

DIP

Energy relaxation and thermalization of hot electrons in quantum wires Felix von Oppen FU Berlin

Collaborators

G. Barak, H. Steinberg, L.N. Pfeiffer, K.W. West, L. Glazman, FvO & A. Yacoby

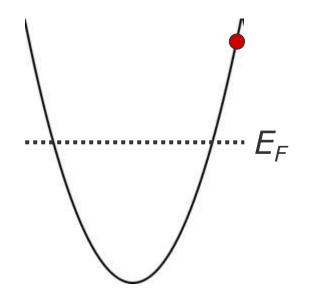
Nature Phys. 6, 489 ('10)

T. Karzig, L. Glazman & FvO

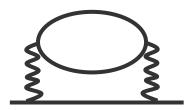
arXiv:1007.1152

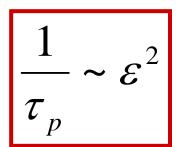
Basic question:

inject hot particle into one-dimensional electron liquid

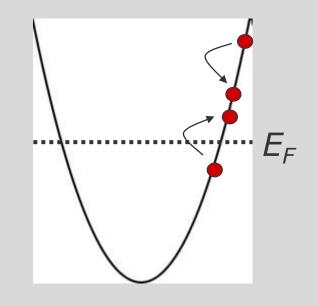


higher dimensions:





Perturbative approach:



Momentum & energy conservation $k_1 + k_2 = k_3 + k_4$

$$k_1^2 + k_2^2 = k_3^2 + k_4^2$$

only solutions:
k₁=k₃ ; k₂=k₄
k₁=k₄ ; k₂=k₃

No relaxation by excitation of p-h pair

Tomonaga-Luttinger model:

$$H = \frac{\hbar c}{2\pi} \int dx \left\{ \frac{1}{K} (\nabla \phi)^2 + K (\nabla \theta)^2 \right\}$$

- purely quadratic Hamiltonian
- can be mapped to free fermions by rescaling fields

No inelastic processes due to linear dispersion

Outline

Experiment

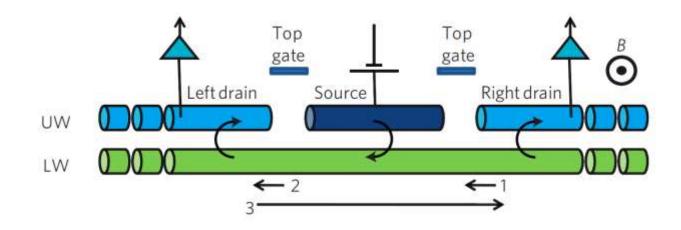
Nature Phys. 6, 489 (`10)

Fundamental relaxation processes in 1d arXiv:1007.1152

Sketch of derivations

Conclusions

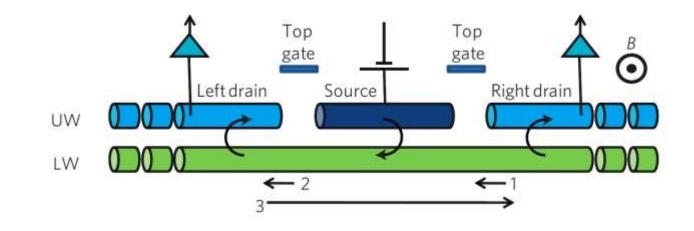
Experiment



- momentum-conserving tunneling
- voltage drops mostly between source and lower wire

