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Ground State
R. Berkovits, PRL 108 176803 (2012).

Excited State
(work in progress).



Delocalization for a disordered interacting
system

There has been a considerable amount of discussion in
the literature on whether electron-electron interactions
may enhance the localization length, motivated by the
“2DMIT” (2D metal insulator transition) and 2 particle
delocalization.

For spinless 1D systems it is clear that e-e interactions 
decrease the ground-state localization length (i.e., lead to 
stronger localization)

The ground state of a 1D disordered system is 
localized even in the presence of e-e interactions



What about the excited states?
Fock space localization

Sivan, Imry, Aronov, EPL 28,115 (1994)

σ(Τ) α Γ Relevant to infinite systems?



What about the excited states 
for infinite systems?





Numerical Demonstration:

Conductance (especially for finite temperature) is 
computationally taxing.

Level statistics is hard to interpret (requires extrapolation
from small systems)
R. Berkovits and B. Shklovskii, J. Phys. CM 11, 779 (1999).
V. Oganesyan and D. A. Huse, PRB 75, 155111 (2007).

Renormalized hoppings (works for infinite temperature)
M. Cecile and G. Thomas, PRB 81 134202 (2010).

Entanglement Entropy (EE) may be the answer!



EE - Entanglement Entropy

System (a)
Is in a pure
state 

Divide the system into two regions A and B. Any pure state:



*

*

Reduced density matrix:



Definition of entanglement entropy

i.e. the von Neuman (or Shannon in the context of
Information theory) entropy of the reduced density
matrix

Properties: additivity and convexity



Dependence of EE on dimension,
shape and topology of the region A

The area law

The EE is proportional to the surface area between A and B



Connections between EE and 
condensed matter physics

DMRG – Density Matrix Renormalization Group – an
extremely accurate numerical method for the calculation
of the ground state of a one-dimensional many-body system

QPT – Quantum Phase Transitions – EE exhibits a unique
signature in its behavior at a QPT. This enables to identify
and study the properties of QPT.



QPT and EE in one-dimensional systems

According to the area law                      resulting in a
constant EE for 1D systems

Nevertheless for an infinite correlation length 
there are logarithmic corrections resulting in: 

while for systems with a finite correlation length  
(for example gapped systems):



Anderson Localization and EE

Metallic regime - extended states, infinite localization
length and therefore we expect a  logarithmic 
dependence of the EE for the ground state and  
a non suppressed EE for the excited states

Localized regime – finite localization length (although
there is no gap) and therefore we expect a constant
EE both for the ground and excited states once the 
system size exceeds the localization length

A good way to identify the localization
length for an interacting system



and the LL parameter g:

The  one-dimensional Hamiltonian

where the on-site energies are taken from the range [-W/2,W/2]

L

A B

L
A



Apel, J. Phys. C 15, 1973 (1982);
Giamarchi and Schulz PRB 37,325 (1988).

For the non-interacting case it is numerically known
that the localization length depends on the width of
the on-site energy distribution:

While the influence of interaction was postulated
to reduce the ground state localization length by:

Ro¨mer and Schreiber, PRL 78, 515 (1997).



Ground state finite size effects (clean system)

(Holzhey,Larsen,Wilczek,1994)



Finite size effects (disordered system)

For a clean system

R. Berkovits, PRL 108 176803 (2012).





Interpolation of 

Interpolation between the two limits



Interacting systems



No general understanding of the excited
states EE is available even for a clean 1D
non-interacting system



Two-Particle excited states EE

The study of two-particle excited states was very fruitful
in understanding interaction induced (de)localization.
(D. L. Shepelyansky 1994, Y. Imry 1995)

Simple enough to obtain some analytical results for
the excited states EE

Two-particle state

EE



1

23

Clean Ring N=1000

Numerical

Analytical



Interaction significantly enhances EE
above clean limit for high excitations!



How should the many particle delocalization
influence the EE?

EE of excitations below the critical energy (temperature): 
Similar behavior to the localized ground state, i.e., 
saturate at 

EE of Excitations above the critical energy: should not
saturate. A smoking gun would be no decrease as the
system size is enhanced.

Location of critical energy should shift with interaction 
(note that the ground state localization also depends on 
the interaction strength).



L=300
L=700



            S(x)=S'((L/L')x')+Const

Very different than for the ground state



L=300
L=700

Strong disorder
ξ<< L



Weaker disorder
ξ< L



Same localization length 
larger interaction
ξ< L

As interaction becomes stronger the excited
state entanglement increases.
Sign of a lower critical excitation energy?



• Entanglement entropy behavior depends on the 
correlation length of the system.

• Thus, EE could be used to identify different phases 
of a system and identify quantum phase transitions 
such as the Anderson localization transition.

• Furthermore, EE could be used to calculate the 
correlation (localization) length.

• Excited states EE show glimpses of many-electron 
metal-insulator transition.

Summary



Density Matrix Renormalization Group (DMRG)



Numerical Renormalization Group (NRG)

1. Add an additional site
2. Retain only the m states

with the lowest energy

Works perfectly for impurity problems (Kondo)

Fails miserably for extended systems (Luttinger Liquids) 



Infinite size DMRG
1. Add an additional site to the system
and environment
1. Form the density matrix for the 

system
3. Retain only the m states with the

highest density matrix eigenvalues
 



Finite size DMRG

Iteration improve dramatically the accuracy
At each point in the DMRG iteration on has all the 
ingredients to calculate the EE
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