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Delocalization for a disordered interacting
system

There has been a considerable amount of discussion In
the literature on whether electron-electron interactions
may enhance the localization length, motivated by the

“2DMIT” (2D metal insulator transition) and 2 particle
delocalization.

For spinless 1D systems it is clear that e-e interactions
decrease the ground-state localization length (i.e., lead to
stronger localization)

The ground state of a 1D disordered system is
localized even in the presence of e-e interactions



What about the excited states?
Fock space localization
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o(T) a I Relevant to infinite systems?



What about the excited states
for infinite systems?
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Numerical Demonstration:

Conductance (especially for finite temperature) is
computationally taxing.

Level statistics is hard to interpret (requires extrapolation

from small systems)
R. Berkovits and B. Shklovskii, J. Phys. CM 11, 779 (1999).
V. Oganesyan and D. A. Huse, PRB 75, 155111 (2007).

Renormalized hoppings (works for infinite temperature)
M. Cecile and G. Thomas, PRB 81 134202 (2010).

Entanglement Entropy (EE) may be the answer!



EE - Entanglement Entropy

CUSE
System (a)

Is In a pure
state

Divide the system into two regions A and B. Any pure state:

‘\PA,B> — Zi,j@i,j ‘7/}/4,?) ‘wB,j>



Using the Schmidt decomposition

WaRp) = 2iq;|04)|0Bi)

* two orthonormal basis |¢4;) and |¢p ;)
ey > 0and X007 =1

Reduced density matrix:
pap = Trp 4| W) (V|
pa/p =S |daspi)(dass.il



Definition of entanglement entropy

SA/B = —23@3 ID(OC?)

I.e. the von Neuman (or Shannon in the context of
Information theory) entropy of the reduced density
matrix

Obviously S4 = Sp

Properties: additivity and convexity



Dependence of EE on dimension,
shape and topology of the region A

(a) -

The area law S Lgf_l)

M. Srednicki, Phys. Rev. Lett.., 71, 666 (1993)



Connections between EE and
condensed matter physics

DMRG - Density Matrix Renormalization Group — an
extremely accurate numerical method for the calculation
of the ground state of a one-dimensional many-body system

QPT - Quantum Phase Transitions — EE exhibits a unique
signhature in its behavior at a QPT. This enables to identify
and study the properties of QPT.



QPT and EE in one-dimensional systems

According to the area law S5 Lfff—l) resulting in a
constant EE for 1D systems

Nevertheless for an infinite correlation length
there are logarithmic corrections resulting in:

1
S4 X = ; log(L4) +C

while for systems with a finite correlation length
(for example gapped systems):

Sq o = 3 1052;(5) + '



Anderson Localization and EE

Metallic regime - extended states, infinite localization
length and therefore we expect a logarithmic
dependence of the EE for the ground state and

a hon suppressed EE for the excited states

Localized regime - finite localization length (although
there is no gap) and therefore we expect a constant
EE both for the ground and excited states once the
system size exceeds the localization length

A good way to identify the localization
length for an interacting system



The one dimensional Hamiltonian

ZEJ Jr(/\’ —tz CJ+1‘|‘hC)

L—-1 1 1
+ U D (66 = 51641~ 5)
j=1
L

where the on-site energies are taken from the range [-W/2,W/2]
and the LL parameter g:

g(U) =m/[2cos™H(=U/2)



For the non-interacting case it is numerically known
that the localization length depends on the width of
the on-site energy distribution:

EW,U =0) ~ 105/W?3
Ro“mer and Schreiber, PRL 78, 515 (1997).

While the influence of interaction was postulated
to reduce the ground state localization length by:

EW.U) = (WU = 0) /0210

Apel, J. Phys. C 15, 1973 (1982);
Giamarchi and Schulz PRB 37,325 (1988).



Ground state finite size effects (clean system)

1 L
S(La, L) = gln (sin (ﬁTA)) +c

(Holzhey,Larsen,Wilczek,1994)
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Finite size effects (disordered system)

S(La,€, L) = s(€)n (erf (

La

R. Berkovits, PRL 108 176803 (2012).
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For a clean system

s(6 — o0) =~ 1/6

1 Co(L) = ¢(L,00)

Co = 0.357L
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Interpolation of
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Interacting systems
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Entanglement entropy of excited states

Vincenzo Alba', Maurizio Fagotti’
and Pasquale Calabrese?

