Dipole coupling of a double quantum dot to a microwave resonator

Tobias Frey, P. J. Leek, A. Blais, M. Beck, <u>J. Basset</u>, T. Ihn, K. Ensslin and A. Wallraff

Quantum Device Lab Nanophysics Group

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Context and motivations

Overall trend of coupling a Two Level System (TLS) or quantum bit to a resonant cavity

→ long distance exchange of quantum information, distant q-bits entanglement,...

["] Very well established in the

- Cold atoms community : cavity Quantum ElectroDynamics (cavity QED)

- Superconducting q-bit community : circuit Quantum ElectroDynamics (circuit QED)

["] Never realized using TLS made out of artificial atoms in semiconductor heterostructures with leads

Context and motivations

Interconnect the worlds of semiconductor and superconductor based quantum circuits

Circuit quantum electrodynamics

Potential benefits:

- Use electrons spins quantum bit \rightarrow low relaxation and dephasing rate
- Realize interfaces between different type of quantum systems

Context and motivations

Very challenging strong coupling regime necessary:	
Exchange rate = g must be much higher than any other decay rates	
$g/2\pi > 1/T_1$	decay rate of the excited state (relaxation rate)
$g/2\pi > 1/T_{\phi}$	 dephasing rate
g/2π > κ/2π	= decay rate of the photon in the cavity

Outline

Dipole coupling of a double quantum dot to a microwave resonator

1. Hybrid quantum device and circuit QED measurement setup

2. Sensitivity of the resonator to the double quantum dot

3. A Jaynes-Cummings Hamiltonian theoretical interpretation

Outline

Dipole coupling of a double quantum dot to a microwave resonator

1. Hybrid quantum device and circuit QED measurement setup

2. Sensitivity of the resonator to the double quantum dot

3. A Jaynes-Cummings Hamiltonian theoretical interpretation

Hybrid quantum device

Aluminum resonator $v_{res} \approx 6.75 \text{ GHz}$ $Q \approx 2600$ \Rightarrow Photon decay rate~2.6MHz

(not limited by substrate but by coupling to feed lines. Best Q obtained for undercoupled resonator 10⁴)

Hybrid quantum device

T. Frey et. al. PRL 108, 046807 (2012)

Hybrid Quantum Dot / Circuit QED Measurement Setup

hybrid sample holder

~10 mK plate of cryostat

Pulse tube cooled cryostat

Outline

Dipole coupling of a double quantum dot to a microwave resonator

1. Hybrid quantum device and circuit QED measurement setup

2. Sensitivity of the resonator to the double quantum dot

3. A Jaynes-Cummings Hamiltonian theoretical interpretation

Double Dot Current and Resonator Transmission

Transport measurements:

″ T_{el}~135mK

Double Dot Current and Resonator Transmission

Resonator transmission :

- ″ Amplitude A
- \H Phase ϕ

➔ Reference transmission spectra

Double Dot Current and Resonator Transmission

Stability diagrams in Current, Amplitude and Phase

Stability diagrams in Current, Amplitude and Phase

- systematic changes in transmission amplitude and phase
- " equivalent charging diagrams ...
- 🧴 ... but different physical signal origin
 - → Amplitude : loss through the DQD
 - Phase : Dispersive shift due to the DQD

Charging Diagrams in Current, Amplitude and Phase

Charging Diagrams in Current, Amplitude and Phase

Charging Diagrams in Current, Amplitude and Phase

Resonator/Double-Dot Interaction Center Gate Voltage (V_c) Influence

Resonator/Double-Dot Interaction Center Gate Voltage (V_c) Influence

Vc more negative

Detailed Resonator/Double-Dot Interaction

Detailed Resonator/Double-Dot Interaction

Outline

Dipole coupling of a double quantum dot to a microwave resonator

1. Hybrid quantum device and circuit QED measurement setup

2. Sensitivity of the resonator to the double quantum dot

3. A Jaynes-Cummings Hamiltonian theoretical interpretation

Jaynes-Cummings Hamiltonian modeling the dipolar interaction

Jaynes-Cummings Hamiltonian modeling the dipolar interaction

Jaynes-Cummings Hamiltonian modeling the dipolar interaction

- To fit the experimental data:
 - Jaynes-Cummings Hamiltonian + q-bit relaxation + q-bit dephasing