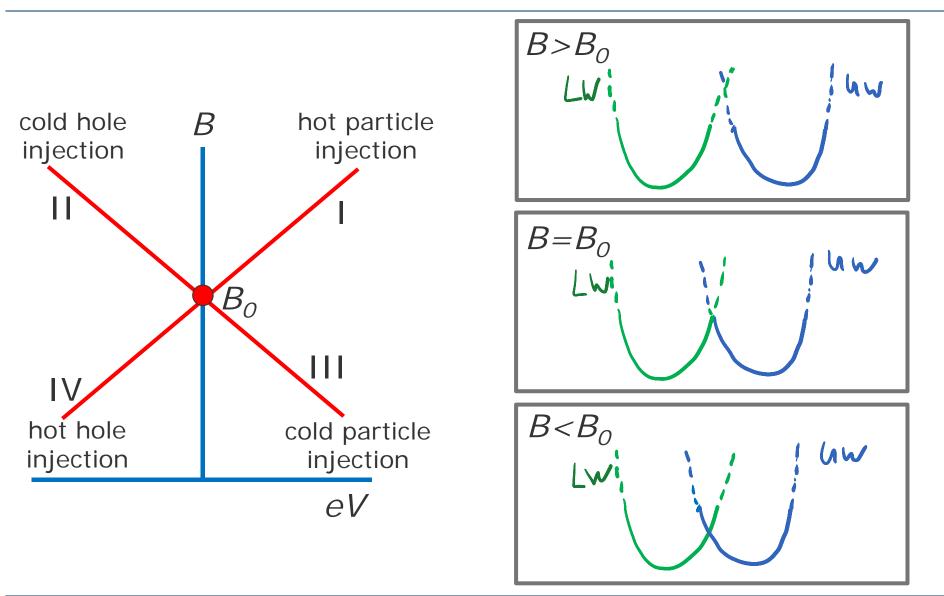
Some numbers:	length of source:	<i>10</i> μm
	distance source/drain:	2μm
	length of drain:	~1mm
	Fermi velocity	2*10 ⁵ m/s

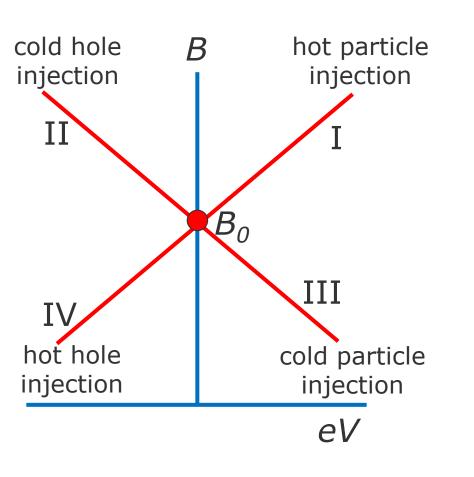
Experiment

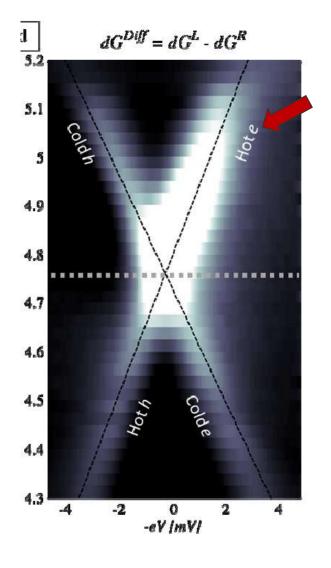


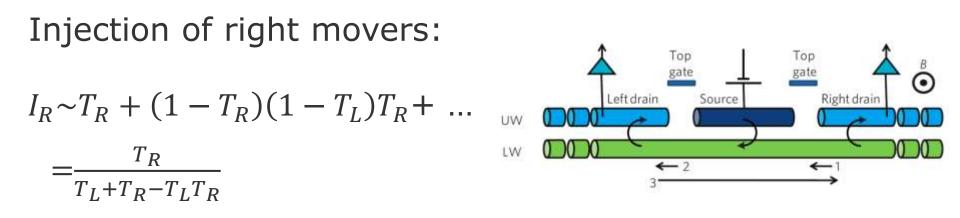
- perpendicular magnetic field: relative shift of dispersions of source and lower wire along momentum direction by $\Delta k = d/\ell_B^2$
- voltage: relative shift of dispersions along energy direction by eV

