built-in C-symmetry

$$CHC = -H$$

 $C = \tau_y \Theta$ is charge conjugation (τ_y acts in Nambu space). $C^2 = 1$, energy levels split into -E, E pairs

$$\Psi_{-E} = \mathcal{C}\Psi_E \qquad \qquad \gamma = \mathcal{C}\gamma$$

 BdG double-counting means a single γ-eigenstate counts as half a conventional fermion