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                                  Outline: 
 
- Introduction to Majorana fermions 
 

- 1D topological superconductor and Majorana bound states:  
   using circulating magnetic field 
 

- Detection of Majorana bound states: resonant Andreev reflection  
 

- Poor’s man Majorana in double dot system 
 
- Non-abelian manipulation via single electron control 
 

- Outlook 
 

 
 
 



Majorana fermions briefly: 
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Majorana fermions are their own antiparticles 

Hence: carries no charge and no spin 

Must have the form 

i.e. superposition of particle & anti-particle 
 
so we  look in superconductors, where quasiparticles are mixtures  
of holes and electrons 
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How many particles? 

Majorana fermions cannot be ”counted”: 

But out of two Majorana fermions, we can make one 
usual fermion: 

Two Majorana fermions equivalent to one  
two-level system: empty or full 

Obeys usual Fermion relations, i.e. c is ”Dirac” fermion.  
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Majorana fermions separated in space: 

Groundstate degenerated  
Even and odd number of electrons, 
has the same energy (parity) 

Information stored non-locally 
Allows topological quantum computing 

BUT NOT UNIVERSAL  



How to make Majorana Fermions 
in hybrid structures 
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1D Topological superconductor 

Semiconductor with strong S0 

S-wave superconductor 

With B: can couple to s-wave superconductor 

Oreg et al. 2010  
Alicea 2010 
Lutchyn et al 2010 
Sau et al. 2010 
Alicea et al. 2010 
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Bogoliubov-de Gennes  



Triplet superconductor 
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Semiconductor with strong S0 

S-wave superconductor 

Pairing in semiconductor induced by proximity effect: 

Boundstates at the ends 

Lutchen et al. PRL 2010 
Oreg et al. PRL 2010 
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Alternative methods to make topologically non-trivial 
superconductor without spin-orbit coupling 

Kjærgaard, Wölms, Flensberg, PRB 2012. 

Rotate spin to align with B 

Gives spin-orbit coupling in local frame: 

= spin-orbit interaction 

Braunecker et al. , PRB (2010) 
Choy et al., PRB (2011) 
Martin, F. Morpurgo, PRB (2012) 
Kupferschmidt, Brouwer, PRB (2011) 
…  



Niels Bohr Institute 

”Optimized” geometries: nanowire 

Comparable to 
strong intrinsic 
SOI 
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Topological quantum number 
Akhmerov, Hassler, M. Wimmer,  Beenakker (2011) 
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Majorana state with spin texture 

Kjærgaard, Wölms, Flensberg, PRB 212 

M1 M2 

= electron spin up 

= electron spin down 

= hole spin down 

= hole spin up 



How to detect Majorana end bound states 
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Topological superconductor  Normal lead 

V 

m 

MBS Electrons Holes 

Andreev channel: resonant 

m+D 

m-D 

Flensberg, PRB 2010 

 

Bolech and Demler, PRL 2007. 
Law, Lee, and Ng, PRL 2009 
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Experimental progress ? 
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Delft experiments 
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Weizmann experiments 

Majorana peak ? 



Niels Bohr Institute 

While we are weating for the real thing ... 

poor man’s Majorana ... 
(Leijnse & Flensberg, arXiv: arXiv:1207.4299) 

Geometry similar to: 
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Double dot geometry 

QD 1 QD 2 

Superconductor 

V
1
gV
2
g~B 1~B 2²1²2

- Two quantum dots with tunable onsite energy 
- Strong non-collinear magnetic field (Spin-orbit not needed !) 
- Cross Andreev reflection  (This is a very bad Cooper-pair splitter)  

 

Summary:  
- Majorana modes localized to the dots 
- Somewhat robust 
- Easy tuning of normal and Andreev tunneling by angle between B1 and B2 
- Allows testing of properties of a parity qubit 

Inspiration from Sau and Das Sarma,  
arXiv: 1111.6600 

magnet 
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Hamiltonian:  
cross Andreev tunneling and normal tunneling 

QD 1 QD 2 

~B 1~B 2²1²2
magnet 
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Hamiltonian:  
cross Andreev tunneling and normal tunneling 

QD 1 QD 2 

~B 1~B 2²1²2
Control ratio : 

magnet 
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BdG equations 
Majorana mode 1 Majorana mode 2 

Operators: 

 
- Non-overlapping Majorana Fermions, 
 
- Localized to each dot 
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Quadratic “Protection” 
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Transport properties 

Sweet spot and t= D=5G 

Resonant Andreev 
tunneling peak ! 
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Tuning e1, e2 and t via transport spectroscopy 

e2 =0, Changing e1  e1 =0, Changing e2          e1 = e2 = e  e1 =e2 =0, Changing t   
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Many-body formulation:  

Note 

Interactions:               remove the quadratic protection                 
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Non-locality   

Parity qubit =  

Non-local because one cannot determine qubit 
state by measuring charge on a single dot 

Charge 
detector 

Non-local measurement can determine qubit state: 
  
Different fluctuations! 

Fluctuations can be measured with a non-linear charge detector 
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Parity qubit 

Odd 

Even 
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Parity qubit dephasing measurement 

ec 

tBC tAC 
A B 

Eigenstates for 8x8 

Even sector and tAC = tBC: 
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Parity qubit dephasing measurement 

ec 

tBC tAC 
A B 

Always full dot:     .  Always empty dot:  

Sequence: 
-   Relax system at large ec  to:                        
 
 
- Move to negative ec  

 

- Dot charge “collapses” 
 
      Empty: 
        
      Full:  
 

- Move back to positive ec :  
No dephasing: full with P = 1 
Dephased: full with P=1/2    

      Bell state in A/B and e/o 
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Summary poor man’s Majorana 

- Localized Majorana modes 
 

- Quadractically protected (onsite energy) 
 

- Resonant Andreev tunneling can be tested 
 

- Dephasing and lifetime of parity qubit can be tested 
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Ways to manipulate the groundstate manifold  
of the Majorana bound states 

BACK TO RICH MAN’S MAJORANAS 
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Real space exchange: 
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Braid by changing tunnel coupling between MBS: 
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Combining MBS and Josephson junctions: 
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Using quantum dots: 

By changing the charge on a dot by one electron: 



Coupling to two Majorana bound states 
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Requires: 
-Constant tunneling amplitudes 
-Constant flux 
 

But no dependence on timing  
 

Flensberg,  PRL (2011) 
 

M1+M2+D1: 
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Compare to braiding 

With              :  

”Tunnel braid” can mimic real space braiding, 
but also more 

M1 M2 

M2 M1 



Demonstration of non-Abelian operations 
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Two fermions:  

Basis:  

Initialize:  

Read out! 



Majorana fermions exist in system that combine 

• Ordinary s-wave superconductors 

• Semi-conductors with few channels (low density!) 

• Strong spin-orbit coupling, or spatially varying B-field 

 

Once we have such systems, we can start to investigate: 

 

• Perfect Andreev reflection? 

• Non-Abelian nature of Majorana quasiparticles? 

• What is the phase coherence of the parity degree of freedom? 

• Can these systems be used for topological quantum computing? 
(in hybrid structures!) 

• ? 
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Outlook 

Thank you! 