Regimes









$$I_L \sim (1 - T_R)T_L + (1 - T_R)(1 - T_L)(1 - T_R)T_L + \dots = \frac{(1 - T_R)T_L}{T_L + T_R - T_L T_R}$$

asymmetry:
$$AS = \frac{I_R - I_L}{I_R + I_L} = \frac{T_R - T_L + T_R T_L}{T_L + T_R - T_L T_R}$$

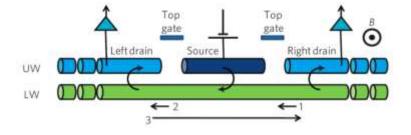
$$\overline{AS} = \frac{1}{2} \left(AS(B) + AS(-B) \right) = \frac{T_L T_R}{T_L + T_R - T_L T_R}$$

QD 2010, Chernogolovka

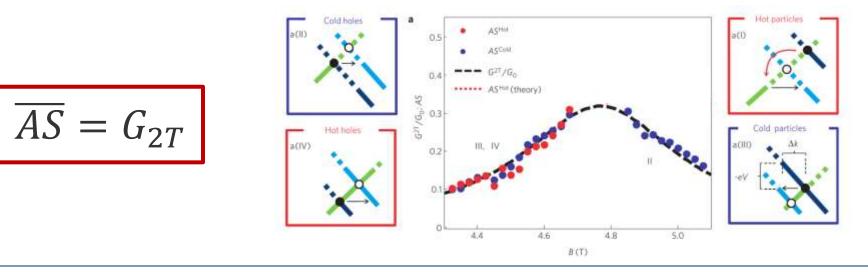
Sept. 19-23, 2010

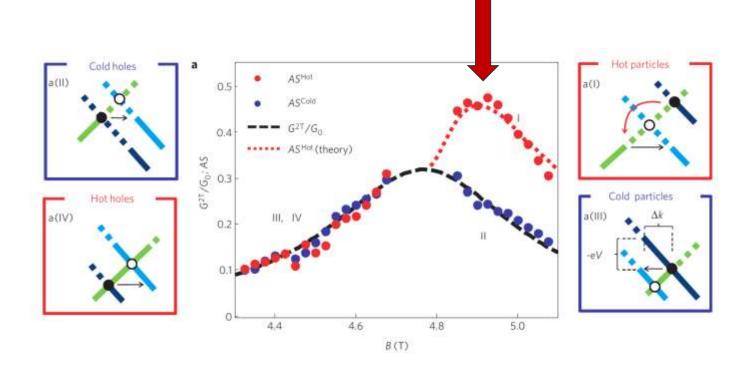
Cold particles and holes

2-terminal conductance:



 $G_{2T} \sim T_L T_R + T_L (1 - T_R) (1 - T_L) T_R + \dots = \frac{T_L T_R}{T_L + T_R - T_L T_R}$