→ Markovian master equation approach (Alexandre Blais – Sherbrooke University)

- Phonon decoherence Vorojtsov et al. PRB 71, 205322 (2005)
 - Iongitudinal piezoelectric phonons : maximum effect when 2t/h~s/a
 - S : phonon velocity (~5.10^3m/s); a : dot size (~50nm); s/a ~100GHz >2t/h
 - ["] Theory predicts 1 to 2 orders of magnitude smaller decoherence rate (10-100MHz) than observed in the experiment (GHz)

- Excited states close in energy due to the large number of electrons and electronic temperature T=135mK
 - *Petersson et al. PRL 105, 246804 (2010)* obtained a decoherence rate ~100MHz in the few electron regime

- Decoherence by electromagnetic fluctuations Valente et al. PRB 82, 125302 (2010)
 - Approximately 4 times less critical than phonons (~25MHz) ; can be reduced by decreasing the interdot charge coupling

- Dephasing due to background charge fluctuations *Itakura et al. PRB 67, 195320 (2003), Abel et al. PRB 78, 201302 (2008), Yurkevich et al. PRB 81, 121305 (2010)*
 - Sample dependent decoherence that might be reduced from one wafer to the other (MHz to GHz)

A very timely experiment....

Toida et al. arXiv 2012 (Japan) Same experiment with GaAs DQD

Longer relaxation and decoherence times without fundamental difference

➔ Wafer to wafer fluctuations

Petersson et al. arXiv 2012 (USA)

InAs nanowires

Roughly similar data

Possible improvements

- ["] Possible improvements:
 - Emptying the double dot system down to the last electron

 \rightarrow 1/T₁, 1/T_{ϕ}

- Increasing the lever arm of the gate coupled to the resonator
- Decrease the cross-talk between the resonator gate and the second dot

Possible improvements

- ⁷ Possible improvements:
 - Emptying the double dot system down to the last electron

 \rightarrow 1/T₁, 1/T_{ϕ}

- Increasing the lever arm of the gate coupled to the resonator
- Decrease the cross-talk between the resonator gate and the second dot

→g /

- ["] Limitations :
 - Imply the use of a purely gated system (no mesa edge)
 - \rightarrow 2DEG depth~95nm instead of 35nm ; g
 - → Cross-talk increase; g
 - ightarrow Confinement of the wave function enhanced; g \searrow
 - Best ever decoherence rate (*Petersson et al. PRL 105, 246804 (2010*)) $1/T_{\phi} = 1/10$ ns \Leftrightarrow 100MHz > g

Possible improvements

- ⁷ Possible improvements:
 - Emptying the double dot system down to the last electron

 \rightarrow 1/T₁, 1/T_{ϕ}

- Increasing the lever arm of the gate coupled to the resonator
- Decrease the cross-talk between the resonator gate and the second dot

→g /

- ["] Limitations :
 - Imply the use of a purely gated system (no mesa edge)
 - \rightarrow 2DEG depth~95nm instead of 35nm ; g
 - → Cross-talk increase; g
 - ➔ Confinement of the wave function enhanced; g \
 - Best ever decoherence rate (*Petersson et al. PRL 105, 246804 (2010*)) $1/T_{o} = 1/10$ ns \Leftrightarrow 100MHz > g

Conclusions:

- ➔ Issue on g increase is not clear yet
- The strong coupling regime seems difficult to reach with charge states even though calculations have shown that it may work

Natural perspectives, next steps :

→ SPIN STATES due to their insensitivity to electric types of fluctuations see K.D. Petersson et al. arXiv 1205.6767 (2012) at Princeton

Conclusions and perspectives

Dipole coupling of a double quantum dot to a microwave resonator
 T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, A.Wallraff,
 PRL 108, 046807 (2012)

Outlook

- ["] Reach the single electron regime
- ["] Explore limits of coherence
- "Work towards coherent interface
- ["] Evaluate potential to investigate spin physics
- ["] Use resonator as a coupling bus in semiconductor-based QIP
- ["] Quantum dot admittance probed at microwave frequencies with an on-chip resonator

T. Frey, P. J. Leek, M. Beck, J. Faist, M. Büttiker, A. Wallraff, K. Ensslin, T. Ihn PRB 86, 115303 (2012)