Conversely, only little attention has been devoted to the entanglement properties of
excited states (with the exception of a few papers [9]-[11]), although it is a very natural
problem. Here we consider two topical spin chains [12] to address this issue. We first

No general understanding of the excited
states EE is available even for a clean 1D
non-interacting system



Two-Particle excited states EE

The study of two-particle excited states was very fruitful
In understanding interaction induced (de)localization.
(D. L. Shepelyansky 1994, Y. Imry 1995)

Simple enough to obtain some analytical results for
the excited states EE

N N
H = E €j&}&j—t5 (e?’“&;&jﬂ—l—h.c.)

s P
‘kl, ]{2> Two-particle state

EE Sa(ko — ki >1)=-2(1—2)In(l —2) — 2zIn(x)
where ¥ = N, /N
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Interacting Two Particles on A Disordered Ring
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Interaction significantly enhances EE
above clean limit for high excitationsT




How should the many particle delocalization
influence the EE?

EE of excitations below the critical energy (temperature):
Similar behavior to the localized ground state, I.e.,
saturate at &.

EE of Excitations above the critical energy: should not
saturate. A smoking gun would be no decrease as the
system size is enhanced.

Location of critical energy should shift with interaction
(note that the ground state localization also depends on
the interaction strength).



DMRG Low Excitations Metal
U=-1,W=0.7
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Rescaled Low Excitations Metal

U=-1,W=0.7

— First Excited
Second Excited
—— Third Excited

é(x)=S'((LIL')x')+Const

Very different than for the ground state
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Weaker disorder
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Same localization length  £=100

larger interaction
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Summary

* Entanglement entropy behavior depends on the
correlation length of the system.

* Thus, EE could be used to identify different phases
of a system and identify guantum phase transitions
such as the Anderson localization transition.

* Furthermore, EE could be used to calculate the
correlation (localization) length.

* EXxcited states EE show glimpses of many-electron
metal-insulator transition.

v




Density Matrix Renormalization Group (DMRG)

PHYSICAL REVIEW B VOLUME 48, NUMBER 14 1 OCTOBER 1993-11

Density-matrix algorithms for quantum renormalization groups

Steven R. White

REVIEWS OF MODERN PHYSICS, VOLUME 77, JANUARY 2005

The density-matrix renormalization group

U. Schollwock



Numerical Renormalization Group (NRG)

O @
1. Add an additional site
Q Q ‘ 2. Retain only the m states

Q Q Q ‘ with the lowest energy
O OO0 @

Works perfectly for impurity problems (Kondo)

Fails miserably for extended systems (Luttinger Liquids)



block S block E Infinite size DMRG

J 2 sites ‘ 1. Add an additional site to the system

and environment

OO
# # ¢ Jr 1. Form the density matrix for the
superblock system

system environment 3. Retain only the m states with the

/ \ highest density matrix eigenvalues

new block S new block E

2
TABLE II. Infinite system density-matrix algorithm for a 1D system.

o

10.

Make four initial blocks, each consisting of a single site, representing the initial four site system. Set up matrices
representing the block Hamiltonian and other operators.

Form the Hamiltonian matrix (in sparse form) for the superblock.

Using the Davidson or Lanczos method, diagonalize the superblock Hamiltonian to find the target state v¥(i1,12,%3,%4).
¥ is usually the ground state. Expectation values of various operators can be measured at this point using ).

Form the reduced density matrix for the two-block system 1-2, using p(i1,12;},13) = Zia,iq P(i1, 12,13, 14)0(2], 15, 13, 24).
Discard all but the largest m eigenvalues

o

Diagonalize p to find a set of eigenvalues w, and eigenvectors uy, ;..

and associated eigenvectors.

Form matrix representations of operators (such as H) for the two-block system 1-2 from operators for each separate
block [cf. Eq. (4)].

Form a new block 1 by changing basis to the u® and truncating to m states using HY = OH'M™20!", etc. If blocks

1 and 2 have m; and mg states, then O is an m x mim2 matrix, with matrix elements O(a;i1,12) = ug) 4,, @« = 1,...,m.
Replace old block 1 with new block 1.

Replace old block 4 with the reflection of new block 1.

Go to step 2.




Finite size DMRG

and of infinite block S 2 sites block E

DMRG [ Joo[ 1]

environment

gowth [ (etieved) JOO[+— 1]
system size
minimal EOO:
sowth =100 ___Gotiovesy ]
e L Joo[ 1]
DMRG O

Iteration improve dramatically the accuracy

At each point in the DMRG iteration on has all the
ingredients to calculate the EE
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