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1d electron systems 

EF 

No relaxation by  
excitation of p-h pair 
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Momentum & energy  
                     conservation 

Perturbative approach: 

only solutions: 
• k1=k3  ; k2=k4 

• k1=k4  ; k2=k3 
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1d electron systems 
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Tomonaga-Luttinger model:  
 
 
 
 
 
• purely quadratic Hamiltonian 
• can be mapped to free fermions by rescaling fields 
 
 
 

No inelastic processes due to linear dispersion 
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Outline 

 Experiment 

 

 

 Fundamental relaxation processes in 1d 

 

 

 Sketch of derivations 
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Experiment 
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• momentum-conserving tunneling 
 

• voltage drops mostly between source and lower wire 

Some numbers: length of source:           10mm 
distance source/drain:    2mm 
length of drain:           ~1mm 
Fermi velocity             2*105m/s 
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Experiment 
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• perpendicular magnetic field: relative shift of  
   dispersions of source and lower wire along 
   momentum direction by 
 
 
• voltage: relative shift of dispersions along energy 
   direction by eV 
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Regimes
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Measurement 
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Cold particles and holes 
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Injection of right movers: 

𝐼𝑅~𝑇𝑅 + 1 − 𝑇𝑅 1 − 𝑇𝐿 𝑇𝑅+ … 
 

  =
𝑇𝑅

𝑇𝐿:𝑇𝑅;𝑇𝐿𝑇𝑅
 

𝐼𝐿~ 1 − 𝑇𝑅 𝑇𝐿 + 1 − 𝑇𝑅 1 − 𝑇𝐿 1 − 𝑇𝑅 𝑇𝐿+ … =  
1;𝑇𝑅 𝑇𝐿

𝑇𝐿:𝑇𝑅;𝑇𝐿𝑇𝑅
 

𝐴𝑆 =  
𝐼𝑅;𝐼𝐿

𝐼𝑅:𝐼𝐿
 = 

𝑇𝑅;𝑇𝐿:𝑇𝑅𝑇𝐿

𝑇𝐿:𝑇𝑅;𝑇𝐿𝑇𝑅
 asymmetry: 



12 

Cold particles and holes 
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2-terminal conductance: 

𝐺2𝑇  ~ 𝑇𝐿𝑇𝑅 + 𝑇𝐿 1 − 𝑇𝑅 1 − 𝑇𝐿 𝑇𝑅+ … = 
𝑇𝐿𝑇𝑅

𝑇𝐿:𝑇𝑅;𝑇𝐿𝑇𝑅
 

𝐴𝑆 = 𝐺2𝑇 
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Hot particles 
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hot particles: asymmetry larger than expected 
  

more than one electron exits to the right  
for each injected right-mover 
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Basic idea 
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• hot particle excites ph pairs 
 

• particle exits more easily  
than hole 

 
• additional asymmetry 

 
• no equilibration between  
right- and left-movers 
 
• no equilibration of holes 
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Phenomenological model 
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• fast equilibration of comoving 
electrons 
 
• no equilibration between  
right- and left-movers 
 
• determine mi and Ti from 
particle- & energy conservation 

s11

p 10

sh

1110

relaxation 
rates 
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Relaxation in perturbative regime 

F 

two-particle collisions ineffective 
              hot-particle relaxation by three-body collisions 

~ 

~2/F 

• energy & momentum  
conservation due to  
left-moving p-h pair 
 
• typical energy loss ~ 

 
• left moving p-h pair has 
parametrically smaller  
energy 

𝜖2 ∙ max (𝜖2/𝜖𝐹 , 𝑇) phase space ~ 
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Hot-hole relaxation 

F 

• all multi p-h pair processes 
are also forbidden 
 
• holes cannot relax at zero  
temperature 

~D/F 

D 

finite temperature: process possible for  

characteristic energy:  

𝜖 𝜖𝐹 ∆𝜖 ~ 𝑇 

𝜖𝑇 = 𝜖𝐹𝑇 
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Hole relaxation at finite T 
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hole floats up to F in many small steps 

hole relaxes by single three-body collision 𝜖 ≪ 𝜖𝑇 : 

𝜖 ≫ 𝜖𝑇 : 

𝜖2 ∙ 𝑇 phase space ~ 
 
relaxation equally fast as for particles 

 of steps :  

 
phase space : 
 
slower than particle relaxation by 

𝜖2 ∙ 𝑇 

𝜖 𝜖𝑇 2 

𝜖𝑇 𝜖 4 
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Matrix elements 

• Coulomb interaction: 
 
• spin 

 
• energy relaxation rate 

𝑉𝑞 =

2𝑒2

𝜅
ln 2𝑑 𝑎              𝑞 < 1/𝑑

2𝑒2

𝜅
ln 1 𝑞𝑎               𝑞 > 1/𝑑
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Fermi‘s golden rule: 

see, e.g., Lunde et al. PRB 2007 

Here: 
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Processes 
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elementary rates 

w/ matrix elements 

6 different amplitudes 
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Processes
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two small-q processes four large-q processes

+ exchange 1‘¨2‘
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Spinless fermions 
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• interaction can be reorganized to involve 𝑉2𝑘𝐹 − 𝑉0 

i.e., low-q and 2kF-processes should contribute the same 
 
• indeed, leading order cancels from 2kF-processes 

 
• Coulomb: except for logs, energy dependence of rates  
governed by phase space, e.g.,   1 𝜏𝑝~𝜖

4   for  𝜖 ≫ 𝜖𝑇 

 
• short-range interaction: no scattering for contact  
interaction so that   𝑇~𝑞2   and   1 𝜏𝑝~𝜖

8  

Interpretation: antisymmetric orbital wavefunction of  
spinless fermions suppresses 2kF-contribution 

[see, e.g., Khodas et al. PRB (2007); Pereira & Affleck PRB 2009)] 
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Spinful electrons 
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• symmetric orbital wavefunction for total spin ½ 
 
• no suppression of 2kF-processes for Coulomb (only  
logarithmic suppression of matrix element) 

 
• 𝑇~1 𝜖                dependence of rates on energy and 
temperature involves lower power than phase space 

… orders of magnitudes larger  
            than one may have suspected 
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Results
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Hot-particle relaxation :

same as for particles

Hot-hole relaxation :
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Thermalization 
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co-moving electrons :  
      thermalization governed by hole relaxation time, 
      even for injection of hot particles 
 

counter-propagating electrons: 
      much slower due to small energy transfer per three- 
      body collision between counter-propagating electrons 

F 

~ 

~2/F 
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Comparison with experiment 
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experiment:  𝜖~ 𝜖𝐹 3  

 
                   T=0.25 K 

1 𝜏𝑝 ≅ 1011
1

𝑠
  1 𝜏ℎ ≅ 5 × 109

1

𝑠
  1 𝜏inter ≅ 106

1

𝑠
  

… quantitatively consistent w/ experiment 
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Conclusions 

 
• energy relaxation of electrons and holes in clean  
quantum wires proceeds via three-body collisions 
 
• holes relax at nonzero temperatures only 
 

• nonzero temperatures introduces characteristic energy 
scale  (EFT)1/2 
 
• very slow equilibration between left & right movers 
 

• energy relaxation rates quantitatively consistent  
w/ experiment 