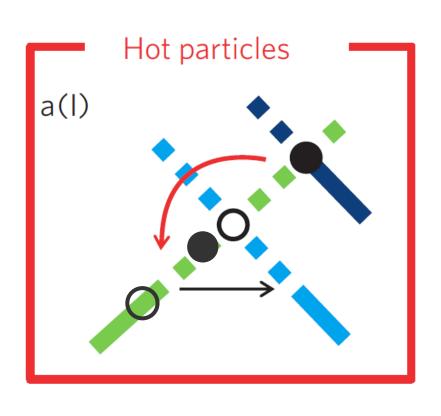


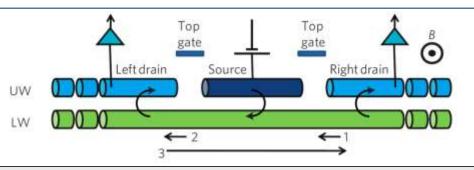


hot particles: asymmetry larger than expected

more than one electron exits to the right for each injected right-mover

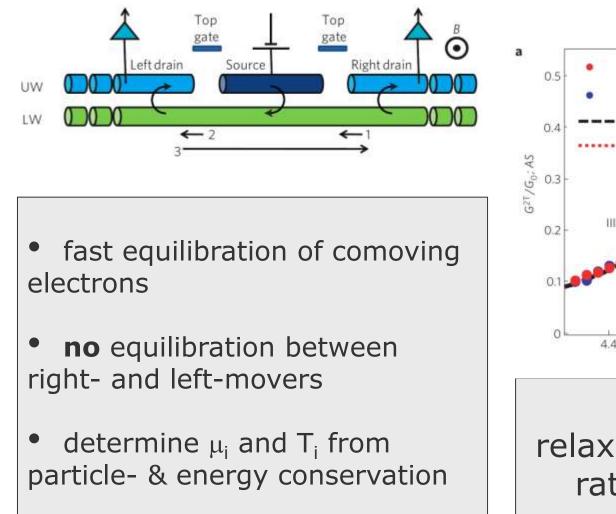
Basic idea

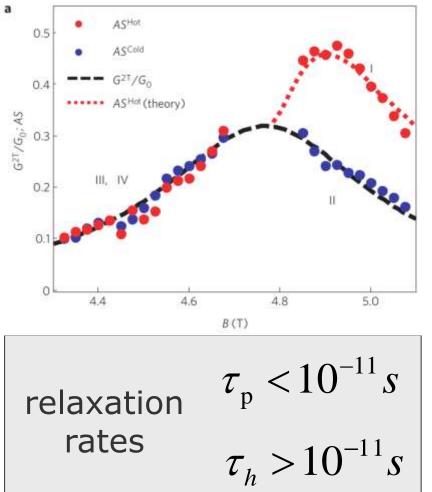




- hot particle excites ph pairs
- particle exits more easily than hole
- additional asymmetry
- **no** equilibration between right- and left-movers
 - no equilibration of holes

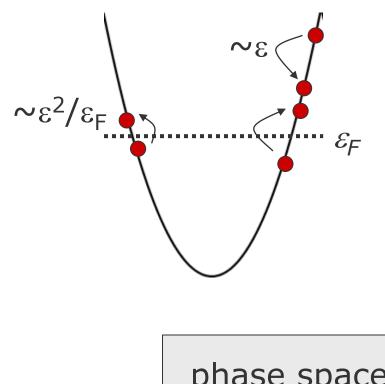
Phenomenological model





two-particle collisions ineffective

hot-particle relaxation by three-body collisions



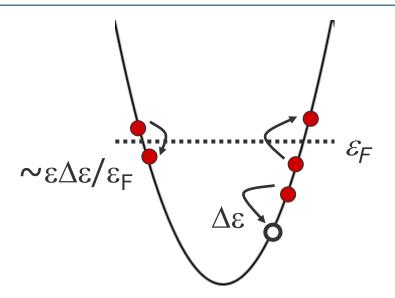
- energy & momentum conservation due to left-moving p-h pair
- typical energy loss $\sim \epsilon$

 left moving p-h pair has parametrically smaller energy

phase space ~ $\epsilon^2 \cdot \max(\epsilon^2/\epsilon_F, T)$

Berlin

Hot-hole relaxation



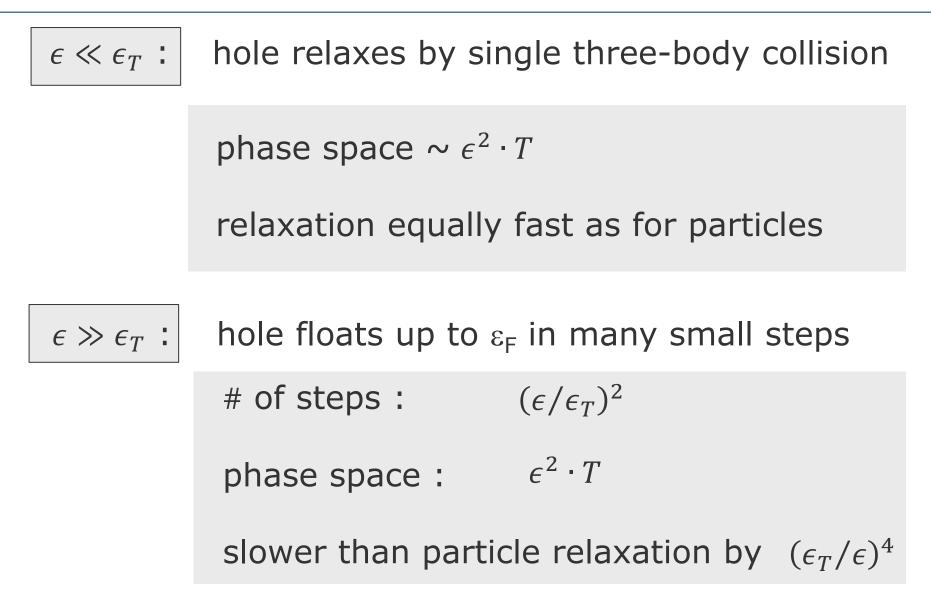
- all multi p-h pair processes are also forbidden
- holes cannot relax at zero temperature

finite temperature: process possible for $(\epsilon/\epsilon_F)\Delta\epsilon \sim T$

characteristic energy:

$$\epsilon_T = \sqrt{\epsilon_F T}$$

QD 2010, Chernogolovka



Fermi's golden rule:

$$\frac{1}{\tau} = \sum_{231'2'3'} W^{123}_{1'2'3'} n_2^0 n_3^0 \bar{n}_{1'}^0 \bar{n}_{2'}^0 \bar{n}_{3'}^0$$

see, e.g., Lunde et al. PRB 2007

Here:

• Coulomb interaction: $V_q =$

$$= \begin{cases} \frac{2e^2}{\kappa} \ln(2d/a) & q < 1/d \\ \frac{2e^2}{\kappa} \ln(1/qa) & q > 1/d \end{cases}$$

• spin

energy relaxation rate

elementary rates

$$W_{1'2'3'}^{123} = \frac{2\pi}{\hbar} |\langle 1'2'3' | VG_0 V | 123 \rangle_c |^2 \delta(E - E')$$

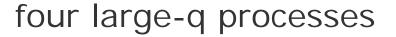
w/ matrix elements

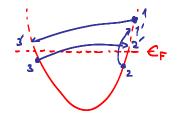
$$\langle 1'2'3' | VG_0 V | 123 \rangle_c = \sum_{P(1'2'3')} (-1)^p \delta_{\sigma_1 \sigma_2 \sigma_3, P(\sigma_{1'} \sigma_{2'} \sigma_{3'})} T^{123}_{P(1'2'3')}$$

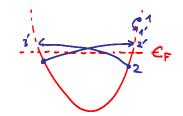
6 different amplitudes

two small-q processes

 $\frac{3}{3} \frac{9}{5} \frac{9}{5} \frac{9}{2} \epsilon_{\rm F}$







+ exchange 1' \leftrightarrow 2' $T_{1'2'3'}^{123} = (V_{q_1}/8\epsilon_F L^2) (V_{q_1} - V_{q_3})$ $T_{3'1'2'}^{123} = -T_{2'3'1'}^{123} = -T_{2'3'1'}^{123} = (V_{2k_F}/2\hbar v_F q_1 L^2) (V_{2k_F} - V_{p_1})$

- interaction can be reorganized to involve $V_{2k_F} V_0$ i.e., low-q and $2k_F$ -processes should contribute the same
- indeed, leading order cancels from $2k_F$ -processes
- Coulomb: except for logs, energy dependence of rates governed by phase space, e.g., $1/\tau_p \sim \epsilon^4$ for $\epsilon \gg \epsilon_T$
- short-range interaction: no scattering for contact interaction so that $T \sim q^2$ and $1/\tau_p \sim \epsilon^8$

[see, e.g., Khodas et al. PRB (2007); Pereira & Affleck PRB 2009)]

Interpretation: antisymmetric orbital wavefunction of spinless fermions suppresses $2k_F$ -contribution

- symmetric orbital wavefunction for total spin $\frac{1}{2}$
- **no** suppression of $2k_F$ -processes for Coulomb (only logarithmic suppression of matrix element)
- $T \sim 1/\epsilon$ dependence of rates on energy and temperature involves lower power than phase space

$$1/\tau_{\rm p} = (9\epsilon_F/32\pi^3\hbar)(e^2/\kappa\hbar v_F)^4[\lambda(\epsilon)]^2(\epsilon/\epsilon_F)^2$$

... orders of magnitudes larger than one may have suspected

Hot-particle relaxation :

$$\boldsymbol{\epsilon} \gg \boldsymbol{\epsilon}_{\mathsf{T}} : 1/\tau_{\mathrm{p}} = (9\epsilon_F/32\pi^3\hbar)(e^2/\kappa\hbar v_F)^4[\lambda(\epsilon)]^2(\epsilon/\epsilon_F)^2$$
$$\boldsymbol{\epsilon} \ll \boldsymbol{\epsilon}_{\mathsf{T}} : 1/\tau_{\mathrm{p}} = (3c_1\epsilon_F/4\pi^3\hbar)(e^2/\kappa\hbar v_F)^4[\lambda(\epsilon)]^2(T/\epsilon_F)$$

Hot-hole relaxation :

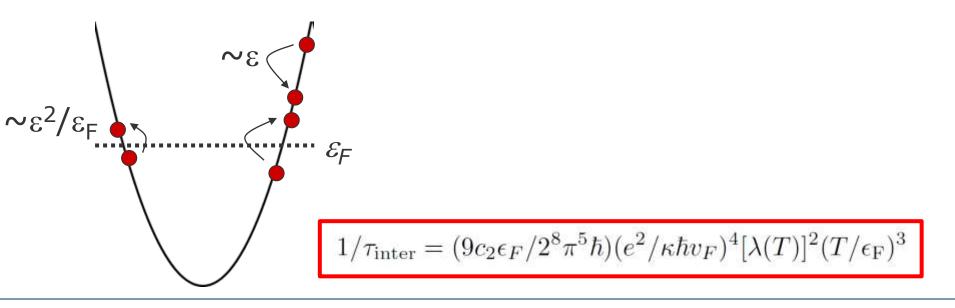
€ ≫ € ₇ :	$1/\tau_{\rm h} = (2\epsilon_{\rm F}/\pi\hbar)(e^2/\kappa\hbar v_F)^4 [\lambda(\epsilon)]^2 (T/\epsilon)^2$
€<< € _T :	same as for particles

co-moving electrons :

thermalization governed by hole relaxation time, even for injection of hot particles

counter-propagating electrons:

much slower due to small energy transfer per threebody collision between counter-propagating electrons



experiment: $\epsilon \sim \epsilon_F/3$

T=0.25 *K*

$$1/\tau_p \cong 10^{11} \frac{1}{s}$$
 $1/\tau_h \cong 5 \times 10^9 \frac{1}{s}$ $1/\tau_{inter} \cong 10^6 \frac{1}{s}$

... quantitatively consistent w/ experiment

- energy relaxation of electrons and holes in clean quantum wires proceeds via *three*-body collisions
- holes relax at *non*zero temperatures only
- nonzero temperatures introduces characteristic energy scale $(E_F T)^{1/2}$
- very slow equilibration between left & right movers
- energy relaxation rates quantitatively consistent
 w/ experiment